Supporting Information

2D Organ-like Molybdenum Carbide (MXene) Coupled with MoS₂ Nanoflowers Enhances the Catalytic Activity in the Hydrogen Evolution Reaction

Jie Ren^a, Hui Zong^a, Yuyun Sun^a, Yu Feng^a, Zhenguo Wang^a, Le Hu^a, Shijing Gong^a, Ke Yu^{*a,b} and Ziqiang Zhu^a

a Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China

b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan,

Shanxi 030006, People's Republic of China

* Author to whom correspondence should be addressed. E-mail: yk5188@263.net. Tel: +86-21-54345198.

Fig. S1 EDX spectrum of $MoS_2@Mo_2CT_x$.

Fig. S2 XPS survey spectra of $MoS_2@Mo_2CT_x$ nanohybrids

Fig. S3 (a) SEM of $MoS_2@Mo_2CT_x$ at the beginning of HER; (b) SEM of the composite after 8 hours.

Fig. S4 Electrocatalytic efficiency of H_2 production on $MoS_2@Mo_2CT_x$ at a potential of ca. -400 mV, measured for 60 min.

Fig. S5 (a) Polarization curves of different materials at a scanning rate of 10 mV s⁻¹ in 0.5 M H₂SO₄; (b) Tafel plots of different materials; (c) EIS spectra of different materials over the frequency range from 100 kHz to 10 Hz at $\eta = 400$; cyclic voltammograms of MoS₂@Mo₂CT_x, within different rates ranging from 10 to 50 mV s⁻¹ in the region from 0.15 to 0.34 V.

Fig. S6 Digital photograph of the three-electrode system with the ion exchange membrane. The commercial Pt/C electrode and Ag/AgCl electrode were used as the counter electrode and reference electrode respectively.

Catalysts	Overpotential at j=10 mA cm ⁻ ² (mV)	Tafel slope (mV dec ⁻¹)	References	Cites
MoS ₂ @Mo ₂ CT _x	176	207	This work	
MoS ₂ /Ti ₃ C ₂ - MXene@C	135	45	<i>Adv. Mater.</i> , 2017, 29 , 1607017	S 1
Mo ₂ C@2D-NPC	45	52	ACS Nano, 2017, 4 , 3933- 3942	S2
Mo ₂ C	195	67	ACS Nano, 2017, 4 , 3933- 3942	S2
$Co^{3+}-Cr_2CT_x$	404	137	J. Am. Chem. Soc., 2019, 141 , 9610-9616	S3
Nb-doped Ti ₃ C ₂ T _x MXene	445	154	Adv. Sci., 2019, 11 , 1900116.	S4
N,P-doped Mo ₂ C@C	156	87	ACS Nano, 2016, 9 , 8851- 8860	S5
$Mo_2CT_x:Co$	180	59	J. Am. Chem. Soc., 2019, 141 , 17809-17816	S6
2H MoSe ₂ /Ti ₃ C ₂ MXene	152	211	<i>Electrochim. Acta,</i> 2019, 326 , 134976	S7

Table S1 A comparison of $MoS_2@Mo_2CT_x$ electrocatalyst with recently reported non-noble metal catalysts in HER performance (1 M KOH).

Catalysts	Overpotential at j=10 mA cm ⁻	Tafel slope (mV dec ⁻¹)	References	Cites
MoS ₂ @Mo ₂ CT _x	-(mv) 176	113	This work	
Ti ₂ C	609	124	ACS Energy Lett., 2016, 1(3), 589-594	S8
Mo ₂ C	283	82	ACS Energy Lett., 2016, 1(3), 589-594	S 8
Mo ₂ CT _x	189	75	ACS Energy Lett., 2016, 1(3), 589-594	S 8
L-Mo ₂ C	145	157	ACS Appl. Mater. Interfaces, 2018, 47 , 40500-40508	S9
Ti ₃ C ₂ Flakes	390	188	ACS Sustain. Chem. Eng., 2018, 6 , 8976-8982	S10
Layered-Ti ₂ CT _x (F-term)	265	138	Nano Energy, 2018, 47 , 512-518	S11
N-Ti ₂ CT _x	215	67	J. Mater. Chem. A, 2018, 6 , 20869-20877	S12

Table S2 A comparison of $MoS_2@Mo_2CT_x$ electrocatalyst with recently reported non-noble metal catalysts in HER performance (0.5 M H₂SO₄).

Supplementary References

- S1. X. Wu, Z. Wang, M. Yu, L. Xiu and J. Qiu, Adv. Mater., 2017, 29. 1607017.
- S2. C. Lu, D. Tranca, J. Zhang, F. N. Rodri Guez Hernandez, Y. Su, X. Zhuang, F. Zhang, G. Seifert and X. Feng, ACS Nano, 2017, 11, 3933-3942.
- S3. S. Y. Pang, Y. T. Wong, S. Yuan, Y. Liu, M. K. Tsang, Z. Yang, H. Huang, W. T. Wong and J. Hao, J. Am. Chem. Soc., 2019, 141, 9610-9616.
- S4. J. Yu, G. Li, H. Liu, L. Zeng, L. Zhao, J. Jia, M. Zhang, W. Zhou, H. Liu and Y. Hu, Adv. Sci. (Weinh), 2019, 6, 1901458.
- Y. Y. Chen, Y. Zhang, W. J. Jiang, X. Zhang, Z. Dai, L. J. Wan and J. S. Hu, ACS Nano, 2016, 10, 8851-8860.
- S6. D. A. Kuznetsov, Z. Chen, P. V. Kumar, A. Tsoukalou, A. M. Kierzkowska, P. M. Abdala, O. V. Safonova, A. Fedorov and C. R. Muller, J. Am. Chem. Soc., 2019, 141, 17809-17816.
- S7. N. Li, Y. Zhang, M. Jia, X. Lv, X. Li, R. Li, X. Ding, Y. Z. Zheng and X. Tao, *Electrochim. Acta*, 2019, **326**, 134976.
- S8. J. Xiong, J. Li, J. Shi, X. Zhang, N. T. Suen, Z. Liu, Y. Huang, G. Xu, W. Cai, X. Lei, L. Feng,
 Z. Yang, L. Huang and H. Cheng, ACS Energy Lett., 2018, 3, 341-348.
- S9. W. Yuan, Q. Huang, X. Yang, Z. Cui, S. Zhu, Z. Li, S. Du, N. Qiu and Y. Liang, ACS Appl. Mater. Interfaces, 2018, 10, 40500-40508.
- S10. T. A. Le, Q. V. Bui, N. Q. Tran, Y. Cho, Y. Hong, Y. Kawazoe and H. Lee, ACS Sustain. Chem. Eng., 2018, 6, 8976-8982.
- S11. S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu, J. Bao, B. Pan and Y. Xie, *Nano Energy*, 2018, 47, 512-518.
- S12. Y. Yoon, A. P. Tiwari, M. Lee, M. Choi, W. Song, J. Im, T. Zyung, H. K. Jung, S. S. Lee, S. Jeon and K. S. An, *J. Mater. Chem. A*, 2018, 6, 20869-20877.