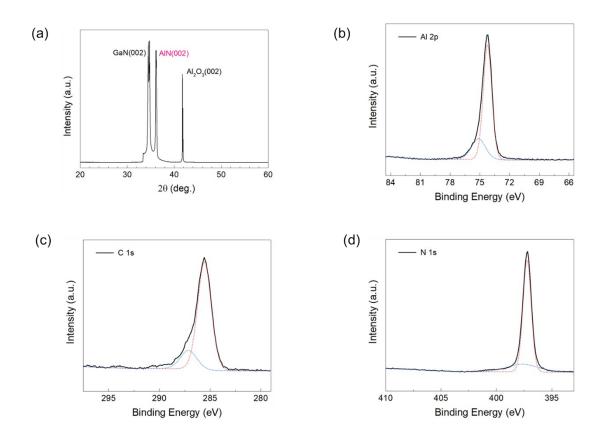
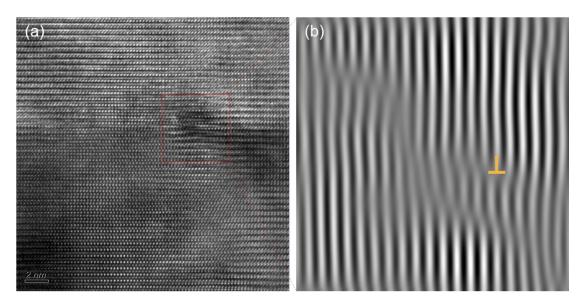
Electronic Supplementary Material (ESI) for CrystEngComm.

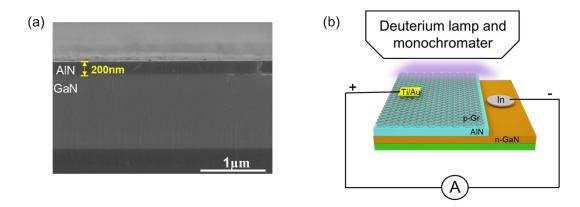
In-plane Enhanced Epitaxy for Step-flow AlN Yielding Highperformance Vacuum-Ultraviolet Photovoltaic Detector


Titao Li, Fei Wang, Richeng Lin, Wentao Xie, Yuqiang Li, Ze Cai, Wei Zheng,* Feng Huang*

State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China


Corresponding Author

*huangfeng@mail.sysu.edu.cn.


*zhengw37@mail.sysu.edu.cn

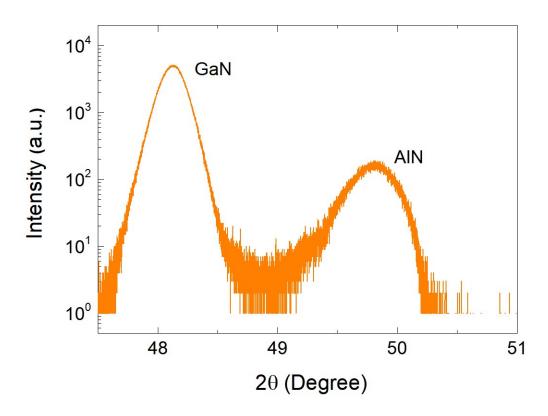

Figure S1. (a) X-ray diffraction (XRD) pattern of (002) plane of an AlN film deposited on GaN template, which shows a strong and narrow diffraction peak, indicating a single crystal orientation and a large grain size. **(b)-(d)** X-ray photoelectron spectroscopy (XPS) of the graphene/AlN heterojunction. The characteristic peaks of **(b)** C 1s, **(c)** Al 2p and **(d)** N 1s are observed, among which the C 1s peaks come from graphene.

Figure S2. (a) Cross-sectional HRTEM image of the AlN/GaN interface. **(b)** Filtered images from masked fast Fourier transformation of selected area in (a) showing misfit dislocations.

Figure S3. (a) Scanning electron microscope (SEM) cross section image of the AlN/n-GaN heterojunction, where the thickness of the AlN single crystalline film is clearly observed to be 200 nm. (b). Schematic diagram of the VUV-selected photoresponse of p-Graphene/AlN/n-GaN photovoltaic detector, measured by combining monochromator with deuterium lamp. Wavelength-dependent photoresponsivity (R_{λ}) curve is basing on continuous adjustable monochromatic light from deep-UV to VUV. R_{λ} represents the detection capability of the device, defined as $R\lambda=\Delta I/PS$, where ΔI is photocurrent minus dark current, P is incident optical power density, and S is light absorption area.

Figure S4. (a) HRXRD 2 θ - ω scan of (10¹2) plane of the AlN/GaN heterojunction, indicating a good crystallinity and smoothness of the interface.