Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Transition-metal(II) complexes with a tripodal hexadentate ligand, 1,1,1tris[2-aza-3-(imidazol-4-yl)prop-2-enyl]ethane, exhibiting incomplete total or absolute spontaneous resolution

Misaki Matsushima,^a Koki Wada,^a Yuki Horino,^a Kazuma Takahara,^a Yukinari Sunatsuki ^a and Takayoshi Suzuki ^{*ab}

^a Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

^bResearch Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan. E-mail: suzuki@okayama-u.ac.jp

Contents:

- Fig. S1 Temperature-dependence of the magnetic susceptibility, *X*MT vs. *T* plots of [Mn(H₃L)]Cl(ClO₄) (1: yellow), (b) [Fe(H₃L)]Cl(ClO₄) (2: red), (c) [Co(H₃L)]Cl(ClO₄) (3: blue) and [Ni(H₃L)]Cl(ClO₄) (4: purple).
- Fig. S2 FT-IR spectra of (a) $[Mn(H_3L)]Cl(ClO_4)$ (1), (b) $[Fe(H_3L)]Cl(ClO_4)$ (2), (c) $[Co(H_3L)]Cl(ClO_4)$ (3), (d) $[Ni(H_3L)]Cl(ClO_4)$ (4) and (e) $[Zn(H_3L)]Cl(ClO_4)$ (5).
- Fig. S3 UV-vis absorption spectra of (a) [Mn(H₃L)]Cl(ClO₄) (1: red), (b) [Fe(H₃L)]Cl(ClO₄) (2: dark blue), (c) [Co(H₃L)]Cl(ClO₄) (3: purple), (d) [Ni(H₃L)]Cl(ClO₄) (4: green) and (e) [Zn(H₃L)]Cl(ClO₄) (5: sky blue) in methanol.
- Fig. S4 ORTEP drawings (50% probability level) of (a) [Co(H₃L)]Cl(ClO₄) (3), (b)
 [Ni(H₃L)]Cl(ClO₄) (4) and (c) [Co(H₃L)]Cl(ClO₄) (5) with atom-numbering schemes.
- Fig. S5 An ORTEP drawing (50% probability level) of crystallographically independent complex cations, counter anions, and a hydrated water molecules in [Fe(H₃L)](ClO₄)₂•0.5H₂O (2A) with atom-numbering schemes.
- **Fig. S6** A packing diagram viewed along the *a* axis of $[Fe(H_3L)](ClO_4)_2 \cdot 0.5H_2O(2A)$.
- **Fig. S7** A CD spectrum of a methanol solution dissolving a piece of single-crystal of [Fe(H₃L)]Cl(ClO₄) (2).
- **Fig. S8** The observed powder X-ray diffraction (PXRD) spectra (upper, black) of the microcrystalline samples obtained by recrystallisation and the simulated PXRD pattern (lower, green) from the single-crystal X-ray analyses for $[M(H_3L)]Cl(ClO_4)$ (M = Mn (*a*), Fe (*b*), Ni (*c*) and Zn (*d*).
- Fig. S9 Preparation of a sample disk for solid-state CD measurement. A mixture of sample and KBr was well ground in an agate mortar (*a*) then vacuum pressed (*b*) to form a uniform disk. The disk was placed in a sample holder (*c*), which was then positioned in the cell holder of the spectropolarimeter (*d*).
- **Table S1**Crystallographic data for compounds 1–5.
- **Table S2**Crystallographic data for compound 2A.
- **Table S3** Comparison of structural parameters $(l/Å, \phi/^\circ)$ for compounds 2 and 2A.
- **Table S4** Hydrogen bonding parameters $(l/\text{\AA}, \phi/^\circ)$ in compounds 1–5 and 2A.

Fig. S1 Temperature-dependence of the magnetic susceptibility, χ_MT vs. T plots of [Mn(H₃L)]Cl(ClO₄) (1: yellow), (b) [Fe(H₃L)]Cl(ClO₄) (2: red), (c) [Co(H₃L)]Cl(ClO₄) (3: blue) and [Ni(H₃L)]Cl(ClO₄) (4: purple).

(*c*)

(*e*)

Fig. S2FT-IR spectra of (a) $[Mn(H_3L)]Cl(ClO_4)$ (1), (b) $[Fe(H_3L)]Cl(ClO_4)$ (2), (c) $[Co(H_3L)]Cl(ClO_4)$ (3), (d) $[Ni(H_3L)]Cl(ClO_4)$ (4) and (e) $[Zn(H_3L)]Cl(ClO_4)$ (5).

