Microwave assisted slurry conversion crystallization for manufacturing of new co-crystals of sulfamethazine and sulfamerazine

Dipali Ahuja, a Kiran A. Ramisetty, a Peraka Krishna Sumanth, a Clare Crowley, a Matteo Lusi, a and Åke C. Rasmuson a

 aSynthesis and Solid State Pharmaceutical Centre, Bernal Institute, Department of Chemical Sciences, University of Limerick, Co. Limerick, Ireland

PXRD patterns for various samples:

![PXRD patterns](image)

Figure S1. PXRD patterns of sulfamethazine (SMT), salicylic acid (SA), co-crystal obtained from CSD (simulated) and co-crystal from microwave assisted slurry crystallization (experimental).
Figure S2. PXRD patterns of sulfamethazine (SMT), anthranilic acid (AA), co-crystal obtained from CSD (simulated) and co-crystal from microwave assisted slurry crystallization (experimental).

Figure S3. PXRD patterns of sulfamethazine (SMT), benzamide (BEN), co-crystal obtained from CSD (simulated) and co-crystal from microwave assisted slurry crystallization (experimental).
Figure S4. PXRD patterns of sulfamethazine (SMT), aspirin (ASP), co-crystal obtained from CSD (simulated) and co-crystal from microwave assisted slurry crystallization (experimental).

Figure S5. PXRD patterns of sulfamethazine (SMT), salicylamide (SAL) and solid from microwave assisted slurry crystallization.
Figure S6. PXRD patterns of sulfamerazine (SMR), salicylic acid (SA) and solid from microwave assisted slurry crystallization.

Figure S7. PXRD patterns of sulfamerazine (SMR), nicotinamide (NIC) and solid from microwave assisted slurry crystallization.
Figure S8. PXRD patterns of sulfamerazine (SMR), benzamide (BEN) and solid from microwave assisted slurry crystallization.

Figure S9. PXRD patterns of sulfamerazine (SMR), aspirin (ASP) and solid from microwave assisted slurry crystallization.
Figure S10. PXRD patterns of SMR-AA co-crystal after 6 months (bench), after 1 day, and after 1 and 9 weeks under accelerated conditions of 40 °C and RH 75 % (stability study).

Figure S11. PXRD patterns of SMR-SAL co-crystal after 6 months (bench), after 1 day, and after 1 and 9 weeks under accelerated conditions of 40 °C and RH 75 % (stability study).
Figure S12. PXRD patterns of SMT-NIC co-crystal after 6 months (bench), after 1 day, and after 1 and 9 weeks under accelerated conditions of 40 °C and RH 75 % (stability study).

Figure S13. PXRD patterns of the three co-crystals after 10 times and 100 times scale-up.
Table S1. Hydrogen bond parameters for SMT-NIC co-crystal in (Å, °).

<table>
<thead>
<tr>
<th>D-H--A</th>
<th>D-H</th>
<th>H--A</th>
<th>D--A</th>
<th>Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2B-H2B1--N7A</td>
<td>0.88</td>
<td>2.22</td>
<td>3.058(4)</td>
<td>159</td>
</tr>
<tr>
<td>N2B-H2B2--O17A</td>
<td>0.88</td>
<td>2.24</td>
<td>3.073(4)</td>
<td>157</td>
</tr>
<tr>
<td>N3A-H3A--O1B</td>
<td>0.88</td>
<td>1.83</td>
<td>2.699(4)</td>
<td>168</td>
</tr>
<tr>
<td>N15A-H15A--O16A</td>
<td>0.88</td>
<td>2.12</td>
<td>2.950(4)</td>
<td>157</td>
</tr>
<tr>
<td>N15A-H15B--N6B</td>
<td>0.88</td>
<td>2.43</td>
<td>3.105(4)</td>
<td>133</td>
</tr>
<tr>
<td>C14A-H14A--O16A</td>
<td>0.95</td>
<td>2.46</td>
<td>2.865(4)</td>
<td>105</td>
</tr>
</tbody>
</table>

Table S2. Hydrogen bond parameters for SMR-SAL co-crystal in (Å, °).

