Supplementary Material (ESI) for CrystEngComm 2019

New two-dimensional Cd(II) coordination networks bearing benzimidazolyl-based linkers as bifunctional chemosensors for detection of acetylacetone and Fe^{3+}

Yong-Sheng Shi, Yue-Hua Li, Guang-Hua Cui, Gui-Ying Dong*

College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and

Electrocatalytic Materials, North China University of Science and Technology, Tangshan Hebei

063009, P. R. China

*Corresponding author: Gui-Ying Dong Fax: +86-0315-8805462. Tel: +86-0315-8805460 E-mail: tsdgying@126.com. Table Titles:

- Table S1. Crystal and refinement data for complexes 1 and 2
- Table S2. Selected bond lengths [Å] and angles [°] for complexes 1 and 2
- Table S3. Simulated in different environments at room temperature
- Table S4. Comparison of the sensitivities of 1 and 2 for acac with related CPs
- Table S5. Comparison of the sensitivities of 1 and 2 with previously reported CPs to Fe^{3+} ions

СР	1	2
Chemical formula	$C_{33.40}H_{36.20}CdN_4O_{4.70}$	$C_{23}H_{20}CdN_2O_5$
Formula weight	681.26	516.81
Crystal system	Monoclinic	Triclinic
Space group	C2/c	Pī
<i>a</i> (Å)	11.553(2)	6.798(8)
<i>b</i> (Å)	14.353(1)	11.317(4)
<i>c</i> (Å)	19.165(1)	14.791(9)
α (°)	90	77.99(2)
β (°)	102.03(3)	70.81(2)
γ (°)	90	87.46(2)
$V(Å^3)$	3108.37(7)	1051.6(2)
Ζ	4	2
D_{calcd} (g/cm ³)	1.488	1.632
Absorption coefficient, mm ⁻¹	0.749	1.076
<i>F</i> (000)	1401	520
Crystal size, mm	0.26 x 0.23 x 0.22	0.20 x 0.16 x 0.12
θ range, deg	2.294-26.372	2.969-28.388
Index range h, k, l	-14/14, -17/17, -23/20	-7/9, -15/15, -19/19
Reflections collected	18630	15054
Independent reflections (R _{int})	3150(0.0637)	5179 (0.0179)
Data/restraint/parameters	3150 / 26 / 238	5179 / 0 / 297
Goodness-of-fit on F^2	1.089	1.006
Final R_1 , wR_2 ($I > 2\sigma(I)$)	0.0609, 0.1781	0.0209, 0.0583
Largest diff. peak and hole	1.064, -1.658	0.395, -0.490

 Table S1 Crystal data and structure refinements for the 1 and 2

Parameter	Value	Parameter	Value	
1				
Cd1–O1	2.270(4)	Cd1–O1A	2.270(4)	
Cd1–N1	2.273(3)	Cd1–N1A	2.273(3)	
Cd1–O2	2.350(4)	Cd1–O2A	2.350(5)	
O1A-Cd1-O1	169.00(2)	O1A-Cd1-N1	86.20(2)	
O1–Cd1–N1	98.60(2)	O1A-Cd1-N1A	98.60(1)	
O1-Cd1-N1A	86.20(2)	N1–Cd1–N1A	127.50(2)	
O1A-Cd1-O2A	48.00(2)	O1–Cd1–O2A	122.50(2)	
N1-Cd1-O2A	125.40(2)	N1A-Cd1-O2A	92.40(2)	
N1-Cd1-O2	92.40(2)	N1A-Cd1-O2	125.40(2)	
O2-Cd1-O2A	90.90(2)	O2A-Cd1-O2A	90.90(2)	
O1A-Cd1-O2	48.00(2)			
2				
Cd1–N1	2.229(2)	Cd1–O1	2.234(1)	
Cd105	2.342(2)	Cd1–O4B	2.342(2)	
Cd1–O1A	2.351(2)	Cd1–O3B	2.380(2)	
O1-Cd1-O5	98.57(2)	N1-Cd1-O5	89.34(2)	
N3-Cd1-N1A	91.55(2)	N1-Cd1-O4B	106.09(2)	
O1-Cd1-O4B	141.37(2)	O5-Cd1-O4B	93.31(2)	
N1-Cd1-O1A	101.01(2)	O1-Cd1-O1A	76.72(2)	
O5-Cd1-O1A	169.59(2)	O4B-Cd1-O1A	86.95(2)	
N1-Cd1-O3B	157.43(2)	O1-Cd1-O3B	89.82(2)	
O5-Cd1-O3A	79.22(2)	O4B-Cd1-O3B	55.38(2)	
O1A-Cd1-O3B	91.39(2)			

Table S2 Selected Bond Lengths $[\text{\AA}]$ and Angles $[^{\circ}]$ for the 1 and 2

