Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

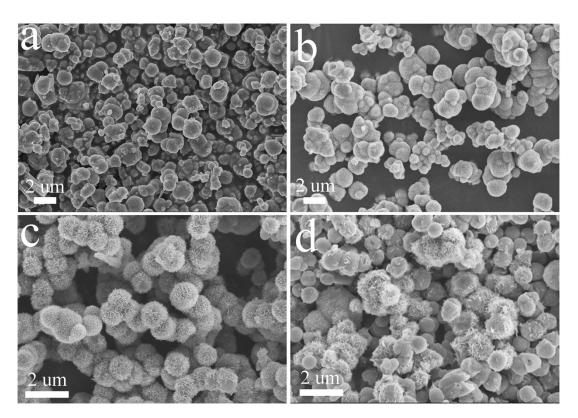
Synthesis of cobalt-doped V_2O_3 with hierarchical yolk-shell structure for high-performance lithium-ion batteries

Shuai Zhang, a Li Zhang, a Guancheng Xu, a Xiuli Zhang, a Aihua Zhao a

Region; Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China

^a Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous

^b Physics and Chemistry Detecting Center, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China


^{*} Corresponding author. E-mail: zhanglixju@163.com. Tel./Fax: +86-991-8580586

Characterization materials

The crystal phase of $Co-V_2O_3$ -24 and pure V_2O_3 were investigated by powder X-ray diffraction (PXRD, Bruker D8 advance diffractometer, Cu K α radiation, λ =0.15405 nm) in the 20 range of $10^{\sim}80^{\circ}$. Microscopic morphologies and structure were characterized by field-emission scanning electron microscopy (FESEM, Hitachi S-4800), low-magnification transmission electron microscope (TEM, Hitachi H-600), and high-resolution TEM (HRTEM, JEOL, JEM-2100). The elemental mapping and chemical composition were performed on energy-dispersive X-ray spectroscope (EDX) attached to the FESEM. The elemental valence was detected by X-ray photoelectron spectroscopy (XPS, ESCALAB 250 Xi) from Thermo Fisher Scientific.

Electrochemical measurements

All CR2032 type coin cells were assembled in a glove box filled with argon and containing less than 1 ppm of water and oxygen. The lithium foil was regarded as counter and reference electrode, Celgard 2300 as the separator and 1 M LiPF₆ in ethylene carbonate (EC)/ethyl methyl carbonate (EMC)/dimethyl carbonate (DMC) (1:1:1, v:v:v). The working electrode was prepared by full mixing active materials (60 wt %), carbon black (30 wt %) and polyvinylidene fluoride (PVDF, 10 wt %) in N-methyl pyrrolidone (NMP). The homogeneous slurry was coated onto Copper foil and then dried at 80 °C in vacuum oven for 12 h. Cyclic voltammetry (CV) curves were tested through electrochemical workstation (CHI660D, Chenhua, China) within the potential range of 0.01~3 V. Galvanostatic charge-discharge cycles were conducted by testing system (Land CT2001A, Wuhan, China) in the voltage range of 0.01~3 V at the room temperature. Electrochemical impedance spectroscopy (EIS) were carried out by using Zahner Elektrik electrochemical workstation within the frequency range of 100 kHz to 0.01 Hz under open circuit voltage.

 $\textbf{Figure S1.} \ \textbf{FESEM} \ images \ with \ the \ different \ doping \ content \ of \ Co(NO)_3 \cdot 6H_2O: \ 0 \ mmol \ (a), \ 0.05 \ mmol \ (b), \ 0.1 \ mmol \ (c), \ 0.15 \ mmol \ (d).$