<table>
<thead>
<tr>
<th>D-H--A</th>
<th>D-H</th>
<th>H--A</th>
<th>D--A</th>
<th>Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>N8B-H8B1--O10B</td>
<td>0.88</td>
<td>2.10</td>
<td>2.9153(19)</td>
<td>154</td>
</tr>
<tr>
<td>N8B-H8B2--O16A</td>
<td>0.88</td>
<td>2.25</td>
<td>3.0506(16)</td>
<td>151</td>
</tr>
<tr>
<td>N7A-H7A--N3A</td>
<td>0.88</td>
<td>2.10</td>
<td>2.8989(18)</td>
<td>151</td>
</tr>
<tr>
<td>O7B-H7B--O10B</td>
<td>0.84</td>
<td>1.77</td>
<td>2.5139(17)</td>
<td>147</td>
</tr>
<tr>
<td>N15A-H15A--O7B</td>
<td>0.88</td>
<td>2.17</td>
<td>3.0214(19)</td>
<td>162</td>
</tr>
<tr>
<td>N15A-H15B--O16A</td>
<td>0.88</td>
<td>2.28</td>
<td>3.0308(18)</td>
<td>143</td>
</tr>
<tr>
<td>N15A-H15B--N1A</td>
<td>0.88</td>
<td>2.52</td>
<td>3.2183(19)</td>
<td>137</td>
</tr>
<tr>
<td>C4A-H4A--O17A</td>
<td>0.95</td>
<td>2.52</td>
<td>3.2444(19)</td>
<td>133</td>
</tr>
<tr>
<td>C10A-H10A--O16A</td>
<td>0.95</td>
<td>2.58</td>
<td>2.9397(19)</td>
<td>102</td>
</tr>
</tbody>
</table>

Table S3. Hydrogen bond parameters for SMR-AA co-crystal in (Å, °).

<table>
<thead>
<tr>
<th>D-H--A</th>
<th>D-H</th>
<th>H--A</th>
<th>D--A</th>
<th>Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1B-H1B--N1A</td>
<td>0.82</td>
<td>2.00</td>
<td>2.813(2)</td>
<td>174</td>
</tr>
<tr>
<td>N7A-H7A--O2B</td>
<td>0.86</td>
<td>1.98</td>
<td>2.723(2)</td>
<td>144</td>
</tr>
<tr>
<td>N10B-H10B--O17A</td>
<td>0.86</td>
<td>2.29</td>
<td>3.030(2)</td>
<td>144</td>
</tr>
<tr>
<td>N10B-H10C--O2B</td>
<td>0.86</td>
<td>2.04</td>
<td>2.664(3)</td>
<td>129</td>
</tr>
<tr>
<td>N15A-H15A--N3A</td>
<td>0.86</td>
<td>2.45</td>
<td>3.286(2)</td>
<td>163</td>
</tr>
<tr>
<td>C8B-H8B--O16A</td>
<td>0.93</td>
<td>2.56</td>
<td>3.340(3)</td>
<td>142</td>
</tr>
<tr>
<td>C9B-H9B--O1B</td>
<td>0.93</td>
<td>2.42</td>
<td>2.742(3)</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure S14. HPLC chromatograms of pure SMR, SMR-SAL and SMR-AA co-crystals.
Figure S15. HPLC chromatograms of pure SMT, and SMT-NIC co-crystal.
Figure S16. Hirshfeld surface plots of SMT form I (a), NIC (b), SMT molecule in SMT-NIC co-crystal (c) NIC molecule in SMT-NIC co-crystal (d).
Figure S17. Hirshfeld surface plots of SMR form I (a), AA (b), SMR molecule in SMR-AA co-crystal (c) AA molecule in SMT-AA co-crystal (d).
Figure S18. Hirshfeld surface plots of SAL (a), SMR molecule in SMR-SAL co-crystal (b) AA molecule in SMT-SAL co-crystal (c).
Figure S19. 2-D finger plots of SMT form I (a), NIC (b), SMT molecule in SMT-NIC co-crystal (c) NIC molecule in SMT-NIC co-crystal (d).
Figure S20. Hirshfeld surface plots of SMR molecule 1 (a), SMR molecule 2 (b) AA (c), SMR molecule in SMR-AA co-crystal (d) AA molecule in SMT-AA co-crystal (e).

