Electronic Supplementary Information

Mechanochemical Conversion of Potassium Coordination Polymer Nanostructures to Interpenetrated Sodium Coordination Polymer with Halogen bond, Metal-Carbon and Metal-Metal Interactions

Ashkan Kianimehr, ^a Kamran Akhbari, ^{*a} Jonathan White ^b and Anukorn Phuruangrat ^c

^aSchool of Chemistry, College of Science, University of Tehran, Tehran, Iran. P.O. Box 14155-6455; Tel.: +98 21 61113734; fax: +98 21 66495291. E-mail address: akhbari.k@khayam.ut.ac.ir (K. Akhbari).

^bSchool of Chemistry and Bio21 Institute, The University of Melbourne, VIC 3010, Australia. ^cDepartment of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

Table S1. Crystal data and structure refinement for compounds $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1) and $[K_2(\mu_4-TBT)(H_2O)_4]_n$ (2).

Identification code	1	2
Empirical formula	$C_8H_8Br_4Na_2O_8$	$C_8H_8Br_4K_2O_8$
Formula weight	597.76	629.98
Temperature	130.00(10) K	130.01(10) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Tetragonal	Monoclinic
Space group	$I4_1cd$	$P2_1/c$
Unit cell dimensions	a = 12.3021(4) Å	a = 11.6690(5) Å
	b = 12.3021(4) Å	b = 7.2589(3) Å
	c = 42.415(2) Å	c = 10.7100(5) Å
	$\alpha = 90.00^{\circ}$	$\alpha = 90.00^{\circ}$
	$\beta = 90.00^{\circ}$	$\beta = 104.479(5)^{\circ}$
	$\gamma = 90.00^{\circ}$	$\gamma = 90.00^{\circ}$
Volume	6419.1(5) Å ³	878.37(7) Å ³
Z	16	2
Density (calculated)	2.474 g/cm ³	2.382 g/cm ³
Absorption coefficient	10.117 mm ⁻¹	9.667 mm ⁻¹
<i>F</i> (000)	4512	596
Crystal size	0.286×0.250×0.154 mm ³	0.632×0.358×0.072 mm ³
Theta range for data collection	3.449 to 36.41 °	3.336 to 36.486 °
Index ranges	$-19 \le h \le 12$	$-19 \le h \le 19$
-	$-20 \le k \le 7$	$-11 \le k \le 12$
	$-70 \le l \le 37$	$-17 \le l \le 17$
Independent reflections	5317	4078
Absorption correction	Gaussian	Gaussian
Data / restraints / parameters	5317 / 273 / 204	4078 / 5 / 116
Goodness-of-fit on F^2	1.033	1.095
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0498$	$R_1 = 0.0545$
	$wR_1 = 0.1108$	$wR_1 = 0.1023$
R Indices (all data)	$R_2 = 0.0768$	$R_2 = 0.0394$
	$\bar{wR}_2 = 0.1283$	$\bar{wR}_2 = 0.0877$

O(1)-Na(1)	2.382(10)
O(1)-Na(2)	2.474(10)
O(3)-Na(2)	2.408(10)
O(3)-Na(1)	2.478(11)
O(5)-Na(2)	2.427(5)
O(5)-Na(1)	2.441(5)
O(6)-Na(1)	2.450(9)
O(6)-Na(2)#2	2.530(10)
O(7)-Na(2)	2.433(5)
O(7)-Na(1)#1	2.445(5)
O(8)-Na(2)	2.459(9)
O(8)-Na(1)#3	2.498(9)
Na(1)-Na(2)	3.139(3)
Na(1)-Na(2)#1	3.814(3)
Na(1)-Na(2)#2	3.815(3)
O(1)-Na(1)-O(5)	81.4(4)
O(1)-Na(1)-O(7)#1	99.2(4)
O(5)-Na(1)-O(7)#1	177.6(6)
O(1)-Na(1)-O(6)	165.4(3)
O(5)-Na(1)-O(6)	84.3(3)
O(7)#1-Na(1)-O(6)	95.2(4)
O(1)-Na(1)-O(3)	88.13(17)
O(5)-Na(1)-O(3)	79.0(3)
O(7)#1-Na(1)-O(3)	98.7(4)
O(6)-Na(1)-O(3)	92.4(4)
O(1)-Na(1)-O(8)#2	98.9(4)
O(5)-Na(1)-O(8)#2	99.3(3)
O(7)#1-Na(1)-O(8)#2	82.9(3)
O(6)-Na(1)-O(8)#2	80.1(2)
O(3)-Na(1)-O(8)#2	172.4(4)
O(1)-Na(1)-Na(2)	51.0(2)
O(5)-Na(1)-Na(2)	49.65(13)
O(7)#1-Na(1)-Na(2)	129.07(15)
O(6)-Na(1)-Na(2)	120.1(2)

