ESI

Crystals formation of 1D coordination polymers based on chiral, achiral and racemic 1,2 cyclohexane scaffold

Abdelaziz Jouaiti, ${ }^{\text {a }}$ Philippe Grosshans, ${ }^{\text {a }}$ Nathalie Kyritsakas, ${ }^{\text {a }}$ Sylvie Ferlay, ${ }^{\text {a }}$, Marc Henry, ${ }^{\text {b }}$ Mir Wais Hosseinia ${ }^{\text {a }}$

Characterization

Compound c, Bis-pyridin, 4,4'-[cis-1,2-cyclohexanediylbis(oxy)]
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$

${ }^{13} \mathrm{C}-\mathrm{RMN}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

PACHA: General considerations

The PACHA formalism is a very useful method for probing intermolecular interaction energies in a perfectly non-empirical way that do not follow the usual decomposition of the total energy into coulombic, polarization, dispersion, repulsive, H -bonding terms. The crucial physical reason for not relying on such a partition of the total energy in PACHA is that all these terms depend on the same electromagnetic interaction involving electrons and protons.

However, for such an approach to be reliable, three requirements should imperatively be met:
i) The partial charges distributions should be self-consistent and should not involve empirical scalings. With PACHA this requirement is met using an electronegativity equalization principle coupled to the universal Allen's scale and to atomic radii computed using relativistic wavefunctions solutions of the Dirac equations.
ii) The SE (Self-Energy)-term should be at least one order of magnitude large than the Fterm meaning that the method is not well-suited for completely apolar compounds. In practice this requirement is met as soon as it exists one oxygen or nitrogen atom in the investigated compound. This means that crystalline elements and pure hydrocarbons characterized by a null or rather small electronegativity differences between constituting atoms are not well-handled by PACHA and should be treated by other methods.
iii) Compounds displaying an energy difference between the ground state and the first excited electronic state less than 1 eV (semi-conductors, semi-metals, metals, radicals, etc...) should be considered with extreme care as in this case the adiabatic approximation may not apply. For such compounds, a full quantum-mechanical treatment becomes mandatory.

One of the big advantage of the PACHA approach is that hydrogen-bonded systems may be easily and rigorously treated on the same theoretical ground as non hydrogenbonded systems. This is crucial as in most other methods, hydrogen bonding is usually considered as a very difficult problem needing ad hoc potentials. In PACHA, hydrogen bonding is automatically included as a consequence of the validity of the Hellman-Feynman theorem and is just a particular case of the universal electromagnetic interaction that is easily handled by the SE (Self-Energy) term.

Table 1 gives the atomic parameterization that have been used in this paper. As packing energies are very sensitive to H -atom positions in PACHA, coordinates for H -atoms derived from X-ray structures cannot be used owing to the large errors made on these atomic positions. In order to avoid introducing unphysical values, all C-H bond lengths have been fixed at the standard value of 108 pm allowing performing reliable comparisons between crystal structures derived from single-crystal X-ray diffraction.

Element	\mathbf{H}	\mathbf{C}	\mathbf{N}	\mathbf{O}	$\mathbf{C l}$	$\mathbf{H g}$
van der Waals radius /pm	120	170	155	152	175	155
Electronegativity /eV	13.61	15.05	18.13	21.36	16.97	10438
Atomic radius /pm	53.0	62.0	52.1	45.0	72.4	112.6

Table 1: Standard sets of van der Waals radii ${ }^{1}$ used for the computation of packing coefficients, with associated atomic electronegativities ${ }^{2}$ and radii ${ }^{3}$ used for partial charges evaluation in PACHA.

The PACHA algorithm, based on charge partial calculations, has been described in previous publications, (M. Henry, ChemPhysChem, 2002, 3, 561-569. M. Henry, ChemPhysChem, 2002, $3,607-616$.). Moreover, it is the only algorithm able to interpret 183W NMR chemical shifts with the computed partial charges distribution [N. J. Chem, 2017, 41, 6112-6119].
The algorithm has been applied with success in a wide range of compounds containing metals: Ferey et al. J. Am. Chem. Soc. 2003, 125, 1912-1922
Steed et al. J. Am. Chem. Soc. 2005, 127, 11063-11074
Souillard et al. J. Col. Inter. Sc, 2006, 307, 175-182
Steed et al. Chem. Eur. J. 2011, 17, 10259-10271
Steed et al. Cryst. Gr.\&Des. 2012, 12, 1395-1401

Calculations

Calculation of Packing Energy (PE)

[^0]In the crystalline state, the Packing Energy may depend on the different crystallographic directions. In this case, we propose to introduce three structure descriptors, reflecting the anisotropy of the molecular packing. The basic idea is to use three partial space-group symmetries (packing sub-groups) creating large voids in the structure that lead to a strong reduction of the Packing Energy. The three Partial Packing Energy (PPE), reflecting the packing anisotropy, are assumed to be in the order $\mathrm{PPE}_{1}<\mathrm{PPE}_{2}<\mathrm{PPE}_{3}$, one may define the isotropic Partial Packing Energy <PE>:

$$
<\mathrm{PE}\rangle=\left(\mathrm{PPE}_{1}+\mathrm{PPE}_{2}+\mathrm{PPE}_{3}\right) / 3
$$

And the Packing Energy span $\Delta \mathrm{PE}$:

$$
\Delta \mathrm{PE}=\mathrm{PPE}_{1}-\mathrm{PPE}_{3}
$$

And the Packing Energy skew η PE:

$$
\eta \mathrm{PE}=3\left(\mathrm{PPE}_{2}-\langle\mathrm{PE}>) / \Delta \mathrm{PE}\right.
$$

(with $\eta=0$ in the case of spherical symmetry when $\Delta=0$).
$-1<\eta$ PE $<+1$ (tri-axial ellispoid) is measuring the deviation from pure axial symmetry characterized by $\eta P E=+1$ (oblate ellipsoid) and $\eta P E=-1$ (prolate ellipsoid).