Figure S21. 2-D fingerprint plots of SAL (a), SMR molecule in SMR-SAL co-crystal (b) AA molecule in SMT-SAL co-crystal (c).
Information for Tables S4- S11:

The interaction energies are in kJ/mol. ‘R’ is the distance between molecular centroids in Å. Total energies are the sum of four energy components, scaled appropriately as per the scale factors:

\[E_{tot} = k_{ele}E_{ele} + k_{pol}E_{pol} + k_{disp}E_{disp} + k_{rep}E_{rep} \]

Table S4. Interaction energy profile for SMT.

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, z</td>
<td>7.43</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.8</td>
<td>-2.5</td>
<td>1.8</td>
<td>-6.6</td>
</tr>
<tr>
<td>-x+1/2, y+1/2, -z</td>
<td>12.41</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.2</td>
<td>-0.1</td>
<td>0.1</td>
<td>-1.7</td>
</tr>
<tr>
<td>x, y, z</td>
<td>9.32</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-9.2</td>
<td>-4.3</td>
<td>-21.7</td>
<td>18.1</td>
</tr>
<tr>
<td>x+1/2, -y+1/2, z</td>
<td>10.29</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-7.6</td>
<td>-2.9</td>
<td>-8.3</td>
<td>4.0</td>
</tr>
<tr>
<td>x+1/2, -y+1/2, z</td>
<td>11.31</td>
<td>B3LYP/6-31G(d,p)</td>
<td>2.3</td>
<td>-0.4</td>
<td>-3.7</td>
<td>0.4</td>
</tr>
<tr>
<td>x+1/2, -y+1/2, z</td>
<td>5.47</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-19.1</td>
<td>-9.2</td>
<td>-47.9</td>
<td>49.7</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>10.24</td>
<td>B3LYP/6-31G(d,p)</td>
<td>1.7</td>
<td>-0.1</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>6.19</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-33.6</td>
<td>-8.3</td>
<td>-45.6</td>
<td>44.3</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.38</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-33.2</td>
<td>-9.1</td>
<td>-58.0</td>
<td>53.7</td>
</tr>
<tr>
<td>-x+1/2, y+1/2, -z</td>
<td>9.63</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-24.7</td>
<td>-4.6</td>
<td>-14.7</td>
<td>21.2</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>10.52</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-1.2</td>
<td>-0.2</td>
<td>-4.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table S5. Interaction energy profile for NIC.

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, z</td>
<td>3.88</td>
<td>B3LYP/6-31G(d,p)</td>
<td>5.6</td>
<td>-1.3</td>
<td>-29.6</td>
<td>15.8</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.15</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.9</td>
<td>-0.6</td>
<td>-12.0</td>
<td>11.2</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>8.20</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-9.8</td>
<td>-1.6</td>
<td>-10.2</td>
<td>12.7</td>
</tr>
<tr>
<td>x, -y+1/2, z+1/2</td>
<td>6.71</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-37.7</td>
<td>-9.0</td>
<td>-12.5</td>
<td>35.4</td>
</tr>
<tr>
<td>x, -y+1/2, z+1/2</td>
<td>5.95</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-36.1</td>
<td>-8.2</td>
<td>-12.7</td>
<td>31.9</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>5.59</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-12.0</td>
<td>-2.5</td>
<td>-17.7</td>
<td>16.3</td>
</tr>
<tr>
<td>-x, y+1/2, -z+1/2</td>
<td>7.93</td>
<td>B3LYP/6-31G(d,p)</td>
<td>2.7</td>
<td>-1.0</td>
<td>-6.2</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Table S6. Interaction energy profile for SMT-NIC co-crystal

