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1. Assessing performance of classification models

To assess the performance of the classification models trained during this work, both 
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves were 
studied, along with their areas under the curve (ROC-AUC and PR-AUC, respectively). 
In this section, we discuss the selection of these methods for validation.

ROC curves represent the true positive rate against the false positive rate over a 
moving classification threshold. This type of curve represents the model's 
classification power in terms of misclassification of positive cases (i.e., a model that 
has a lot of false positives will have poor ROC-AUC). Models are considered adequate 
classifiers if they have ROC-AUC higher than 0.7, and a perfect classifier will have 
ROC-AUC of 1. The PR curves are added as recent advances in model analysis have 
shown that imbalance in data testing (i.e. predominance of the negative class over 
the positive) can artificially increase the ROC-AUC statistic1. The PR curves measure 
how well the model recovers positive cases in a pool where the negative cases 
predominate, as is the case in the classification models we present in here (in which 
the skew is 0.1 for all the models). These plots represent precision (i.e., proportion of 
true positives over all positives predicted by the model) versus recall (i.e., proportion 
of true positives over the actual positives) for a moving classification threshold. A 
perfect model would have a squared shape touching the top-right corner and a PR-
AUC of 1, whereas a random model would have a PR curve under the baseline, which 
is a horizontal line at the random precision of the population (shown as a dashed line 
in the PR diagrams). This horizontal line is placed at the precision of a random 
classifier, which coincides with the skew of the dataset2. The area under the 
precision recall curve (PR-AUC) indicates that the model presents an improvement 
over random structure selection if the value exceeds the skew. Models with higher 
PR-AUC perform better. A classifier must then have PR-AUC at least superior to the 
skew of the dataset to improve the prediction capacity of randomly selecting 
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models. In this work, we consider the models as to be good if they show at least 4-
fold improvement over the prediction capacity of a random selection (i.e. PR-AUC of 
0.4 or more). 

2. Correlations

In this work, we studied the pairwise Spearman correlations for all pairs of 
molecular-molecular, material-material, and molecular-material descriptors. All 
pairwise correlations are presented in the correlogram of Fig. S1. It can be seen that 
the highest correlation values correspond to either molecular-molecular pairs of 
descriptors, or to material-material pairs of descriptors. The correlations for 
molecular-material pairs of descriptors are generally moderate to low.

Figure S1. Pairwise correlations for molecular and material descriptors analysed. Positive 
correlations are reflected in purple and blue colour, whereas negative correlations are 
reflected in orange and red. Higher colour intensity reflects higher associations.

3. Correlation evolution

To extend the analysis of basic correlations, we considered the correlation evolution 
for different material properties. In this section, we present the complete list of 
molecular-molecular pairs of correlations with a ΔK > 0.4 and final absolute 
correlation value of at least 0.5. It can be seen from Table S1 that the two properties 
with more emerging correlations are LCD and SA.
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Material property Pair of molecular 
properties

ΔK

ISA - NEP 0.42
ISA - NW 0.44
mLCD – ESA 0.43
mPLD - ESA 0.51
mPLD - ISA 0.62
MWS - ISA 0.63

Largest Cavity Diameter

MWS – ESA 0.53

Pore Limiting Diameter None

ISA - NEP 0.41
ISA - NW 0.49
MWS - ESA 0.42
mPLD - ESA 0.44

Density

mLCD - ESA 0.41
ISA - NEP 0.47
PLD - ISA 0.59
PER - NW 1.12
PER – NEP 1.04
PER – ISA 0.6
MWS - ISA 0.59
LCD – PER 0.66
LCD - NW 0.46
LCD – ISA 0.52

Surface Area

ISA - NW 0.73
mPLD - ESA 0.44Accessible volume
MWS – ESA 0.44

Volume fraction MWS - ESA 0.41

Table S1. Emerging molecular correlations (ΔK > 0.4) for the six material properties 
considered in this study.
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4. Performance of the classifier for structures with solvent

We extend here the results from the main article, exposing the performance of the 
classification random forest model for the subset of structures with solvent (14659 
structures). This model has slightly worse performance than the model for the entire 
dataset, thus being of potentially less interest, as in the cases where solvent can’t be 
removed, the more general model should produce similar or better results.