Symmetry codes for **1**: A = A: 1-*x*, *y*, 0.5-*z*; for **2**: A:1-*x*,1-*y*,1-*z*; B: -*x*,1-*y*,1-*z*.

serial number	Inclusion factor	
S-1	Fe ³⁺ + distilled water	
S-2	Fe ³⁺ + tap water	
S-3	$Fe^{3+} Cd^{2+}, Ag^+, Cu^{2+}, Pb^{2+}$	
S-4	Fe ³⁺ + Zn ²⁺ , Ni ²⁺ , Co ²⁺ , Sm ³⁺	
S-5	Fe ³⁺ + Gd ³⁺ , Al ³⁺ , Hg ²⁺ , La ³⁺	
S-6	Fe^{3+} tap water + all cation	
S-7	acac + distilled water	
S-8	acac + tap water	
S-9	acac + EtOH, MeCN, DMF	
S-10	acac + DMSO, DCM, EG	
S-11	acac + MeOH, AT, NMP	
S-12	acac + tap water +all organic solvents	

Table S3. Simulated in different environments at room temperature

S stands for simulation, Ethanol (EtOH), Acetonitrile (MeCN), N,N-dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), dichloromethane (DCM), methanol (MeOH), Acetone(AT), Acetylacetone (acac), Ethylene glycol (EG) and N-Methyl pyrrolidone (NMP).

CPs	LOD/M	Ref
${[(CH_3)_2NH_2][Zn(FDA)(BTZ)_2]}_n$	6.47×10 ⁻⁷	[14]
$\{[Zn_2(XN)_2(IPA)_2] \cdot 2H_2O\}_n$	0.25×10 ⁻⁷	[17]
$\{[Zn_3(bbib)_2(ndc)_3]\cdot 2DMF\cdot 2H_2O\}_n$	0.10×10 ⁻⁷	[16]
$\{[Zn(XL)_2](ClO_4)_2 \cdot 6H_2O\}_n$	1.72×10 ⁻⁷	[15]
1	2.45×10 ⁻⁶	This work
2	1.40×10 ⁻⁶	This work

Table S4. Comparison of the sensitivities of 1 and 2 for acac with related CPs

 $H_2FDA = furan-2,5$ -dicarboxylic acid, HBTZ = 1H-benzotriazole, XN = 4'-(4-pyridine)4,2':2',4''-terpyridine, IPA

= isophthalic acid, bbib = 1,3-bis(benzimidazolyl)benzene, $H_2ndc = 1,4$ -naphthalenedicarboxylic acid, XL=N,N-

bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxdiimide bi(1,2,4-triazole).

Table S5. Comparison of the sensitivities of 1 and 2 with previously reported CPs to

CPs	LOD/M	Ref
Cd-DTA	0.82×10^{-6}	[11]
Zn-DTA	1.03×10 ⁻⁶	[11]
[Cd(PAM)(4-bpdb) _{1.5}]DMF	0.3×10^{-6}	[18]
1	8.51×10 ⁻⁶	This work
2	0.10×10 ⁻⁶	This work

Fe³⁺ ions

 $H_2DTA = 2,5-di(1H-imidazol-1-yl)$ terephthalic acid, PAM= 4,4-methylenebis(3-hydroxy-2-naphthalene-

carboxylic acid), 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene

Fig. S1. 1D chain of metal Cd(II) growth by 1,4-PDA²⁻ and L ligands.

Fig. S2. One 1D double straight-line of metal Cd(II) growth by $1,8-NDC^{2-}$ ligands and one unit [Cd(L)] of metal Cd(II) growth by L ligands.

Fig. S3. The infrared spectrum of 1 and 2.

Fig. S4. The PXRD pattern of the bulk sample is consistent with the simulated pattern of the single crystal structure in **1** and **2**.

Fig. S5. PXRD patterns of 1 and 2 for various organic small molecules.

Fig. S6. PXRD patterns of 1 and 2 for various anions in cation solution.

Fig. S7. (a)The PXRD patterns of **1** in different pH solutions; (b) The PXRD patterns of **2** in different pH solutions.

Fig. S8. The change of the fluorescence emission intensity of **1** and **2** in different pH solutions.

Fig. S9. TGA curves of 1 and 2

Fig. S10. Quantum yield measurement for 1 (a)and 2 (b).

Fig. S11. Soild luminescence lifetime of 1 (a) and 2 (b).

Fig. S12. Time-dependent emission spectra of 1 and 2 suspended in aqueous solutions.

Fig. S13. Comparison of the luminescence intensity of **1** (a) and **2** (b) in the presence of mixed organic solvents.

Fig. S14. Histogram of **1** (a) and **2** (b) dispersed in aqueous solution in the presence of different metal cation. Solvent: DMSO/H₂O (1:1, v/v).

Fig. S15. Fluorescence emission spectra of Fe³⁺ ions and other metal ions in 1 (a) and
2 (b) at room temperature.

