Supporting Information for

Controllable Growth of Transition Metal Dichalcogenides Multilayer Flakes with Kirigami Structures

Xiangzhuo Wang,^{†a} Huixia Yang,^{†a} Jingchuan Zheng,^a Yongkai Li,^a Xianglin Peng,^a Lu Qiao,^a Zhiwei Wang,^{ab} Qinsheng Wang,^{ab} Junfeng Han^{*ab} and Wende Xiao^{*ab}

^aKey laboratory of advanced optoelectronic quantum architecture and measurement, ministry of education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China.

^bMicronano Center, Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China.

[†]These authors contributed equally.

*E-mail: pkuhjf@bit.edu.cn (J.F.H.); wdxiao@bit.edu.cn (W.D.X.).

Fig. S1 The T-t curves of the reaction process measured by armored thermometers. When the central temperature reaches 850 °C, Se vapor overflows (217 °C), resulting in a Se-rich conditions during the whole growth process.

Fig. S2 Edge size variations and the corresponding histograms of $MoSe_2$ multilayer flakes at different deposition temperature in Fig. 1e–h.

Fig. S3 (a–c, d–f, g–i) The corresponding XPS spectra of MoSe₂ multilayer flakes at different deposition temperature in Fig. 1e, 1g, 1h.

Fig. S4 The corresponding 3D AFM images of Kirigami-structured MoSe₂ multilayer flakes in Fig. 2e, 4c and 4f.

Fig. S5 SEM images of the Kirigami-structured WSe₂ multilayer flakes with different contrast.