Calculation of Cooperativity Index (CI)

A last structure descriptor would then be the Cl cooperativity index:

$$
\mathrm{CI}=3\langle\mathrm{PE}\rangle-\mathrm{PE}
$$

reflecting the cooperativity $(\mathrm{Cl}<0)$ or anti-cooperativity $(\mathrm{Cl}>0)$ of the stacking of the layers generated by each sub-group.
On purely intuitive grounds, one may expect low packing anisotropies for achiral space-goups and large packing anisotropies for chiral space-groups.

Calculations for $\mathbf{1 a}-\mathrm{HgCl}_{2}, \mathbf{1 b}-\mathrm{HgCl}_{2}, \mathbf{1 c}-\mathrm{HgCl}_{2}$ and $\mathbf{1 a}_{\mathbf{0 . 5}} \mathbf{1 b}_{0.5}-\mathrm{HgCl}_{2}$

Table 1 shows the results obtained by applying the PACHA approach to $\mathbf{1 a}-\mathrm{HgCl}_{\mathbf{2}}, \mathbf{1 b} \mathbf{b}$ $\mathbf{H g C l}_{2}, \mathbf{1 c}-\mathrm{HgCl}_{2}$ and $\mathbf{1 a}_{0.5} \mathbf{1 b}_{0.5}-\mathrm{HgCl}_{2}$. The evaluation of $P E$ is performed step by step: the SelfEnergies ($S E$ in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) for mercury dichloride HgCl_{2}, the free ligand and a molecular chain generated by complexation between HgCl_{2} and the ligands. Then «Net» corresponds to the self-energy of the fully interacting chains in $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$, from which a Packing Energy may be evaluated as

$$
\text { PE }=(\text { Net }- \text { Chain*4 })
$$

For the solvated network ($\left.\mathbf{1 a}_{0.5} \mathbf{1 b}_{0.5}-\mathbf{H g C l}_{\mathbf{2}}\right)$ this Packing Energy corresponds to Packing $=$ [Net $\left.-\left(\text { Chain }+\mathrm{CHCl}_{3}\right)^{*} 4\right]$ with $\mathrm{CHCl}_{3}=-6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

Then, the average $\mathrm{Hg}-\mathrm{N}$ bond energy $\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$ has been evaluated according to:

$$
\mathrm{Hg}-\mathrm{N}=\left(\text { Chain }-\mathrm{HgCl}_{2}-\text { ligand }\right) / 2 .
$$

Crystal	Group	$\mathbf{H g C l}_{\mathbf{2}}$	Ligand	Chain	Net	PE	$\mathbf{C l}$	$\mathbf{H g}-\mathbf{N}$
$\mathbf{1 a -}-\mathrm{HgCl}_{\mathbf{2}}$	$\mathbf{P 2} \mathbf{1 2}_{\mathbf{1}} \mathbf{2}_{\mathbf{1}}$	$-150(2)$	$-299(2)$	$-536(2)$	$-2267(9)$	$-123(9)$	$-2(2)$	$-43(2)$

Crystal	Group	$\mathbf{H g C l}_{\mathbf{2}}$	Ligand	Chain	Net	PE	$\mathbf{C l}$	$\mathbf{H g - N}$
$\mathbf{1 b}-\mathbf{H g C l}_{\mathbf{2}}$	$\mathbf{P 2}_{\mathbf{1}} \mathbf{2}_{\mathbf{1}} \mathbf{2}_{\mathbf{1}}$	$-150(2)$	$-299(2)$	$-535(2)$	$-2264(9)$	$-124(9)$	$-2(2)$	$-43(2)$
$\mathbf{1} \mathbf{c}-\mathbf{H g C l}_{\mathbf{2}}$	$\mathbf{P 2}_{\mathbf{1}} \mathbf{2}_{\mathbf{1}} \mathbf{2}$	$-151 /-152(2)$	$-309(2)$	$-534(2)$	$-2314(9)$	$-178(9)$	$-33(2)$	$-37(2)$
$\mathbf{1 a}_{\mathbf{0 . 5}} \mathbf{1 b}_{\mathbf{0 . 5}}-\mathbf{H g C l}_{\mathbf{2} .}$	$\mathbf{P 2}_{\mathbf{1}} / \mathbf{n}$	$-150(2)$	$-295(2)$	$-532(2)$	$-2368(9)$	$-214(9)$	$-3(2)$	$-44(2)$

Table 2: Calculation performed for $1 \mathrm{a}-\mathrm{HgCl}_{2}, 1 \mathrm{~b}-\mathrm{HgCl}_{2}, 1 \mathrm{c}-\mathrm{HgCl}_{2}$ and $1 \mathrm{a}_{0.5} 1 \mathrm{~b}_{0.5}-\mathrm{HgCl}_{2}$ using the PACHA approach.