Fig. S16. (a) PXRD patterns of 1 or 2 dispersed in water, 1 or 2 dispersed in a Fe^{3+} solution and the recycled sample; (b) PXRD patterns of 1 or 2 dispersed in water, 1 or 2 dispersed in an acac solution and the recycled sample. Solvent: DMSO/H₂O (1:1, v/v).

Fig. S17. (a) 1 and 2 are the first time in water, the first cycle, the first time to add Fe^{3+} , the second cycle and the fifth cycle of fluorescence emission intensity. (b) 1 and 2 are the first time in water, the first cycle, the first time to add acac, the second cycle and the fifth cycle of fluorescence emission intensity. Solvent: DMSO/H₂O (1:1, v/v).

Fig. S18. (a) Effects of pH on the fluorescence maxima of 1 + acac (circle) and

1 + Fe³⁺ (triangle); (a) Effects of pH on the fluorescence maxima of 2 + acac (circle) and 2 + Fe³⁺ (triangle). Solvent: DMSO/H₂O (1:1, v/v)

Fig. S19. The relationship between the fluorescence intensity of Fe^{3+} (a) or acac (b) detected over time in different simulated environments in **1**.

Fig. S20. The relationship between the fluorescence intensity of Fe^{3+} (a) or acac (b) detected over time in different simulated environments in 2.

Fig. S21. Spectral overlap between the absorption spectra of Fe^{3+} ions and the excitation spectra of 1 and 2.

Fig. S22. Spectral overlap between the absorption spectra of acac ions and the excitation spectra of 1 and 2.

Fig. S1. 1D chain of metal Cd(II) growth by 1,4-PDA²⁻ and L ligands.

Fig. S2. One 1D double straight-line of metal Cd(II) growth by 1,8-NDC²⁻ ligands and one unit [Cd(L)] of metal Cd(II) growth by L ligands.

Fig. S3. The infrared spectrum of 1 and 2.

Fig. S4. The PXRD pattern of the bulk sample is consistent with the simulated pattern

of the single crystal structure in 1 and 2.

Fig. S5. PXRD patterns of 1 and 2 for various organic small molecules.

Fig. S6. PXRD patterns of 1 and 2 for various anions in cation solution.

Fig. S7. (a)The PXRD patterns of **1** in different pH solutions; (b) The PXRD patterns of **2** in different pH solutions.

Fig. S8. The change of the fluorescence emission intensity of 1 and 2 in different pH

solutions.

Fig. S9. TGA curves of 1 and 2

(b)

Fig. S10. Quantum yield measurement for 1 (a) and 2 (b).

(b)

Fig. S11. Soild luminescence lifetime of 1 (a) and 2 (b).

Fig. S12. Time-dependent emission spectra of 1 and 2 suspended in aqueous solutions.

Fig. S13. Comparison of the luminescence intensity of 1 (a) and 2 (b) in the presence of mixed organic solvents.

Fig. S14. Histogram of 1 (a) and 2 (b) dispersed in aqueous solution in the presence of different metal cation. Solvent: DMSO/H₂O (1:1, v/v).

Fig. S15. Fluorescence emission spectra of Fe^{3+} ions and other metal ions in 1 (a) and

Fig. S16. (a) PXRD patterns of 1 or 2 dispersed in water, 1 or 2 dispersed in a Fe³⁺ solution and the recycled sample; (b) PXRD patterns of 1 or 2 dispersed in water, 1 or 2 dispersed in an acac solution and the recycled sample. Solvent: DMSO/H₂O (1:1,

v/v).

Fig. S17. (a) 1 and 2 are the first time in water, the first cycle, the first time to add Fe^{3+} , the second cycle and the fifth cycle of fluorescence emission intensity. (b) 1 and 2 are the first time in water, the first cycle, the first time to add acac, the second cycle and the fifth cycle of fluorescence emission intensity. Solvent: DMSO/H₂O (1:1, v/v).

Fig. S18. (a) Effects of pH on the fluorescence maxima of 1 + acac (circle) and $1 + Fe^{3+}$ (triangle); (a) Effects of pH on the fluorescence maxima of 2 + acac (circle) and $2 + Fe^{3+}$ (triangle). Solvent: DMSO/H₂O (1:1, v/v).

(b)

Fig. S19. The relationship between the fluorescence intensity of $Fe^{3+}(a)$ or acac (b)

detected over time in different simulated environments in 1.

(b)

Fig. S20. The relationship between the fluorescence intensity of Fe³⁺ (a) or acac (b) detected over time in different simulated environments in 2.

Fig. S21. Spectral overlap between the absorption spectra of Fe^{3+} ions and the excitation spectra of 1 and 2.

Fig. S22. Spectral overlap between the absorption spectra of acac ions and the excitation spectra of 1 and 2.