Table S2. Selected bond lengths /Å and angles /° for compound $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1).

O(3)-Na(1)-Na(2)	49.1(2)
O(8)#2-Na(1)-Na(2)	134.7(2)
O(1)-Na(1)-Na(2)#1	72.3(2)
O(5)-Na(1)-Na(2)#1	140.23(17)
O(7)#1-Na(1)-Na(2)#1	38.45(11)
O(6)-Na(1)-Na(2)#1	121.6(2)
O(3)-Na(1)-Na(2)#1	71.0(2)
O(8)#2-Na(1)-Na(2)#1	113.6(2)
Na(2)-Na(1)-Na(2)#1	90.63(9)
O(1)-Na(1)-Na(2)#2	136.2(3)
O(5)-Na(1)-Na(2)#2	91.76(14)
O(7)#1-Na(1)-Na(2)#2	89.43(13)
O(6)-Na(1)-Na(2)#2	40.8(2)
O(3)-Na(1)-Na(2)#2	133.2(3)
O(8)#2-Na(1)-Na(2)#2	39.3(2)
Na(2)-Na(1)-Na(2)#2	141.39(8)
Na(2)#1-Na(1)-Na(2)#2	127.83(8)
O(3)-Na(2)-O(5)	80.7(3)
O(3)-Na(2)-O(7)	99.0(4)
O(5)-Na(2)-O(7)	177.6(5)
O(3)-Na(2)-O(8)	165.3(3)
O(5)-Na(2)-O(8)	85.1(3)
O(7)-Na(2)-O(8)	95.4(4)
O(3)-Na(2)-O(1)	87.64(17)
O(5)-Na(2)-O(1)	79.8(4)
O(7)-Na(2)-O(1)	97.7(4)
O(8)-Na(2)-O(1)	93.6(4)
O(3)-Na(2)-O(6)#3	98.8(4)
O(5)-Na(2)-O(6)#3	98.1(3)
O(7)-Na(2)-O(6)#3	84.4(3)
O(8)-Na(2)-O(6)#3	79.30(19)
O(1)-Na(2)-O(6)#3	172.8(4)
O(3)-Na(2)-Na(1)	51.0(2)
O(5)-Na(2)-Na(1)	50.04(13)
O(7)-Na(2)-Na(1)	127.96(15)
O(8)-Na(2)-Na(1)	120.7(2)

O(1)-Na(2)-Na(1)	48.4(2)
O(6)#3-Na(2)-Na(1)	134.6(2)
O(3)-Na(2)-Na(1)#1	71.2(2)
O(5)-Na(2)-Na(1)#1	139.36(16)
O(7)-Na(2)-Na(1)#1	38.67(11)
O(8)-Na(2)-Na(1)#1	123.0(2)
O(1)-Na(2)-Na(1)#1	70.4(2)
O(6)#3-Na(2)-Na(1)#1	114.5(2)
Na(1)-Na(2)-Na(1)#1	89.32(9)
O(3)-Na(2)-Na(1)#3	136.6(3)
O(5)-Na(2)-Na(1)#3	92.89(14)
O(7)-Na(2)-Na(1)#3	89.02(13)
O(8)-Na(2)-Na(1)#3	40.1(2)
O(1)-Na(2)-Na(1)#3	133.7(3)
O(6)#3-Na(2)-Na(1)#3	39.2(2)
Na(1)-Na(2)-Na(1)#3	142.84(8)
Na(1)#1-Na(2)-Na(1)#3	127.69(8)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,z+0 #2 -x+1/2,y-1/2,z #3 -x+1/2,y+1/2,z