As mentioned above, the three different PPE (Partial Packing Energies) have to be evaluated considering the symmetry associated with different space groups of the coordination networks and their associated sub-space groups.

$1 \mathrm{a}-\mathrm{HgCl}_{2}$ or $\mathbf{1 b - \mathrm { HgCl } _ { 2 }}$ (Space group $\mathrm{P}_{2}{ }_{1} \underline{2}_{1}{ }_{2}{ }_{1}$)

These compounds crystallise in the $\mathrm{P} 2_{1} 2_{1} 2_{1}$ space-group, the choice of subgroups is obvious ($\mathrm{P} 2_{1} .1 .1, \mathrm{P} 1.2_{1} .1$ and $\mathrm{P} 1.1 .2_{1}$) as this group contains only twofold screw axes that all act as packing operators. The three partial packing energies (PPE) have been calculated as :

$$
\begin{array}{r}
\text { PPE1 }=\text { SE }(\text { P1.2 } 1.1) / 2-\mathrm{SE}=-23(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } 1 \mathrm{~b}-\mathrm{HgCl}_{2} \\
\text { and }=-22(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } 1 \mathrm{a}-\mathrm{HgCl}_{2} \\
\text { PPE2 }=\mathrm{SE}\left(\mathrm{P} 1.1 .2_{1}\right) / 2-\mathrm{SE}=-7(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } 1 \mathrm{~b}-\mathrm{HgCl}_{2} \\
\text { and }=-7(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } 1 \mathrm{a}-\mathrm{HgCl}_{2} \\
\text { PPE3 }=\mathrm{SE}\left(\mathrm{P}_{1} \cdot 1.1\right) / 2-\mathrm{SE}=-2(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } 1 \mathrm{~b}-\mathrm{HgCl}_{2} \\
\text { and }=-2(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } 1 \mathrm{a}-\mathrm{HgCl}_{2}
\end{array} \begin{array}{r}
\langle\mathrm{PE}\rangle=-11 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{PE}=-21(9) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { and } \eta P E=-0,57
\end{array}
$$

The Cooperativity Index (Cl) reflecting the cooperativity between the chains is:

$$
\mathrm{Cl}=3<\mathrm{PE}>-\mathrm{PE} / 4=31-33=-2(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { for } \mathbf{1 a}-\mathrm{HgCl}_{2} \text { or } \mathbf{1 b}-\mathrm{HgCl}_{2}
$$

$1 \mathbf{c - H g C l}{ }_{2}$ (Space group $\mathrm{P}_{2}{ }_{1} \underline{2}_{1}$ 2)
This compound crystallizes in the $P 2{ }_{1} 2{ }_{1} 2$ space-group, the twofold axis acts as an intramolecular symmetry operator that has no effect on the packing efficiency. In order to be able to discuss the packing anisotropy in this compound, we have considered a supercell of the $P 2_{1} 2_{1} 2$ space-group, obtained by doubling the c-parameter leading to a new space group displaying 8 symmetry operators instead of 4:
\#1 = x,y,z -> 1
\#2 $=x, y, 1 / 2+z->1(0,0,1 / 2)$
\#3 $=-x,-y, z->20,0, z$
\#4 = 1/2-x,1/2+y,-z -> 2(0,1/2,0) 1/4,y,0
\#5 = -x,-y,1/2+z -> 2(0,0,1/2) 0,0,z
\#6 = 1/2-x,1/2+y,1/2-z -> 2(0,1/2,0) 1/4,y,1/4
\#7 = 1/2+x,1/2-y,-z -> 2(1/2,0,0) x,1/4,0
$\# 8=1 / 2+x, 1 / 2-y, 1 / 2-z->2(1 / 2,0,0) x, 1 / 4,1 / 4$

It is then possible to generate three packing sub-groups: $\mathrm{P} 112_{1}(2)$ by choosing operators $\#(1,2,3,5), P 2_{1} 2_{1} 2$ (screw axes at $\left.z=0\right)$ using operators $\#(1,3,4,7)$ and $P^{\prime} 2_{1} 2_{1} 2$
(screw axes at $z=1 / 4)$ using operators $\#(1,3,6,8)$. The three partial packing energies (PPE) have been then calculated as:

$$
\begin{gathered}
\text { PPE1 }=\mathrm{SE}\left[P 1 \cdot 1 \cdot 2\left(2_{1}\right)\right] / 4-\mathrm{SE}=-30(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \\
\text { PPE }=\mathrm{SE}\left(\mathrm{P}^{\prime} 2_{1} \cdot 2_{1} \cdot 2\right) / 4-\mathrm{SE}=-25(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \\
\text { PPE3 }=\mathrm{SE}\left(\mathrm{P2}_{1} \cdot 2_{1} \cdot 2\right) / 4-\mathrm{SE}=-24(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \\
\langle\mathrm{PE}\rangle=-26 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{PE} \mathrm{~S}_{\mathrm{SR}}=-6(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \mathrm{and} \eta P E=-0,5 .
\end{gathered}
$$