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_dis</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>4.31</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.1</td>
<td>-4.4</td>
<td>-41.6</td>
<td>19.0</td>
<td>-27.6</td>
</tr>
<tr>
<td>-</td>
<td>7.20</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-112.1</td>
<td>-27.6</td>
<td>-20.2</td>
<td>105.4</td>
<td>-91.4</td>
</tr>
<tr>
<td>-</td>
<td>6.23</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-33.2</td>
<td>-11.6</td>
<td>-25.1</td>
<td>34.1</td>
<td>-44.5</td>
</tr>
<tr>
<td>-</td>
<td>6.93</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.1</td>
<td>-0.5</td>
<td>-3.6</td>
<td>0.1</td>
<td>-3.6</td>
</tr>
<tr>
<td>-</td>
<td>11.94</td>
<td>B3LYP/6-31G(d,p)</td>
<td>5.2</td>
<td>-0.5</td>
<td>-1.1</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>5.23</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-1.9</td>
<td>-1.8</td>
<td>-16.2</td>
<td>7.1</td>
<td>-13.1</td>
</tr>
<tr>
<td>-</td>
<td>5.96</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-7.7</td>
<td>-7.4</td>
<td>-31.5</td>
<td>15.1</td>
<td>-31.7</td>
</tr>
<tr>
<td>-</td>
<td>7.78</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-18.7</td>
<td>-4.4</td>
<td>-21.7</td>
<td>31.5</td>
<td>-22.4</td>
</tr>
<tr>
<td>-x, y+1/2, -z+1/2</td>
<td>9.96</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-4.4</td>
<td>-2.5</td>
<td>-10.7</td>
<td>6.7</td>
<td>-11.7</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>9.71</td>
<td>B3LYP/6-31G(d,p)</td>
<td>5.3</td>
<td>-0.7</td>
<td>-7.9</td>
<td>2.8</td>
<td>-0.0</td>
</tr>
<tr>
<td>-</td>
<td>7.78</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-18.7</td>
<td>-4.4</td>
<td>-21.7</td>
<td>31.5</td>
<td>-22.4</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>6.73</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-14.4</td>
<td>-5.3</td>
<td>-28.6</td>
<td>14.1</td>
<td>-35.4</td>
</tr>
<tr>
<td>x, -y+1/2, z+1/2</td>
<td>9.55</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-8.4</td>
<td>-4.1</td>
<td>-21.0</td>
<td>18.3</td>
<td>-18.9</td>
</tr>
<tr>
<td>x, y, z</td>
<td>8.35</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-20.9</td>
<td>-10.6</td>
<td>-10.7</td>
<td>26.2</td>
<td>-23.1</td>
</tr>
<tr>
<td>-</td>
<td>6.93</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.1</td>
<td>-0.5</td>
<td>-3.6</td>
<td>0.1</td>
<td>-3.6</td>
</tr>
<tr>
<td>-</td>
<td>4.31</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.1</td>
<td>-4.4</td>
<td>-41.6</td>
<td>19.0</td>
<td>-27.6</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.56</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-42.3</td>
<td>-15.5</td>
<td>-30.9</td>
<td>22.6</td>
<td>-69.1</td>
</tr>
<tr>
<td>x, -y+1/2, z+1/2</td>
<td>10.58</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-28.3</td>
<td>-7.2</td>
<td>-8.8</td>
<td>9.8</td>
<td>-36.9</td>
</tr>
<tr>
<td>-x, y+1/2, -z+1/2</td>
<td>8.76</td>
<td>B3LYP/6-31G(d,p)</td>
<td>8.2</td>
<td>-5.0</td>
<td>-4.4</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>-</td>
<td>7.20</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-112.1</td>
<td>-27.6</td>
<td>-20.2</td>
<td>105.4</td>
<td>-91.4</td>
</tr>
<tr>
<td>-</td>
<td>6.23</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-33.2</td>
<td>-11.6</td>
<td>-25.1</td>
<td>34.1</td>
<td>-44.5</td>
</tr>
<tr>
<td>-</td>
<td>11.94</td>
<td>B3LYP/6-31G(d,p)</td>
<td>5.2</td>
<td>-0.5</td>
<td>-1.1</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td>-</td>
<td>5.96</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-7.7</td>
<td>-7.4</td>
<td>-31.5</td>
<td>15.1</td>
<td>-31.7</td>
</tr>
</tbody>
</table>
Table S7. Interaction energy profile for SMR.