Figure S2. Performance of the random forest model trained for the solvent-only dataset. (a) 
ROC curves, along with the AUC values for the six models trained (one per material 
property). (b) PR curves, along with the AUC values for the six models trained (one per 
material property).
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5. Error distribution for the regressor RF model

To better assess the performance of the random forest models for regression, we 
studied the distribution of the absolute errors for the six models presented in the 
main text (no solvent, NW > 2, NE/NW = 1). In Fig. S3, the error distribution for the 
models can be found. It can be seen that most structures group at the left of the 
mean error. 

Figure S3. Absolute error distribution plots for the six random forest regression models 
(histograms). The blue dashed line indicates the mean absolute error, whereas orange bars 
indicate the number of structures placed in a given interval of error.
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6. Other RF regression models

During the development of this project, several random forest models for regression 
were considered. In Figure S4, the performance for the six RF models trained for the 
entire dataset can be found. The models have moderate performance (R2 between 
0.3 and 0.4), being generally worse than the models presented in the main text. For 
some of the models, this can be explained by the strong predominance of zero-
valued points, which may bias the model. The presence of solvent is also a factor 
that may difficult the prediction of porosity. Note that these models generally 
outperform the linear models (see Section 6), even using out-of-bag predictions 
compared with the internal validation used for linear models.

Figure S4. Predicted versus real values for regression models for the six material porosity 
measures predicted: LCD (a), PLD (b), density (c), SA (d), AV (e) and VF (f). Color-coding 
reflects density (i.e. number of structures placed in that region of the diagram). The models 
were trained over the 17832 structures that form our dataset. The counts per colour are 
presented in the colour bar within each graph. Diagonal lines represent the line of perfect 
prediction (continuous) and margins at one mean absolute error distance (dashed).

In Figure S5, a set of RF models trained for the subset of structures without solvent 
can be found. It can be seen that the models have a reasonable performance (except 
for the model for density), although inferior to the ones presented in the main 
paper. The high number of structures placed around values close to 0 in several 
models seem to bias the predictions, reducing the model accuracy.
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Figure S5. Predicted versus real values for regressor models for the six material porosity 
measures predicted: LCD (a), PLD (b), density (c), SA (d), AV (e) and VF (f). Colour coding 
reflects density (i.e. number of structures placed in that region of the diagram). The models 
were trained over the 3173 structures without solvent. The counts per colour are presented 
in the colour bar within each graph. Diagonal lines represent the line of perfect prediction 
(continuous) and margins at one mean absolute error distance (dashed).

7. Linear Regression Models

As a first attempt to train classification models to predict material properties from 
molecular descriptors, we used linear models. This kind of models has the advantage 
of being simpler than random forest, with the possibility to summarize them in 
terms of a simple equation. Additionally, they are more interpretable in terms of the 
contribution of each molecular descriptor to the material property. To avoid 
collinearity, we selected a subset of molecular porosity descriptors as predictor 
variables, avoiding the combinations of variables that were too strongly related (i.e. 
those with absolute correlation higher than 0.7). Correlation among molecular 
predictors can be found in Section 1 of this document. We computed multiple 
regression models for the six material properties analysed during this study. The 
parameters of these models can be found in Table S2, including the effect sizes (αi's) 
and significance values under Wald’s t-test. In the models, most or all predictors are 
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strongly significant, indicating the existence of an association between molecular 
and material properties. Effect sizes are not scaled and should be considered in 
reference to their average value. The parameters of the model can be inserted in the 
linear model equation to obtain an estimate of the material porosity parameter of 
interest:

(1)𝑦𝑀𝐴𝑇 = 𝛼0 + 𝛼1·𝑀𝑊𝑆 + 𝛼2·𝑃𝐸𝑅 + 𝛼3·𝐼𝑆𝐴 + 𝛼4·𝑁𝑊 + 𝛼5·𝐸𝑆𝐴

The value of this estimate, however, should be used conservatively, as the moderate 
R2 of the linear models indicate that the variance of the set of molecules is high. 