The computed Cooperativity Index Cl is then:

$$
\mathrm{Cl}=3\left\langle\mathrm{PE}>-\mathrm{PE} / 4=45-78=-33(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1}\right.
$$

$\underline{1 a}_{0.5} \underline{1 b}_{0.5}$ HgCl $_{2}$ (Space group $\mathrm{P}_{1} / \mathrm{n}$)

In this case, the choice of subgroups is obvious ($\mathrm{P} 2_{1}, \mathrm{P}-1$ and Pn) since all symmetry operators are used for packing molecular chains. The three partial packing energies (PPE) have been calculated as :

$$
\begin{gathered}
\mathrm{PPE} 1=\mathrm{SE}\left(\mathrm{P} 2_{1}\right) / 4-\mathrm{SE}=-23(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \\
\mathrm{PPE} 2=\mathrm{SE}(\mathrm{P}-1) / 4-\mathrm{SE}=-10(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \\
\mathrm{PPE} 3=\mathrm{SE}(\mathrm{Pn}) / 4-\mathrm{SE}=-2(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \\
\langle\mathrm{PE}\rangle=-12 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}, \Delta \mathrm{PE}=-21(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1} \text { and } \eta \mathrm{PE}=-0,29
\end{gathered}
$$

The computed Cooperativity Index Cl is then:

$$
\mathrm{Cl}=3<\mathrm{PE}>-\mathrm{PE} / 4=33-36=-3(2) \mathrm{kJ} \cdot \mathrm{~mol}^{-1}
$$

```
NAME_e1450
    11.6797(13) 12.746(2) 16.331(2) 90.00000
100.554(10) 90.00000 P121/n1
    1 Hg 0.16215(3) 1.38244(3) 0.71872(2) c101 @80 :4a
    2 Cl1 0.0679(2) 1.35829(18) 0.83369(14) z-1 c41 @17 :4a
    3 Cl2 0.1655(2) 1.4184(2) 0.57762(14) z-1 c41 @17 :4a
    4 N1 0.3151(6) 1.2492(6) 0.7427(5) c5 @7 :4a
    5 C1 0.3653(8) 1.2192(7) 0.6797(5) c2 @6 :4a
    6 H1 0.32984 1.24772 0.61799 z1 c89 @1 :4a
    7 c2 0.4601(7) 1.1537(7) 0.6895(5) c2 @6 :4a
    8 H2 0.49764 1.13072 0.63649 z1 c89 @1 :4a
    9 c3 0.5064(7) 1.1177(6) 0.7683(5) c2 @6 :4a
    10 C4 0.4547(8) 1.1479(7) 0.8345(5) c2 @6 :4a
    11 H4 0.48734 1.11992 0.89683 z1 c89 @1 :4a
    12 C5 0.3610(8) 1.2143(7) 0.8185(5) c2 @6 :4a
    13 H5 0.32217 1.23974 0.87028 z1 c89 @1 :4a
    14 C6 0.6123(8) 1.0487(7) 0.7779(5) c2 @6 :4a
    1501 0.6742(5) 1.0473(4) 0.7255(3) z-2 c84 @8 :4a
    16 02 0.6280(5) 0.9915(4) 0.8474(3) z-2 c84 @8 :4a
    17 C7 0.7298(8) 0.9221(7) 0.8599(5) z0 c2 @6 :4a
    18 H7 0.73757 0.88679 0.80105 z1 c89 @1 :4a
    19 C8 0.7099(8) 0.8372(7) 0.9195(5) z0 c2 @6 :4a
    20 H8 0.68991 0.87091 0.97590 z1 c89 @1 :4a
    21 C9 0.8158(8) 0.7649(7) 0.9395(6) z-2 c2 @6 :4a
    22 H9A 0.80162 0.70831 0.98584 z1 c89 @1 :4a
    23 H9B 0.82585 0.72242 0.88403 z1 c89 @1 :4a
    24C10 0.9266(8) 0.8263(7) 0.9717(5) z-2 c2 @6 :4a
    25 H10A 0.92049 0.86253 1.03053 z1 c89 @1 :4a
    26 H10B 1.00029 0.77365 0.98173 z1 c89 @1 :4a
    27 C11 0.9438(8) 0.9093(7) 0.9096(6) z-2 c2 @6 :4a
    28 H11A 0.95569 0.87233 0.85224 z1 c89 @1 :4a
    29 H11B 1.02149 0.95371 0.93350 z1 c89 @1 :4a
    30 C12 0.8384(7) 0.9838(7) 0.8922(5) z-2 c2 @6 :4a
    31 H12A 0.82901 1.02410 0.94877 z1 c89 @1 :4a
    32 H12B 0.85192 1.04182 0.84672 z1 c89 @1 :4a
    3303 0.6105(5) 0.7760(5) 0.8758(3) z-2 c84 @8 :4a
    34C13 0.5614(8) 0.7112(8) 0.9235(5) c2 @6 :4a
    35 O4 0.5840(5) 0.7086(5) 0.9991(3) z-2 c84 @8 :4a
    36 C14 0.4734(8) 0.6397(7) 0.8743(5) c2 @6 :4a
    37C15 0.4048(7) 0.5801(7) 0.9156(5) c2 @6 :4a
    38 H15 0.41264 0.58669 0.98233 z1 c89 @1 :4a
    39 c16 0.3262(8) 0.5120(7) 0.8713(5) c2 @6 :4a
    40 H16 0.27290 0.46530 0.90482 z1 c89 @1 :4a
    4 1 ~ N 2 ~ 0 . 3 1 2 2 ( 6 ) ~ 0 . 5 0 0 5 ( 5 ) ~ 0 . 7 8 9 9 ( 4 ) ~ c 5 ~ @ 7 ~ : 4 a ~
    42 c17 0.3791(8) 0.5593(7) 0.7487(5) c2 @6 :4a
    43 H17 0.36784 0.55191 0.68182 z1 c89 @1 :4a
    44 C18 0.4627(7) 0.6296(7) 0.7897(6) c2 @6 :4a
    45 H18 0.51705 0.67440 0.75570 z1 c89 @1 :4a
    46 C19 0.7248(8) 0.8719(7) 0.6126(5) z2 c2 @6 :4a
    47 H19 0.67412 0.87017 0.66166 z1 c89 @1 :4a
    48 cl3 0.6565(3) 0.9535(2) 0.52997(18) z-1 c41 @17 :4a
    49 Cl4 0.8661(2) 0.9169(3) 0.65148(19) z-1 c41 @17 :4a
    50 Cl5 0.7356(3) 0.7460(2) 0.5726(2) z-1 c41 @17 :4a
    DATE e1450 on Tue Nov 05 17:41:05 2019 Pacha V2.6
    OORGN Original format was Crystallographic Information File
CIFHEADER
    _audit_creation_method
                                    SHELXL-2014/6
_chemical_formula_moiety
```

```
    'C18 H18 Cl2 Hg N2 O4, C H Cl3'
chemical formula sum
    'C19 H19 Cl5 Hg N
_chemical_formula_weight
_space_group_crystal_system
_space_group_IT_number
_space_group_name_H-M_alt
-space_group_name_Hal\overline{l}
_exptl_crystal_description
_exptl_crystal_colour
_exptl_crystal_density_meas
_exptl_crystal_density_diffrn 1.993
_exptl_crystal_F_000 - }137
_exptl_crystal_size_max 0.130
_exptl_crystal_size_mid 0.120
_exptl_crystal_size_min 0.120
_exptl_absorpt_coefficient_mu 7.027
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.461
_exptl_absorpt_correction_T_max 0.489
_exptl_absorpt_process_details sadabs
_diffrn_ambient_temperature 173(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_source 'fine-focus sealed tube'
_diffrn_measurement_device_type 'CCD area detector'
_diffrn_measurement_method 'phi and omega scans'
_diffrn_reflns_number 5182
__diffrn_reflns_av_unetI/netI 0.0920
__diffrn_reflns_av_R_equivalents 0.0750
_diffrn_reflns_limit_h_min 0
_diffrn_reflns_limit_h_max 15
_diffrn_reflns_limit_k_min 0
__diffrn_reflns_limit_k_max 16
_diffrn_reflns_limit_l_min -18
_diffrn_reflns_limit_l_max 18
_diffrn_reflns_theta_min 2.387
_diffrn_reflns_theta_max 27.470
__diffrn_reflns_theta_full 25.242
__diffrn_measurēd_frac̄tion_theta_max 0.945
_diffrn_measured_fraction_theta_full 0.973
_diffrn_reflns_Laue_measured_fraction_max 0.945
_diffrn_reflns_Laue_measured_fraction_full 0.973
-diffrn_reflns_point group mēasured fraction max 0.945
_diffrn_reflns_point_group_measured_fraction_full 0.973
_reflns_number_total 5182
_reflns_number_gt 2913
_reflns_threshold_expression 'I > 2\s(I)'
reflns_Friedel_coverage 0.000
_reflns_Friedel_fraction_max .
_reflns_Friedel_fraction_full .
_reflns_special_details
;
    Reflections were merged by SHELXL according to the crystal
    class for the calculation of statistics and refinement.
    _computing_structure_refinement 'SHELXL-2014/6 (Sheldrick, 2014)'
_computing_molecular_graphics 'Bruker SHELXTL'
```

```
_computing_publication_material 'Bruker SHELXTL'
_refine_ls_structure_factor_coef Fsqd
refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
```



```
_refine_ls_hydrogen_treatment constr
refine ls extinction_method none
_refine_ls_extinction_coef .
_refine_ls_number_reflns 5182
_refine_ls_number_parameters 256
_refine_ls_number_restraints 0
_refine_ls_R_factōr_all 0.1137
_refine_ls_R_factor_gt 0.0477
_refine_ls_wR_factor_ref 0.1085
_refine_ls_wR_factor_gt 0.0862
_refine_ls_goodness_of_fit_ref 0.823
__refine_-ls_restrainēd_\overline{S_al\overline{l}}0.823
_refine_ls_shift/su_max
_refine_ls_shift/su_mean 0.002
_refine_diff_density_max 1.311
_refine_diff_density_min -1.158
_refine_diff_density_rms 0.191
ENDCIF
    CELL Vol= 2390.06 VÖ\neg\geq Z= 4
    _SPGR ITC= 14 HM= P 21/n HALL= -P 2yn
    _NHKL 2 EWD= 0 KIN= -0.090 INC=0.01 ESIG=1000 DMP=0 GKR=1
    _QTOT =0
    _OPTM EPS=3 ANG=360 RTE=0.99 ANL=10 MOV=0 MIX=1
    __RVDW H=120 C=170 N=155 O=152 Cl=175 Hg=155
    _ANAL DMIN=1.080 FIRST=238 OCF=0.93 RESI=200
    _BNDS (1-1)=60(40) (1-6)=107(60) (1-7)=100(60)
    8)=96(60) (1-17)=132(60)
    (1-80)=177(60) (6-6)=154(40) (6-7)=114(60)\quad(6-8)=107(60)
    17)=134(60)
    (6-80)=175(60) (7-7)=140(40)
    80)=165(60)
    (8-8)=132(40) (8-17)=117(60
    80)=185(60)
    (80-80)=274(0)
    EBND
    \neg\beta
```

