Supporting Information

Simple One-pot Synthesis of Two-Dimensional (2D) Cu₄SnS₄ Nanoplates and Temperature-Induced Phase Transformation Mechanism

Xiaoyan Zhang^a, Yu Tang^a, Yifeng Wang^c, Liming Shen^a, Arunava Gupta^b, Ningzhong Bao^{a,d*}

^a State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China ^b Centre for Materials for Information Technology, The University of Alabama, Tuscaloosa, AL 35487, USA

^c College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, China

^d Jiangnan Graphene Research Institute, Changzhou, Jiangsu 213159, P. R. China

Fig. S1 TEM images of the Cu₄SnS₄ nanopaltes

Fig. S2 High-resolution XPS spectra of O for Cu₄SnS₄ nanoplates.

Fig. S3 XRD patterns of Cu-Sn-S synthesized at different reaction temperatures by direct heat-up process.