Predictors

Intercept MWS PER ISA NW ESA

Model 

performance

Outcome α0
p-value α1

p-value α2
p-value α3

p-value α4
p-value α5

p-value MAE Adj. R2

LCD 1.88 <10-5 0.32 <10-2 -2.7 <10-3 0.0012 <10-7 0.28 <10-4 9·10-5 <10-7 1.98 0.38

PLD 0.77 <10-2 0.1 0.18 -1.32 0.02 3·10-3 0.07 0.16 <10-3 6·10-5 <10-7 1.24 0.21

Density 1.9 <10-16 -8·10-3 0.5 -0.33 0.001 8.7·10-5 0.73 -3·10-2 <10-7 -2·10-5 <10-15 0.31 0.15

SA -671.3 <10-16 107.9 <10-16 -236.9 0.1 0.15 0.68 114.4 <10-16 0.023 <10-15 395.0 0.39

AV -0.12 <10-15 2·10-2 <10-8 -5·10-2 0.09 2·10-5 0.76 10-2 <10-10 4·10-6 <10-11 0.06 0.26

VF -6·10-2 <10-14 10-2 <10-8 -4·10-2 0.02 8·10-5 0.04 9·10-3 <10-16 2·10-6 <10-9 0.04 0.35

Table S2. Parameters of linear regression models.

From the table, it can be seen that PER has a negative association with material 
porosity, whereas the rest of molecular porosity descriptors considered have a 
positive association. This responds to the intuition of low PER value to be associated 
with more encapsulated molecules (which are expected to form more porous 
materials). The rest of parameters are naturally expected to associate positively with 
material porosity. This results also demonstrate how linear models are easier to 
interpret, although their prediction capacity is generally lower than that provided by 
random forest. Even when restricting to internal validation in linear models, out-of-
bag predictions from RF outperforms the simpler approach. 
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Figure S6. Predicted versus real values (internal validation) for linear regression models for 
the six material porosity measures predicted: LCD (a), PLD (b), density (c), SA (d), AV (e) and 
VF (f). Colour coding reflects density (i.e. number of structures placed in that region of the 
diagram). The models were trained over the 17832 structures that form our dataset. The 
counts per colour are presented in the colour bar within each graph. Diagonal lines 
represent the line of perfect prediction (continuous) and margins at one mean absolute 
error distance (dashed). In the figure, the unadjusted R2 value is shown. The adjusted R2 for 
the models can be found in Table S2. 

8. Logistic Regression Models

As a first attempt to train classification models to identify the structures with largest 
material porosity parameters, we used logistic regression models. This kind of 
models have the advantage of being simpler than random forest, with the possibility 
to summarize them in terms of a simple equation. Thus, with a good predictive 
logistic regression model we would be able to provide simple guidelines for chemists 
in order to evaluate the potential of a given molecule to build up into a porous 
molecular material with outstanding properties. We trained a set of logistic 
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regression models to identify structures within the best 10% for each of the six 
material properties analysed during this study. Logistic regression models provide 
with a way to compute the probability of a material (formed by a certain molecule) 
being over the threshold for the selected material property. To do so, the equation 
below should be applied: first, the logistic score can be calculated as follows:

(2)𝑊𝑚𝑜𝑙 = 𝑒
𝛽0 + 𝛽1·𝑀𝑊𝑆 + 𝛽2·𝑃𝐸𝑅 + 𝛽3·𝐼𝑆𝐴 + 𝛽4·𝑁𝑊 + 𝛽5·𝐸𝑆𝐴

Then, the probability of the material parameter being over the given threshold is:

(3)
𝑝(𝑦𝑚𝑎𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =  

1
1 + 𝑊𝑚𝑜𝑙

The parameters of the equation correspond (for each material porosity property) 
with the odds ratios of the model, presented in Fig. S7. These descriptors can be 
computed with help of Molipor. 

Figure S7. Odds ratios for the logistic regression models. All the predictors are scaled by 
their own standard deviation to make them comparable. In total, six models are represented 
in the plot, with the odd-ratios of each model marked with a different colour. Error bars (in 
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grey) indicate that the parameter is statistically significant if they do not cross the dashed 
vertical line in 1. 

Figure S8. Performance of the logistic regression models trained for the entire dataset. (a) ROC 
curves, along with the AUC values for the six models trained (one per material property). (b) PR 
curves, along with the AUC values for the six models trained (one per material property).