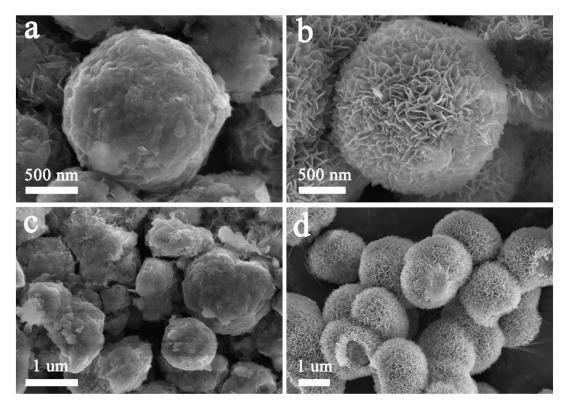
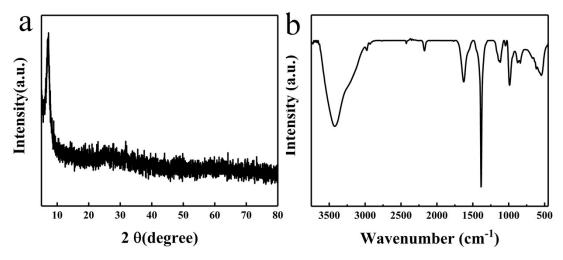
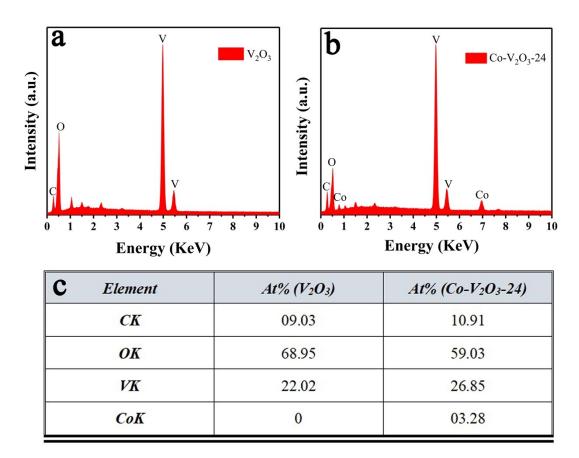




Figure S2. The effects of different metal salts on the morphology of products. (a, c) 0.1 mmol $Co(CH_3COO)_2 \cdot 4H_2O$; (b, d) 0.1 mmol $Ni(NO_3)_2 \cdot 6H_2O$.

 $\textbf{Figure S3.} \ \text{The XRD pattern (a) and FTIR (b) of Co-doped vanadium alkoxide precursors after solvothermal for 24 h.}$

 $\textbf{Figure S4.} \ EDS \ spectra \ of \ V_2O_3 \ (a) \ and \ Co-V_2O_3-24 \ (b), \ atomic \ percentage \ of \ V_2O_3 \ and \ Co-V_2O_3-24 \ (c).$

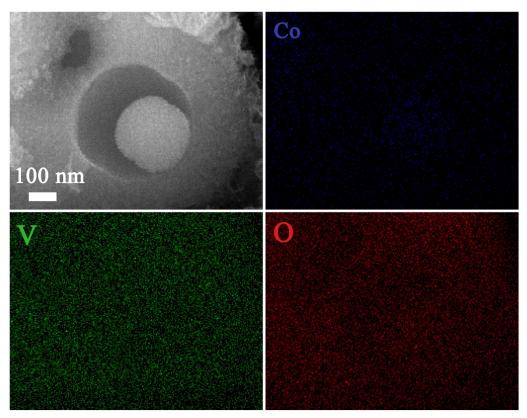
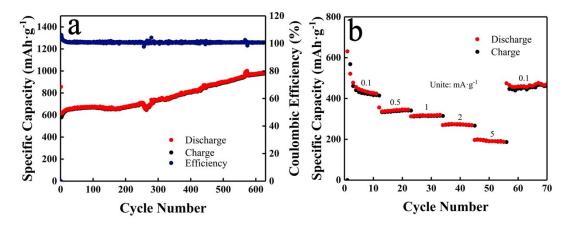



Figure S5. EDX mapping images of broken Co-V2O3-24

 $\textbf{Figure S6.} \ (a) \ The \ cycling \ performance \ and \ coulombic \ efficiency \ of \ Co-V_2O_3-24 \ at \ 0.5 \ A\cdot g^{-1}. \ (b) \ Rate \ performance \ of \ pure \ V_2O_3.$