Fig. S3 UV-vis absorption spectra of (a) $[Mn(H_3L)]Cl(ClO_4)$ (1: red), (b) $[Fe(H_3L)]Cl(ClO_4)$ (2: dark blue), (c) $[Co(H_3L)]Cl(ClO_4)$ (3: purple), (d) $[Ni(H_3L)]Cl(ClO_4)$ (4: green) and (e) $[Zn(H_3L)]Cl(ClO_4)$ (5: sky blue) in methanol.

Fig. S4 ORTEP drawings (50% probability level) of (*a*) $[Co(H_3L)]Cl(ClO_4)$ (**3**), (*b*) $[Ni(H_3L)]Cl(ClO_4)$ (**4**) and (*c*) $[Zn(H_3L)]Cl(ClO_4)$ (**5**) with atom-numbering schemes.

Fig. S5 An ORTEP drawing (50% probability level) of crystallographically independent complex cations, counter anions, and a hydrated water molecules in $[Fe(H_3L)](ClO_4)_2 \cdot 0.5H_2O$ (**2A**) with atom-numbering schemes.

Fig. S6 A packing diagram viewed along the *a* axis of $[Fe(H_3L)](ClO_4)_2 \cdot 0.5H_2O(2A)$.

Fig. S7 A CD spectrum of a methanol solution dissolving a piece of single-crystal of $[Fe(H_3L)]Cl(ClO_4)$ (2).

Fig. S8 The observed powder X-ray diffraction (PXRD) spectra (upper, black) of the microcrystalline samples obtained by recrystallisation and the simulated PXRD pattern (lower, green) from the single-crystal X-ray analyses for $[M(H_3L)]Cl(ClO_4)$ (M = Mn (*a*), Fe (*b*), Ni (*c*) and Zn (*d*).

Fig. S9 Preparation of a sample disk for solid-state CD measurement. A mixture of sample and KBr was well ground in an agate mortar (*a*) then vacuum pressed (*b*) to form a uniform disk. The disk was placed in a sample holder (*c*), which was then positioned in the cell holder of the spectropolarimeter (*d*).

Complex	1	2	3	4	5
	$[Mn(H_3L)]Cl(ClO_4)$	[Fe(H ₃ L)]Cl(ClO ₄)	$[Co(H_3L)]Cl(ClO_4)$	[Ni(H ₃ L)]Cl(ClO ₄)	$[Zn(H_3L)]Cl(ClO_4)$
Chemical formula	$C_{17}H_{21}Cl_2MnN_9O_4$	C17H21Cl2FeN9O4	$C_{17}H_{21}Cl_2CoN_9O_4$	C17H21Cl2N9NiO4	$C_{17}H_{21}Cl_2N_9O_4Zn$
Formula weight	541.25	542.18	545.26	545.04	551.70
T / K	192(2)	193(2)	192(2)	192(2)	192(2)
Crystal color and shape	yellow, platelet	red, platelet	brown, platelet	purple, platelet	colorless, block
Size of specimen / mm	$0.5\times0.3\times0.1$	$0.3 \times 0.2 \times 0.05$	$0.4 \times 0.25 \times 0.1$	$0.35 \times 0.25 \times 0.1$	$0.2\times0.1\times0.1$
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group, Z	$P2_12_12_1, 4$	$P2_12_12_1, 4$	$P2_12_12_1, 4$	$P2_12_12_1, 4$	$P2_12_12_1, 4$
<i>a</i> / Å	9.5820(9)	9.396(4)	9.5465(6)	9.4888(7)	9.5605(8)
b / Å	14.7653(13)	14.669(7)	14.6856(10)	14.7278(9)	14.6922(11)
<i>c</i> / Å	16.1241(12)	16.074(7)	15.9616(12)	15.9298(10)	15.9600(14)
α / °	90	90	90	90	90
eta / °	90	90	90	90	90
γ/\circ	90	90	90	90	90
U / Å ³	2281.2(3)	2215.5(16)	2237.8(3)	2226.2(2)	2241.8(3)
$D_{\rm calc}$ / g cm ⁻³	1.576	1.625	1.618	1.626	1.635
μ (Mo K α) / mm ⁻¹	0.858	0.968	1.051	1.157	1.379
R _{int}	0.0519	0.0383	0.0356	0.0363	0.0986
No. reflns / params.	5194/298	5052/298	5116/298	5069/299	5110/298
$R1 (F^2: F_o^2 > 2\sigma(F_o^2))$	0.0295	0.0312	0.0248	0.0228	0.0462
$wR2$ (F^2 : all data)	0.0733	0.0765	0.0613	0.0553	0.0956
GoF	1.048	0.992	1.048	1.058	1.015
Flack param.	0.003(7)	0.032(7)	-0.009(5)	0.001(5)	-0.005(12)