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(5)-H(5A)O(2)#4	0.97	1.98	2.843(13)	146.7
O(5)-H(5A)Br(2)#5	0.97	3.06	3.738(16)	128.5
O(5)-H(5B)O(4)#6	0.97	2.02	2.884(12)	147.1
O(5)-H(5B)Br(4)#6	0.97	3.10	3.763(16)	126.4
O(6)-H(6A)Br(2)#7	0.97	3.05	3.771(8)	132.4
O(6)-H(6A)Br(3)	0.97	3.05	3.833(7)	138.9
O(6)-H(6B)O(2)#4	0.97	2.21	3.092(9)	151.2
O(6)-H(6B)Br(2)#5	0.97	3.12	3.768(9)	125.5
O(6)-H(6B)Br(3)#8	0.97	2.88	3.524(7)	124.9
O(7)-H(7A)O(4)#9	0.97	1.90	2.806(13)	153.7
O(7)-H(7A)Br(1)#1	0.97	2.84	3.521(17)	128.4
O(7)-H(7B)O(2)#10	0.97	1.93	2.856(13)	158.2
O(7)-H(7B)Br(3)#1	0.97	2.93	3.596(18)	127.0
O(8)-H(8A)Br(1)#1	0.97	2.96	3.739(7)	138.5
O(8)-H(8A)Br(4)#11	0.97	3.10	3.831(8)	133.6
O(8)-H(8B)O(4)#6	0.97	2.11	3.013(10)	153.4
O(8)-H(8B)Br(1)#3	0.97	2.97	3.608(7)	124.7
O(8)-H(8B)Br(4)#6	0.97	3.09	3.703(8)	122.4
O(5)-H(5A)O(2)#4	0.97	1.98	2.843(13)	146.7
O(5)-H(5A)Br(2)#5	0.97	3.06	3.738(16)	128.5
O(5)-H(5B)O(4)#6	0.97	2.02	2.884(12)	147.1
O(5)-H(5B)Br(4)#6	0.97	3.10	3.763(16)	126.4
O(6)-H(6A)Br(2)#7	0.97	3.05	3.771(8)	132.4
O(6)-H(6A)Br(3)	0.97	3.05	3.833(7)	138.9
O(6)-H(6B)O(2)#4	0.97	2.21	3.092(9)	151.2
O(6)-H(6B)Br(2)#5	0.97	3.12	3.768(9)	125.5
O(6)-H(6B)Br(3)#8	0.97	2.88	3.524(7)	124.9
O(7)-H(7A)O(4)#9	0.97	1.90	2.806(13)	153.7
O(7)-H(7A)Br(1)#1	0.97	2.84	3.521(17)	128.4
O(7)-H(7B)O(2)#10	0.97	1.93	2.856(13)	158.2
O(7)-H(7B)Br(3)#1	0.97	2.93	3.596(18)	127.0
O(8)-H(8A)Br(1)#1	0.97	2.96	3.739(7)	138.5

Table S3. Hydrogen bond for compound $[Na_2(\mu_4\text{-}TBT)(H_2O)_4]_n(1)$, [/Å and /°].

O(8)-H(8A)Br(4)#11	0.97	3.10	3.831(8)	133.6
O(8)-H(8B)O(4)#6	0.97	2.11	3.013(10)	153.4
O(8)-H(8B)Br(1)#3	0.97	2.97	3.608(7)	124.7
O(8)-H(8B)Br(4)#6	0.97	3.09	3.703(8)	122.4

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,z+0 #2 -x+1/2,y-1/2,z #3 -x+1/2,y+1/2,z #4 y-1/2,-x+1,z-1/4 #5 -y+1/2,x+0,z-1/4 #6 -y+1/2,-x+1,z+1/4 #7 y+0,x-1/2,z-1/4 #8 x-1/2,-y+1/2,z+0 #9 -y+1,x+1/2,z+1/4 #10 -y+1,-x+3/2,z-1/4 #11 y+0,-x+3/2,z+1/4