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_dis</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>6.72</td>
<td>B3LYP/6-31G(d,p)</td>
<td>12.4</td>
<td>-5.6</td>
<td>-29.8</td>
<td>17.2</td>
</tr>
<tr>
<td>x+1/2, y, -z+1/2</td>
<td>7.72</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-15.1</td>
<td>-4.3</td>
<td>-16.6</td>
<td>12.1</td>
</tr>
<tr>
<td>x+1/2, y, -z+1/2</td>
<td>9.10</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.6</td>
<td>-1.4</td>
<td>-9.8</td>
<td>5.2</td>
</tr>
<tr>
<td>-</td>
<td>6.71</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-74.9</td>
<td>-13.3</td>
<td>-31.4</td>
<td>91.8</td>
</tr>
<tr>
<td>-</td>
<td>7.24</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-8.2</td>
<td>-1.7</td>
<td>-30.1</td>
<td>14.1</td>
</tr>
<tr>
<td>-</td>
<td>10.57</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-14.0</td>
<td>-2.5</td>
<td>-4.2</td>
<td>1.4</td>
</tr>
<tr>
<td>x, y, z</td>
<td>7.72</td>
<td>B3LYP/6-31G(d,p)</td>
<td>2.7</td>
<td>-0.6</td>
<td>-5.4</td>
<td>1.4</td>
</tr>
<tr>
<td>x+1/2, y, -z+1/2</td>
<td>9.15</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-10.1</td>
<td>-1.9</td>
<td>-33.3</td>
<td>19.8</td>
</tr>
<tr>
<td>-</td>
<td>12.96</td>
<td>B3LYP/6-31G(d,p)</td>
<td>3.8</td>
<td>-0.7</td>
<td>-1.6</td>
<td>0.0</td>
</tr>
<tr>
<td>x, y, z</td>
<td>8.20</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-26.1</td>
<td>-8.2</td>
<td>-18.2</td>
<td>25.6</td>
</tr>
<tr>
<td>x+1/2, y, -z+1/2</td>
<td>7.69</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-12.2</td>
<td>-3.9</td>
<td>-15.8</td>
<td>11.0</td>
</tr>
<tr>
<td>x+1/2, y, -z+1/2</td>
<td>9.15</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.7</td>
<td>-1.3</td>
<td>-9.1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table S8. Interaction energy profile for AA.

<table>
<thead>
<tr>
<th>N</th>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_dis</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-x, -y, -z</td>
<td>3.56</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-1.4</td>
<td>-1.0</td>
<td>-38.7</td>
<td>19.9</td>
<td>-23.6</td>
</tr>
<tr>
<td>1</td>
<td>-x, -y, -z</td>
<td>7.18</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-117.6</td>
<td>-26.6</td>
<td>-13.4</td>
<td>148.7</td>
<td>-63.8</td>
</tr>
<tr>
<td>2</td>
<td>-x, y+1/2, -z+1/2</td>
<td>7.29</td>
<td>B3LYP/6-31G(d,p)</td>
<td>2.7</td>
<td>-0.6</td>
<td>-5.4</td>
<td>1.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>1</td>
<td>x, y, z</td>
<td>7.16</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.2</td>
<td>-0.4</td>
<td>-6.3</td>
<td>1.0</td>
<td>-8.5</td>
</tr>
<tr>
<td>1</td>
<td>x, -y+1/2, z+1/2</td>
<td>6.78</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-13.1</td>
<td>-2.9</td>
<td>-11.6</td>
<td>13.6</td>
<td>-17.7</td>
</tr>
<tr>
<td>0</td>
<td>-x+1/2, -y, z+1/2</td>
<td>5.78</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.5</td>
<td>-0.6</td>
<td>-17.6</td>
<td>10.9</td>
<td>-12.7</td>
</tr>
<tr>
<td>0</td>
<td>-x+1/2, y+1/2, z</td>
<td>7.37</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.2</td>
<td>-0.3</td>
<td>-4.7</td>
<td>1.2</td>
<td>-3.3</td>
</tr>
<tr>
<td>1</td>
<td>x, -y+1/2, z+1/2</td>
<td>6.87</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-2.1</td>
<td>-0.2</td>
<td>-10.4</td>
<td>8.6</td>
<td>-6.2</td>
</tr>
</tbody>
</table>