Table S1Crystallographic data for compounds 1–5.

Complex	2A			
	$\{[Fe(H_3L)](ClO_4)_2\}_2 \cdot H_2O$			
Chemical formula	$C_{34}H_{44}Cl_4Fe_2N_{18}O_{17}$			
Formula weight	1230.37			
T/K	192(2)			
Crystal color and shape	red, platelet			
Size of specimen / mm	0.5 imes 0.4 imes 0.2			
Crystal system	triclinic			
Space group, Z	<i>P</i> ⁻ , 2			
<i>a</i> / Å	10.2032(3)			
<i>b</i> / Å	12.8833(5)			
<i>c</i> / Å	19.1031(6)			
α / °	80.2128(17)			
eta / °	79.7746(12)			
γ/\circ	80.6301(16)			
U / Å ³	2412.38(14)			
D_{calc} / g cm ⁻³	1.694			
μ (Mo K α) / mm ⁻¹	0.913			
$R_{\rm int}$	0.0303			
No. reflns / params.	11031/676			
$R1 (F^2: F_o^2 > 2\sigma(F_o^2))$	0.0576			
$wR2$ (F^2 : all data)	0.1719			
GoF	1.019			

Table S2Crystallographic data for compound **2A**.

Parameter ^a	2	2A (mol1)	2A (mol2)	
M–N(a)	1.941(3), 1.951(3), 1.935(3)	1.934(2), 1.932(2), 1.942(2)	1.927(3), 1.942(2), 1.955(2)	
M–N(b)	1.979(3), 1.974(3), 1.990(3)	1.972(2), 1.989(2), 1.972(2)	1.987(3), 1.986(3), 1.981(2)	
C(a)–C(b)	1.546(5)	1.531(4)	1.529(4)	
C(b)-C(c)	1.546(5), 1.539(5), 1.542(5)	1.540(4), 1.532(5), 1.550(4)	1.547(4), 1.558(4), 1.545(4)	
N(a)–C(c)	1.476(4), 1.460(4), 1.474(4)	1.465(4), 1.466(4), 1.467(4)	1.471(4), 1.467(4), 1.460(4)	
N(a)–C(d)	1.296(4), 1.285(5), 1.299(4)	1.286(4), 1.281(4), 1.290(4)	1.294(4), 1.284(4), 1.284(4)	
C(d)–C(e)	1.429(5), 1.424(5), 1.422(5)	1.437(5), 1.433(4), 1.430(4)	1.434(5), 1.439(5), 1.432(4)	
N(b)–C(e)	1.396(4), 1.387(5), 1.391(4)	1.385(4), 1.395(4), 1.385(4)	1.387(5), 1.392(4), 1.386(4)	
C(e)-C(f)	1.367(5), 1.362(6), 1.365(5)	1.373(4), 1.367(4), 1.371(4)	1.382(4), 1.361(5), 1.367(4)	
N(b)–C(g)	1.327(4), 1.315(4), 1.327(4)	1.320(4), 1.315(4), 1.319(4)	1.316(4), 1.313(4), 1.318(4)	
N(c)-C(g)	1.344(5), 1.349(5), 1.344(5)	1.349(5), 1.357(4), 1.347(4)	1.358(5), 1.342(5), 1.345(5)	
N(c)-C(f)	1.369(5), 1.344(6), 1.367(5)	1.350(5), 1.355(5), 1.358(5)	1.357(6), 1.370(5), 1.354(5)	
N(a)–M–N(b)	80.93(11), 81.03(13), 80.73(11)	81.54(10), 81.00(10), 80.78(10)	81.29(11), 81.20(11), 80.88(10)	
N(a)–M–N(a')	86.47(12), 86.84(11), 87.41(12)	87.47(10), 88.12(10), 86.71(10)	86.95(11), 86.38(10), 86.27(11)	
N(a)–M–N(b')	164.52(12), 163.36(12), 165.70(11)	164.14(10), 167.32(10), 164.99(10)	165.76(11), 165.02(11), 165.23(11)	
	100.73(12), 102.05(12), 102.60(12)	97.92(10), 100.59(10), 103.64(10)	99.96(10), 100.79(10), 100.75(11)	
N(b)–M–N(b')	90.64(12), 93.42(12), 92.75(12)	89.88(10), 95.61(10), 91.59(10)	93.15(12), 93.42(11), 93.43(11)	
C(a)-C(b)-C(c)-N(a)	-162.4(3), -161.5(3), -162.5(3)	161.7(3), 162.1(3), 162.1(3)	160.2(3), 161.9(3), 159.6(3)	
M-N(a)-C(c)-C(b)	-32.0(4), -33.5(4), -31.4(4)	32.2(3), 31.2(3), 33.6(3)	35.7(3), 34.9(3), 35.3(3)	
N(b)-M-N(a)-C(c)	165.6(2), 164.7(2), 163.2(2)	-163.5(2), -164.8(2), -162.4(2)	-165.4(2), -164.7(2), -164.5(2)	