O(1)-K	2.744(2)
O(2)-K	2.772(2)
O(3)-K	2.760(2)
O(4)-K	2.732(2)
O(4)-K#3	2.764(2)
Br(1)-K#2	3.8523(7)
Br(2)-K#1	3.7079(6)
K-K#3	4.3834(11)
O(4)-K-O(1)	99.90(6)
O(4)-K-O(3)	132.80(7)
O(1)-K-O(3)	105.14(6)
O(4)-K-O(4)#3	74.20(7)
O(1)-K-O(4)#3	79.09(7)
O(3)-K-O(4)#3	72.19(6)
O(4)-K-O(2)#4	79.97(6)
O(1)-K-O(2)#4	162.00(6)
O(3)-K-O(2)#4	87.29(6)
O(4)#3-K-O(2)#4	117.67(7)
O(4)-K-Br(2)#1	158.79(5)
O(1)-K-Br(2)#1	63.04(4)
O(3)-K-Br(2)#1	67.01(4)
O(4)#3-K-Br(2)#1	111.98(5)
O(2)#4-K-Br(2)#1	112.15(4)
O(4)-K-Br(1)#4	61.67(5)
O(1)-K-Br(1)#4	103.35(4)
O(3)-K-Br(1)#4	143.76(5)
O(4)#3-K-Br(1)#4	135.66(5)
O(2)#4-K-Br(1)#4	60.52(4)
Br(2)#1-K-Br(1)#4	108.006(16)
O(4)-K-K#3	37.35(5)

Table S4. Selected bond lengths /Å and angles /° for compound $[K_2(\mu_4-TBT)(H_2O)_4]_n$ (2).

O(1)-K-K#3	89.30(4)
O(3)-K-K#3	103.33(5)
O(4)#3-K-K#3	36.85(4)
O(2)#4-K-K#3	100.62(4)
Br(2)#1-K-K#3	144.79(2)
Br(1)#4-K-K#3	98.924(19)
O(4)-K-H(4B)	14.9(4)
O(1)-K-H(4B)	89.5(6)
O(3)-K-H(4B)	147.2(4)
O(4)#3-K-H(4B)	82.4(6)
O(2)#4-K-H(4B)	86.6(7)
Br(2)#1-K-H(4B)	144.1(4)
Br(1)#4-K-H(4B)	53.7(7)
K#3-K-H(4B)	46.7(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x,y+1,z #3 -x+2,-y,-z+1

#4 x,y-1,z

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(4)-H(4A)O(3)#5	0.834(10)	2.005(14)	2.828(3)	169(5)
O(3)-H(3B)O(2)#6	0.829(10)	2.090(15)	2.887(3)	161(4)
O(4)-H(4B)O(2)#7	0.829(10)	2.12(2)	2.862(3)	149(4)
O(3)-H(3A)O(1)#8	0.823(10)	1.960(12)	2.776(3)	171(5)
O(3)-H(3A)Br(2)#1	0.823(10)	3.14(4)	3.657(2)	123(4)

Table S5. Hydrogen bond for compound $[K_2(\mu_4\text{-}TBT)(H_2O)_4]_n$ (2), [/Å and /°].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x,y+1,z #3 -x+2,-y,-z+1

#4 x,y-1,z #5 x,-y-1/2,z-1/2 #6 -x+2,y-1/2,-z+3/2

#7 x,-y+1/2,z-1/2 #8 x,-y+1/2,z+1/2

b)

Figure S1. Representation of a) sodium(I) coordination sphere and b) TBT²⁻ coordination mode in $[Na_2(\mu_4-TBT)(H_2O)_4]_n(1)$, (Na = purpule, O = red, Br = brown, C = gray and H = white. In b, H atoms have been removed for clarity).

a)

Figure S2. Representation of Br...O interactions in $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1) with Br(1)-O(4), Br(2)-O(3), Br(3)-O(2), Br(4)-O(1) distances of 2.917, 3.023, 2.881 and 2.994 Å and C(2)-Br(1)...O(5), C(3)-Br(2)...O(6), C(9)-Br(3)...O(2), C(8)-Br(4)...O(1) angles of 165.72, 165.62, 167.10 and 171.49°, (Na = purpule, O = red, Br = brown, C = gray and H = white).