Partial Charge Distribution Evaluation -> e1450
_CELL Vol= 2390.06 VÖ $\geq \quad Z=4$
[H19 C19 N2 O4 Cl5 Hg]*4 $=2868.96 \mathrm{amu}$
Madelung summation details
Ewald parameter for $1 / R$ summation was $K=0.129$ Vö-1 (accuracy $=4 e-$ 010)

Reciprocal space exploration: $-2<=(h, k, l)<=2$
$\min =8.89860 \mathrm{eV}<\operatorname{mean}=16.42282 \mathrm{eV}<\max =125.45198 \mathrm{eV}$
Madelung constant $A=147.9474020 / 4=36.9868505$ (dmin $=0.94945$ VÖ)
Orbital compression factor was OCF $=82.00 \%$
Total electrostatic balance $=-2243.8149 \mathrm{eV}=-216495.2 \mathrm{~kJ} . \mathrm{mol}-1$

```
***Atomic electronegativies (eV) and radii (pm) ***
Hg( 10.438, 112.6)
Cl( 16.970, 72.4)
N( 18.130, 52.1)
C( 15.050, 62.0)
H( 13.610, 53.0)
O( 21.360, 45.0)
```

Level of significance for Madelung elements eps = 5.292126e-009
Convergence criterion $|A x-b| /|b|<e p s$
Estimated error on charges after 24 iterations $=2.058074 \mathrm{e}-010$
*** PACHA signature ***
Mean electronegativity <EN> $=15.0369 \mathrm{eV}$
Partial electrostatic balance: $\langle E B\rangle=-24.5298 \mathrm{eV}=-2366.8 \mathrm{~kJ} . \mathrm{mol}-1$
Reduced electrostatic balance: $\langle E B / 4\rangle=-6.1324 \mathrm{eV}=-591.7 \mathrm{~kJ} . \mathrm{mol}-1$
Global ionicity: <GI> = 10.4557%
\#n Label ($\neg \pm 0 x$) [CN
\#33 O3(-2) [2] =
\#35 O4 (-2) [1]
\#16 O2 (-2) [2] =
\#15 O1 (-2) [1] =
\#2
\#3

\# 4

\#41

\#50
\# 48
\#49
\#27
\#21
\#24
\#30
\# 44
\#7
\#10
\#37
\#9
\#36
Cl1 (-1) [1] =
Cl2(-1) [1] =
N1 (-2) [2] =
N2 (-2) [2] =
Cl5 (-1) [1] =
Cl3(-1) [1] =
Cl4(-1) [1] =
C11 (-2) [4] =
C9(-2) [4] =
C10(-2) [4] =
C12 (-2) [4] =
C18(-1) [3] =
C2 (-1) [3] =
C4 (-1) [3] =
C15 (-1) [3] = C3 $(+0)[3]=$
C14 (+0) [3] =
C1 $(+0)[3]=$
C17 (+0) [3] = C5 (+0) [3] =
C16 (+0) [3] =

$$
\begin{aligned}
& \text { Charge } \neg \pm q \\
& \text {-0.27664 -> } 10.12 \text { V } \\
& -0.27600 \text {-> } 10.03 \mathrm{~V} \\
& -0.27297->9.65 \mathrm{~V} \\
& -0.26867 \text {-> } 9.10 \mathrm{~V} \\
& -0.23061 \text {-> } 10.61 \text { V } \\
& -0.22614 \text {-> } 10.26 \mathrm{~V} \\
& -0.20969 \text {-> } 10.81 \mathrm{~V} \\
& -0.20772 \text {-> } 10.59 \mathrm{~V} \\
& -0.13267->2.82 \mathrm{~V} \\
& -0.12359 \text {-> } 2.10 \mathrm{~V} \\
& -0.11652 \text {-> } 1.54 \mathrm{~V} \\
& -0.07887 \text {-> } 7.28 \mathrm{~V} \\
& -0.07799 \text {-> } 7.19 \mathrm{~V} \\
& -0.07759->7.16 \mathrm{~V} \\
& -0.07714->7.11 \mathrm{~V} \\
& -0.04063->3.72 \mathrm{~V} \\
& -0.03912->3.58 \mathrm{~V} \\
& -0.03712 \text {-> } 3.40 \mathrm{~V} \\
& -0.03289->3.00 \mathrm{~V} \\
& +0.00235->-0.27 \mathrm{~V} \\
& +0.00441 \text {-> }-0.46 \mathrm{~V} \\
& +0.00717->-0.72 \mathrm{~V} \\
& +0.00908->-0.90 \mathrm{~V} \\
& +0.01174->-1.14 \mathrm{~V} \\
& +0.01623->-1.56 \mathrm{~V} \\
& +0.03405->-3.22 \mathrm{~V}
\end{aligned}
$$