Table S9. Interaction energy profile for SMR-AA.

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_dis</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7.02</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-16.7</td>
<td>-5.6</td>
<td>-19.0</td>
<td>24.0</td>
<td>-23.6</td>
</tr>
<tr>
<td>-</td>
<td>10.91</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.4</td>
<td>-0.3</td>
<td>-3.5</td>
<td>0.7</td>
<td>-2.5</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.83</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.0</td>
<td>-0.5</td>
<td>-4.1</td>
<td>0.4</td>
<td>-6.9</td>
</tr>
<tr>
<td></td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5.97</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-8.5</td>
<td>-3.9</td>
<td>-35.0</td>
<td>24.9</td>
<td>-26.9</td>
</tr>
<tr>
<td>-</td>
<td>6.91</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-2.0</td>
<td>-0.2</td>
<td>-3.1</td>
<td>0.0</td>
<td>-5.0</td>
</tr>
<tr>
<td>-</td>
<td>12.16</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.2</td>
<td>-0.3</td>
<td>-1.4</td>
<td>0.0</td>
<td>-1.1</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>5.31</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-4.9</td>
<td>-0.7</td>
<td>-16.1</td>
<td>5.8</td>
<td>-16.2</td>
</tr>
<tr>
<td>-</td>
<td>9.56</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.4</td>
<td>-0.1</td>
<td>-1.3</td>
<td>0.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>8.71</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-1.2</td>
<td>-0.1</td>
<td>-5.1</td>
<td>2.1</td>
<td>-4.5</td>
</tr>
<tr>
<td>-</td>
<td>6.61</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-86.7</td>
<td>-19.7</td>
<td>-21.1</td>
<td>111.6</td>
<td>-55.7</td>
</tr>
<tr>
<td>-</td>
<td>4.58</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-6.5</td>
<td>-1.5</td>
<td>-40.3</td>
<td>20.6</td>
<td>-30.4</td>
</tr>
<tr>
<td>-</td>
<td>8.65</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.5</td>
<td>-0.7</td>
<td>-9.8</td>
<td>7.0</td>
<td>-8.4</td>
</tr>
<tr>
<td>-</td>
<td>9.53</td>
<td>B3LYP/6-31G(d,p)</td>
<td>1.4</td>
<td>-0.5</td>
<td>-2.9</td>
<td>0.1</td>
<td>-1.4</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>8.51</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-1.4</td>
<td>-0.1</td>
<td>-1.4</td>
<td>0.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>x, y, z</td>
<td>7.94</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-13.7</td>
<td>-5.5</td>
<td>-14.0</td>
<td>13.0</td>
<td>-22.7</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.12</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-1.2</td>
<td>-6.1</td>
<td>-11.1</td>
<td>10.5</td>
<td>-8.9</td>
</tr>
<tr>
<td>-</td>
<td>8.65</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.5</td>
<td>-0.7</td>
<td>-9.8</td>
<td>7.0</td>
<td>-8.4</td>
</tr>
<tr>
<td>x, y, z</td>
<td>10.71</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-4.7</td>
<td>-1.0</td>
<td>-1.9</td>
<td>0.1</td>
<td>-7.2</td>
</tr>
<tr>
<td>-</td>
<td>7.02</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-16.7</td>
<td>-5.6</td>
<td>-19.0</td>
<td>24.0</td>
<td>-23.6</td>
</tr>
<tr>
<td>-</td>
<td>5.97</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-8.5</td>
<td>-3.9</td>
<td>-35.0</td>
<td>24.9</td>
<td>-26.9</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>6.79</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-42.4</td>
<td>-14.0</td>
<td>-57.2</td>
<td>56.0</td>
<td>-70.4</td>
</tr>
<tr>
<td>x, y, z</td>
<td>10.38</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.7</td>
<td>-1.5</td>
<td>-14.8</td>
<td>9.9</td>
<td>-7.2</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>9.16</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-4.2</td>
<td>-0.5</td>
<td>-3.3</td>
<td>0.3</td>
<td>-7.5</td>
</tr>
<tr>
<td>-</td>
<td>9.56</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.4</td>
<td>-0.1</td>
<td>-1.3</td>
<td>0.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.55</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-2.7</td>
<td>-2.3</td>
<td>-20.9</td>
<td>8.5</td>
<td>-17.5</td>
</tr>
<tr>
<td>-</td>
<td>6.61</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-86.7</td>
<td>-19.7</td>
<td>-21.1</td>
<td>111.6</td>
<td>-55.7</td>
</tr>
<tr>
<td>-</td>
<td>4.58</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-6.5</td>
<td>-1.5</td>
<td>-40.3</td>
<td>20.6</td>
<td>-30.4</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>14.91</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.0</td>
<td>-0.1</td>
<td>-2.9</td>
<td>0.6</td>
<td>-2.3</td>
</tr>
<tr>
<td>-</td>
<td>10.91</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.4</td>
<td>-0.3</td>
<td>-3.5</td>
<td>0.7</td>
<td>-2.5</td>
</tr>
<tr>
<td>-</td>
<td>12.16</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.2</td>
<td>-0.3</td>
<td>-1.4</td>
<td>0.0</td>
<td>-1.1</td>
</tr>
<tr>
<td>-</td>
<td>9.53</td>
<td>B3LYP/6-31G(d,p)</td>
<td>1.4</td>
<td>-0.5</td>
<td>-2.9</td>
<td>0.1</td>
<td>-1.4</td>
</tr>
<tr>
<td>-</td>
<td>6.91</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-2.0</td>
<td>-0.2</td>
<td>-3.1</td>
<td>0.0</td>
<td>-5.0</td>
</tr>
</tbody>
</table>
Table S10. Interaction energy profile for SAL.