Figure S3. Stabilization of 3D supramolecular polymer which was obtained from perpendicular interpenetration of 2D network in $[Na_2(\mu_4-TBT)(H_2O)_4]_n(1)$ with a) secondary hydrogen bonding (blue dashed lines) and b) Br...O interactions (green dashed lines) along the crystallographic *b* axis, (Na = purpule, O = red, Br = brown, C = gray and H = white, in b the H atoms have been removed for clarity).

Figure S4. A fragment of 2D coordination network in $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1) and b) 3D supramolecular polymer from perpendicular interpenetration of 2D network in 1 along the crystallographic *a* axis, (Na = purpule, O = red, Br = brown and C = gray, H atoms have been removed for clarity).

Figure S5. A fragment of 2D coordination network in $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1) and b) 3D supramolecular polymer from perpendicular interpenetration of 2D network in 1 along the crystallographic *b* axis, (Na = purpule, O = red, Br = brown and C = gray, H atoms have been removed for clarity).

Figure S6. Representation of a) potassium(I) coordination sphere and TBT²⁻ coordination mode in $[K_2(\mu_4\text{-TBT})(H_2O)_4]_n$ (2) and 2D coordination polymer in 2 along the crystallographic b) *b* axis and c) *c* axis (K = green, O = red, Br = brown, C = gray and H = white. In b, H atoms have been removed for clarity).

Figure S7. Representation of Br...O interactions in $[K_2(\mu_4-TBT)(H_2O)_4]_n(2)$ along the crystallographic a) *a* axis and b) *b* axis, (K = green, O = red, Br = brown and C = gray, H atoms have been removed for clarity).

<u>Λ</u>

Figure S8. a) Area of the EDAX measurement, b-f) elemental mapping of Na, K, C, O and Br, respectively, g) EDAX spectrum and h) distribution of chemical composition respective for Na, K, C, O and Br in $[Na_2(\mu_4\text{-}TBT)(H_2O)_4]_n(1)$ synthesized under ultrasonic irradiations.

b)

d)

Figure S9. Other SEM images of a) $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1) synthesized under ultrasonic irradiations, d) compound 1 after a LAG reaction with excess KNO₃, c) $[K_2(\mu_4-TBT)(H_2O)_4]_n$ (2) synthesized under ultrasonic irradiations, d) compound 2 after a LAG reaction with excess NaNO₃.

Figure S10. a) Area of the EDAX measurement, b-f) elemental mapping of Na, K, C, O and Br, respectively, g) EDAX spectrum and h) distribution of chemical composition respective for Na, K, C, O and Br in $[K_2(\mu_4-TBT)(H_2O)_4]_n(2)$ synthesized under ultrasonic irradiations.

Figure S11. a) Area of the EDAX measurement, b-g) elemental mapping of Na, K, C, O, Br and N, respectively, h) EDAX spectrum and i) distribution of chemical composition respective for Na, K, C, O, Br and N in compound **1** after a LAG reaction with excess KNO₃.

Figure S12. a) Area of the EDAX measurement, b-g) elemental mapping of Na, K, C, O, Br and N, respectively, h) EDAX spectrum and i) distribution of chemical composition respective for Na, K, C, O, Br and N in compound **2** after a LAG reaction with excess NaNO₃.

Figure S13. IR spectra of a) $[Na_2(\mu_4\text{-}TBT)(H_2O)_4]_n$ (1) synthesized under ultrasonic irradiations, d) compound 1 after a LAG reaction with excess KNO₃, c) $[K_2(\mu_4\text{-}TBT)(H_2O)_4]_n$ (2) synthesized under ultrasonic irradiations, d) compound 2 after a LAG reaction with excess NaNO₃.

Figure S14. Thermal behavior of a) $[Na_2(\mu_4-TBT)(H_2O)_4]_n$ (1) synthesized under ultrasonic irradiations, d) compound 1 after a LAG reaction with excess KNO₃, c) $[K_2(\mu_4-TBT)(H_2O)_4]_n$ (2) synthesized under ultrasonic irradiations, d) compound 2 after a LAG reaction with excess NaNO₃.