Table S3	Comparison of structural parameters ($l/Å$, $\phi/^{\circ}$) for compounds 2 and 2A

^{*a*} The abbreviations of atoms are:

D−H···A	D–H	D–H H···A D···A D–H–A symmetry code for A		symmetry code for A	
Compound 1					
N3-H3····Cl2	0.860	2.313	3.109(3)	154.0	-x+2, y+1/2, -z+3/2
N6-H6…O1	0.860	2.184	2.915(4)	142.8	-x+2, y-1/2, -z+3/2
N9–H9····Cl2	0.860	2.252	3.073(2)	159.5	x+1/2, -y+3/2, -z+1
Compound 2					
N3-H3···Cl2	0.880	2.249	3.110(3)	165.8	-x, y+1/2, -z+3/2
N6–H6···Cl2	0.880	2.306	3.115(4)	152.8	x+1/2, -y+3/2, -z+1
N9–H9…Cl2	0.880	2.424	3.195(4)	146.5	
Compound 3					
N3-H3····Cl2	0.880	2.279	3.121(3)	160.0	x-1, y, z
N6–H6…Cl2	0.880	2.588	3.249(2)	132.6	-x+1, $y-1/2$, $-z+1/2$
N6–H6…O2	0.880	2.253	2.935(4)	134.2	-x+1, $y-1/2$, $-z+1/2$
N9–H9…Cl2	0.880	2.264	3.090(2)	156.2	-x+3/2, -y+2, z-1/2
Compound 4					
N3-H7…Cl2	0.880	2.275	3.121(2)	161.1	
N6–H9····Cl2	0.880	2.534	3.215(2)	134.8	-x+2, y+1/2, -z+3/2
N6−H9…O4	0.880	2.308	2.953(3)	130.2	-x+2, y+1/2, -z+3/2
N9–H8····Cl2	0.880	2.268	3.095(2)	156.5	-x+3/2, -y, z+1/2
Compound 5					
N3-H3····Cl2	0.880	2.246	3.080(5)	157.9	x-1/2, -y+1/2, -z+1
N6–H6…Cl2	0.880	2.611	3.252(5)	130.5	
N6–H6…O3	0.880	2.233	2.930(7)	135.9	-x+2, y-1/2, -z+3/2
N9–H9…Cl2	0.880	2.287	3.122(5)	158.4	-x+2, y+1/2, -z+3/2
Compound 2A					
N3-H3…O6	0.880	2.082	2.910(4)	156.4	-x, -y+1, -z+1
N6–H6…O7	0.880	2.458	2.940(5)	114.9	-x+1, -y+1, -z+1
N9–H9…O14	0.880	2.374	3.064(5)	135.4	
N12-H12…O16	0.880	2.161	2.894(4)	140.4	-x+1, -y, -z+1
N15-H15…O10	0.880	2.208	3.041(6)	157.9	-x+1, -y+1, -z+1
N18–H18…O17	0.880	2.130	2.902(5)	146.1	x, y, z+1

Table S4 Hydrogen bonding parameters $(l/\text{\AA}, \phi/^\circ)$ in compounds 1–5 and 2A.