\#17	C7(+0) [4] =	+0.03724 -> -3.51 V
\# 46	C19 (+2) [4] =	+0.04594 -> -4.32 V
\#43	H17 (+1) [1] =	+0.04824 -> 0.47 V
\#29	H11B (+1) [1]	+0.05259 -> -0.01 V
\#25	H10A (+1) [1] =	+0.06018 -> -0.83 V
\# 6	H1 (+1)[1] =	+0.06416 -> -1.26 V
\#28	H11A (+1) [1] =	+0.07129 -> -2.04 V
\#26	H10B (+1) [1]	+0.07391 -> -2.32 V
\#13	H5 (+1) [1] =	+0.07639 -> -2.59 V
\# 40	H16 (+1) [1] =	+0.07745 -> -2.71 V
\#31	H12A $(+1)[1]=$	+0.08153 -> -3.15 V
\#45	H18(+1) [1]	+0.08274 -> -3.28 V
\#8	H2 (+1) [1] =	+0.08727 -> -3.78 V
\#20	H8 (+1) [1] =	+0.09116 -> -4.20 V
\#32	H12B(+1) [1] =	+0.09166 -> -4.25 V
\#23	H9B (+1) [1]	+0.09455 -> -4.57 V
\#18	H7 (+1) [1] =	+0.09487 -> -4.60 V
\#22	H9A (+1) [1] =	+0.09519 -> -4.64 V
\#11	H4 (+1) [1] =	+0.10145 -> -5.32 V
\#47	H19 (+1) [1] =	+0.10193 -> -5.37 V
\#38	H15 (+1) [1] =	+0.10367 -> -5.56 V
\#34	C13 (+3) [3] =	+0.17673 -> -16.47 V
\#14	C6 (+3) [3] =	+0.17725 -> -16.52 V
\#1	Hg (+2) [2] =	+0.73017 -> -18.95 V

Total sum for Charge $=0.0$
Statistical report:
<Atom>[num] = mean $\neg \pm 3 \sqrt{ }$ óstdev (stdev) <avdev>
$\langle q(H)\rangle=0.08159(0.01663)<0.01354\rangle$
$\langle q(C)\rangle=0.00320(0.07363)<0.05135>$
$\langle q(N)\rangle=-0.20870(0.00139)<0.00098>$
$\langle q(O)\rangle=-0.27357(0.00364)<0.00275>$
$\langle q(C l)\rangle=-0.16590(0.05734)<0.04998>$
$\langle q(\mathrm{Hg})\rangle=0.73017(0.00000)<0.00000\rangle$
Statistical report:
<Atom>[num] = mean $\neg \pm 3 \sqrt{ }$ óstdev (stdev) <avdev> $\langle q(\mathrm{black})\rangle=0.00320(0.07363)<0.05135>$
$\langle q($ royal_blue $)\rangle=-0.20870(0.00139)<0.00098>$
$\langle q($ green $)\rangle=-0.16590(0.05734)<0.04998\rangle$
$<q($ red $)>=-0.27357(0.00364)<0.00275>$
$\langle q($ silver $)\rangle=0.08159(0.01663)<0.01354\rangle$
$\langle q($ wood $)\rangle=0.73017(0.00000)<0.00000\rangle$

\#1	$\operatorname{Hg}(+2)[2]=$	+0.73
\#2	Cl1 (-1) [1] =	-0.23
\#3	Cl2 (-1) [1]	-0.23
\# 4	$\mathrm{N} 1(-2)[2]=$	-0.21
\#5	C1 (+0) [3] =	+0.01
\# 6	H1 (+1) [1] =	+0.06
\#7	C2 (-1) [3] =	-0.04
\#8	H2 (+1) [1] =	+0.09
\# 9	C3 $(+0)[3]=$	+0.00
\#10	C4(-1) [3] =	-0.04
\#11	H4 (+1) [1] =	+0.10