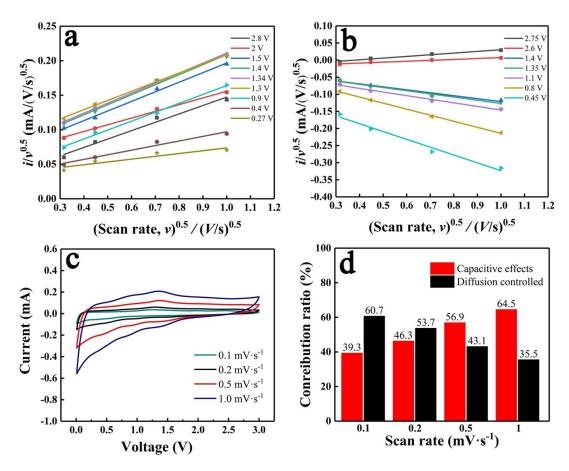


Figure S7. The lines of $i/v^{0.5}$ vs. $v^{0.5}$ used to evaluate k_1 and k_2 at various potentials (a, b). CV cures of Co-V₂O₃-24 at various scan rate (c). Contribution ratio of the capacitive effect and diffusion-controlled at different scan rates (d).

 $\textbf{Table S1.} \ \text{The value of } R_S \ \text{and} \ R_{ct} \ \text{after fitting with equivalent circuit}$

Electrode	$R_s(\Omega)$	$R_{ct}(\Omega)$
Pure V ₂ O ₃ before cycling	1.7	324.4
Co-V ₂ O ₃ -24 before cycling	2.5	263.3
Co-V ₂ O ₃ -24 after 200 cycles	1.9	198.5
Co-V ₂ O ₃ -24 after 2200 cycles	10.13	252.1

 Table S2. Comparison between other reports and our work of vanadium oxide as anode materials for LIBs

Vanadium oxide anode	Current density (A·g-1)	Discharge capacity (mAh·g-1)	Reference
Porous vanadium oxides@C heterostructure	0.1	569 (after 105 cycles)	1
Peapod-like CNT@V ₂ O ₃	0.5	652.4 (after 200 cycles)	2
Carbon-Coated Yolk-Shell V ₂ O ₃ Microspheres	0.1	437.5 (after 100 cycles)	3
Carbon-supported and nanosheet-assembled vanadium oxide microspheres	2	260 (after 7000 cycles)	4
pea-pod structured V ₂ O ₃ yolk-shell microspheres @N, S co-doped carbon fiber	0.1	793.7 (after 100 cycles)	5
Porous V ₂ O ₃ @C hollow spheres	2	583 (after 800 cycles)	6
Hierarchical porous intercalation-type V ₂ O ₃	0.1	732 (after 136 cycles)	7
Carbon-confined V ₂ O ₃ hollow spheres	2	472 (after 700 cycles)	8
V ₂ O ₃ /porous N-doped carbon	0.5	436 (after 200 cycles)	9
3D hierarchical yolk- shell structure Co-V ₂ O ₃ - 24	0.5	986.2 (after 630 cycles)	This work

Notes and references

- 1 H.-E. Wang, X. Zhao, K. Yin, Y. Li, L. Chen, X. Yang, W. Zhang, B.-L. Su, G. Cao, ACS Appl. Mater. Inter. 2017, 9, 43665-43673.
- 2 Y. Bai, Y. Tang, L. Liu, X. Li, Y. Gao, ACS Sustainable Chem. Eng. 2018, **6**, 14614-14620.
- 3 L. Jiang, Y. Qu, Z. Ren, P. Yu, D. Zhao, W. Zhou, L. Wang, H. Fu, ACS Appl. Mater. Inter. 2015, **7**, 1595-1601.
- 4 C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang, K. Zhao, Y. Yu, Y. Wu, C. Lin, L. Mai, Nano Res. 2015, **9**, 128-138.
- 5 W. Gou, X. Kong, Y. Wang, Y. Ai, S. Liang, A. Pan, G. Cao, Chem. Eng. J. 2019.
- 6 J. Wang, Z. Liu, W. Yang, L. Han, M. Wei, Chem. Commun. 2018, **54**, 7346-7349.
- 7 P. Liu, K. Zhu, Y. Xu, K. Bian, J. Wang, G. Tai, Y. Gao, H. Luo, L. Lu, J. Liu, Chem. Eur. J. 2017, **23**, 7538-7544.
- 8 C. Han, F. Liu, J. Liu, Q. Li, J. Meng, B. Shao, Q. He, X. Wang, Z. Liu, L. Mai, J. Mater. Chem. A 2018, **6**, 6220-6224.
- 9 D. Zhang, G. Li, B. Li, J. Fan, X. Liu, D. Chen, L. Li, J. Alloys Compd. 2019, **789**, 288-294.