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_dis</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>x+1/2, -y+1/2, z</td>
<td>7.95</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.1</td>
<td>-0.3</td>
<td>-3.5</td>
<td>0.7</td>
<td>-2.7</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>10.10</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-1.4</td>
<td>0.1</td>
<td>-1.3</td>
</tr>
<tr>
<td>x+1/2, -y+1/2, z</td>
<td>6.46</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-33.8</td>
<td>-7.9</td>
<td>-13.1</td>
<td>33.8</td>
<td>-32.2</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.47</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.5</td>
<td>-0.3</td>
<td>-8.4</td>
<td>3.7</td>
<td>-9.0</td>
</tr>
<tr>
<td>-x, y, -z+1/2</td>
<td>6.20</td>
<td>B3LYP/6-31G(d,p)</td>
<td>4.4</td>
<td>-0.9</td>
<td>-5.9</td>
<td>0.7</td>
<td>-0.7</td>
</tr>
<tr>
<td>x, y, z</td>
<td>4.98</td>
<td>B3LYP/6-31G(d,p)</td>
<td>3.5</td>
<td>-1.6</td>
<td>-24.5</td>
<td>12.9</td>
<td>-10.8</td>
</tr>
<tr>
<td>x+1/2, -y+1/2, z</td>
<td>8.36</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.0</td>
<td>-0.4</td>
<td>-1.6</td>
<td>0.0</td>
<td>-4.8</td>
</tr>
<tr>
<td>-x+1/2, y+1/2, -z</td>
<td>6.63</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-3.1</td>
<td>-0.5</td>
<td>-11.4</td>
<td>6.9</td>
<td>-9.4</td>
</tr>
<tr>
<td>-x+1/2, -y+1/2, -z+1/2</td>
<td>5.36</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-17.0</td>
<td>-2.4</td>
<td>-22.0</td>
<td>13.8</td>
<td>-30.4</td>
</tr>
<tr>
<td>-x+1/2, -y+1/2, -z+1/2</td>
<td>7.54</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-72.2</td>
<td>-15.2</td>
<td>-12.2</td>
<td>66.4</td>
<td>-57.3</td>
</tr>
</tbody>
</table>