\#12	C5 (+0) [3] =	+0.01
\#13	H5 (+1) [1] =	+0.08
\#14	C6 (+3) [3] =	+0.18
\#15	O1(-2) [1] =	-0.27
\#16	O2(-2) [2] =	-0.27
\#17	C7 (+0) [4] =	+0.04
\#18	H7 (+1) [1] =	+0.09
\#19	C8 (+0) [4] =	+0.03
\#20	H8 (+1) [1] =	+0.09
\#21	C9 (-2) [4] =	-0.08
\#22	H9A (+1) [1] =	+0.10
\#23	H9B(+1) [1] =	+0.09
\#24	C10 (-2) [4] =	-0.08
\#25	H10A (+1) [1] =	+0.06
\#26	H10B (+1) [1] =	+0.07
\#27	C11 (-2) [4] =	-0.08
\#28	H11A (+1) [1] =	+0.07
\#29	H11B (+1) [1] =	+0.05
\#30	C12 (-2) [4] =	-0.08
\#31	H12A (+1) [1]	+0.08
\#32	H12B(+1) [1] =	+0.09
\#33	O3 (-2) [2] =	-0.28
\#34	C13 (+3) [3] =	+0.18
\#35	O4(-2) [1] =	-0.28
\#36	C14 (+0) [3] =	+0.00
\#37	C15 (-1) [3] =	-0.03
\#38	H15 (+1) [1] =	+0.10
\#39	C16 (+0) [3] =	+0.02
\# 40	H16 (+1) [1] =	+0.08
\# 41	N2 (-2) [2] =	-0.21
\# 42	C17 (+ 0) [3] =	+0.01
\#43	H17 (+1) [1] =	+0.05
\# 44	C18(-1) [3] =	-0.04
\#45	H18 (+1) [1] =	+0.08
\# 46	C19 (+2) [4] =	+0.05
\# 47	H19 (+1) [1] =	+0.10
\# 48	Cl3 (-1) [1] =	-0.12
\#49	Cl4 (-1) [1] =	-0.12
\#50	Cl5 (-1) [1] =	-0.13

Total sum for Charge $=0.0$
Steric Energy Evaluation
After summing over $3 \times 3 \times 3$ cells
Distance threshold for bonded atoms was 4.596 Vö
Total steric energy $=10099.7 \mathrm{~kJ} . \mathrm{mol}-1$
Bonded steric energy $=9991.6 \mathrm{~kJ} . \mathrm{mol}-1$
Steric energy $=108.1 \mathrm{~kJ} . \mathrm{mol}-1$
Bond Valence Sum Evaluation
\#1 $\mathrm{Hg}(+2)[2]=1.57$-> Cl2 Cl1
\#2 Cl1 (-1) [1] = $0.78->\mathrm{Hg}$
\#3 Cl2 (-1) [1] = 0.79 -> Hg
\#4 N1 (-2) [2] $=2.80->\mathrm{Cl}$ C5
\#5 C1 (+0) [3] = 3.51 \rightarrow H1 N1 C2
\#6 H1 (+1) [1] = $1.06->\mathrm{C} 1$
\#7 C2 (-1) [3] = 3.13 -> H2 C1 C3
\#8 H2 (+1) [1] = 1.06 -> C2

```
#9 C3(+0) [3] = 2.78 -> C2 C4 C6
#10 C4(-1) [3] = 3.12 -> H4 C5 C3
#11 H4(+1) [1] = 1.06 -> C4
#12 C5(+0) [3] = 3.51 -> H5 N1 C4
#13 H5 (+1) [1] = 1.06 -> C5
#14 C6(+3) [3] = 3.63 -> O1 O2 C3
#15 O1(-2) [1] = 1.70 -> C6
#16 O2(-2) [2] = 1.97 -> C6 C7
#17 C7(+0) [4] = 3.32 -> H7 O2 C8 C12
#18 H7(+1) [1] = 1.06 -> C7
#19 C8(+0) [4] = 3.26 -> H8 O3 C7 C9
#20 H8 (+1) [1] = 1.06 -> C8
#21 C9(-2) [4] = 3.50 -> H9B H9A C10 C8
#22 H9A(+1) [1] = 1.06 -> C9
#23 H9B(+1) [1] = 1.06 -> C9
#24 C10(-2) [4] = 3.55 -> H10B H10A C11 C9
#25 H10A(+1) [1] = 1.06 -> C10
#26 H10B(+1) [1] = 1.06 -> C10
#27 C11(-2) [4] = 3.51 -> H11B H11A C10 C12
#28 H11A(+1) [1] = 1.06 -> C11
#29 H11B(+1) [1] = 1.06 -> C11
#30 C12(-2) [4] = 3.51 -> H12B H12A C7 C11
#31 H12A(+1) [1] = 1.06 -> C12
#32 H12B(+1) [1] = 1.06 -> C12
#33 O3(-2) [2] = 1.95 -> C13 C8
#34 C13(+3) [3] = 3.65 -> O4 O3 C14
#35 O4(-2) [1] = 1.72 -> C13
#36 C14(+0) [3] = 2.87 -> C15 C18 C13
#37 C15(-1) [3] = 3.17 -> H15 C14 C16
#38 H15(+1) [1] = 1.06 -> C15
#39 C16(+0) [3] = 3.57 -> H16 N2 C15
#40 H16(+1) [1] = 1.06 -> C16
#41 N2(-2) [2] = 2.79 -> C16 C1
```


[^0]: ${ }^{1}$ A. Bondi, J. Phys. Chem., 1964, 68, 441-451.
 ${ }^{2}$ J. B. Mann, T. L. Meek and L. C. Allen, J. Am. Chem. Soc., 2000, 122, 2780.
 ${ }^{3}$ J. T. Waber and D. T. Cromer, J. Chem. Phys., 1965, 42, 4116.