The performance (internal validation) of the six logistic regression models is analysed 
with help of ROC and PR curves, just as random forest model’s performance was 
assessed. The results can be found in Figure S8. From the figure, it can be seen that 
logistic regression models are an improvement with respect to a random classifier, 
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but that of random forest classification models generally outclasses their 
performance.

9. Error prediction models

During the process of exploration, several iterations of regression models were 
considered. We found a satisfying performance for the regression models trained for 
a subset of structures formed by molecules considered to be more regular (NW > 2, 
NE/NW = 1), and without solvent. These models were not yet perfectly accurate, 
although their prediction capacity improved significantly with respect to the baseline 
models (linear regression for the whole population). During this work, we 
investigated how molecular structure can help to predict the model to make a big 
error during prediction. This was achieved by training logistic regression models, 
where two classes were considered: a positive class formed by the structures with 
absolute error bigger than the mean, and a negative class formed by the structures 
having less (or equal) absolute error than the mean.  These models were then 
assessed with help of the ROC AUC (the skew in these populations was generally 
higher than 0.3). In Table S3, the ROC-AUCs for each model, along with the list of 
significant parameters (i.e., molecular properties that predict high error in the 
regression model) can be found. Generally speaking, the presence of metal seems to 
produce a higher error in the prediction of the RF regression model. Higher numbers 
in the descriptors also lead to less predictable scenarios (except for PER, that works 
in the opposite direction).

Material 
property

Error 
ROC-AUC

Significant parameters (effect size)

LCD 0.7 PER (0.15), ISA (1.0), ESA (1.0), HasMetal (1.7),
LCD (1.2) PLD (1.3), NE/NW (1.2)

PLD 0.76 PER (0.04), ISA (1.0), NW (0.9), ESA (1.0), CP (2.6),
HasMetal (2.2), LCD (1.2), PLD (1.5), NE/NW (1.1)

Density 0.61 MWS (1.3), PER (0.3), ESA (1.0), HasMetal (1.5), 
CP (0.7), LCD (1.1), PLD (0.8), NE/NW (1.2)

SA 0.86 MWS (0.9), PER (0.04), ESA (1.0), HasMetal (2.2), CP 
(7.9), LCD (1.3), PLD (1.7), NE/NW (1.1)

AV 0.86 MWS (0.8), PER (0.03), ISA (1.0), ESA (1.0), 
HasMetal (2.0), CP (11.9), LCD (1.6), PLD (1.7)

VF 0.86 MWS (0.8), PER (0.04), ISA (1.0), ESA (1.0), 
HasMetal (2.4), CP (3.4), LCD (1.7), PLD (1.7) 

Table S4. Error prediction models. Logistic regression models to predict which structures will 
have an error bigger than the mean absolute error for the six regression models presented 
in the main text. ROC-AUCs are shown as performance assessment for the error models. All 
significant parameters, along with their effect size (scaled by the standard error for each 
variable) are shown. The effect size is shown between brackets. Values higher than 1 favour 
errors, whereas values lower than 1 favour the model to be right. Values of 1 represent 
small effects (lost due to rounding). 
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10. Prediction of material property over PubChem

To demonstrate the utility of the models presented in this work, we performed 
material property prediction over the PubChem subset of porous molecules, first 
introduced in a previous work from our group3. This set consists of 6020 porous 
molecules mined from PubChem. For this analysis, we use the classification model 
for structures without solvent, obtaining the probability of molecules forming a 
porous crystal with material porosity property within the best 10% according to the 
values obtained from CSD. In Figure S9 we present a bar plot with the number of 
molecules expected to form such a crystal based on their molecular properties. 

Figure S9. Bar plot representing the number of PubChem molecules expected to form a 
porous crystal with material porosity higher than the best 10% threshold for CSD 
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(percentage with respect to the total 6020 porous molecules found in PubChem in previous 
screenings).

It can be seen, from Fig S9, that a high number of molecules are expected to form 
porous crystals with interesting properties, according to the models. These numbers, 
however, have to be considered cautiously, as some of the molecules considered in 
this database are only predicted computationally, and also this values are 
predictions based on the expectation that solvent will be successfully removed, 
which is not always possible.
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