Table S11. Interaction energy profile for SMR-SAL.

<table>
<thead>
<tr>
<th>Symop</th>
<th>R</th>
<th>Electron Density</th>
<th>E_ele</th>
<th>E_pol</th>
<th>E_dis</th>
<th>E_rep</th>
<th>E_tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>6.95</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-27.0</td>
<td>-7.4</td>
<td>-13.2</td>
<td>19.9</td>
<td>-33.3</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>3.52</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-7.9</td>
<td>-2.1</td>
<td>-40.4</td>
<td>23.7</td>
<td>-30.4</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>7.43</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-60.6</td>
<td>-12.4</td>
<td>-11.9</td>
<td>54.7</td>
<td>-49.9</td>
</tr>
<tr>
<td>-</td>
<td>7.21</td>
<td>B3LYP/6-31G(d,p)</td>
<td>3.6</td>
<td>-1.9</td>
<td>-11.6</td>
<td>6.3</td>
<td>-3.8</td>
</tr>
<tr>
<td>-</td>
<td>7.65</td>
<td>B3LYP/6-31G(d,p)</td>
<td>2.2</td>
<td>-2.6</td>
<td>-6.1</td>
<td>3.5</td>
<td>-2.8</td>
</tr>
<tr>
<td>-</td>
<td>8.09</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.7</td>
<td>-1.4</td>
<td>-15.4</td>
<td>12.3</td>
<td>-6.1</td>
</tr>
<tr>
<td>x, y, z</td>
<td>8.15</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.1</td>
<td>-0.9</td>
<td>-5.4</td>
<td>1.4</td>
<td>-4.4</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>4.64</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-6.1</td>
<td>-1.5</td>
<td>-21.5</td>
<td>7.2</td>
<td>-21.8</td>
</tr>
<tr>
<td>-</td>
<td>7.86</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-23.0</td>
<td>-5.2</td>
<td>-13.9</td>
<td>23.3</td>
<td>-25.8</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>9.24</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.2</td>
<td>-0.2</td>
<td>-4.4</td>
<td>1.2</td>
<td>-3.0</td>
</tr>
<tr>
<td>-</td>
<td>6.48</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.7</td>
<td>-1.9</td>
<td>-15.6</td>
<td>6.3</td>
<td>-10.7</td>
</tr>
<tr>
<td>x, y, z</td>
<td>8.11</td>
<td>B3LYP/6-31G(d,p)</td>
<td>4.2</td>
<td>-0.5</td>
<td>-6.7</td>
<td>2.7</td>
<td>-0.2</td>
</tr>
<tr>
<td>x, y, z</td>
<td>7.48</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-6.2</td>
<td>-4.1</td>
<td>-17.6</td>
<td>12.4</td>
<td>-17.2</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>5.95</td>
<td>B3LYP/6-31G(d,p)</td>
<td>19.3</td>
<td>-3.3</td>
<td>-65.1</td>
<td>48.2</td>
<td>-49.7</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>10.08</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-4.4</td>
<td>-0.5</td>
<td>-7.1</td>
<td>0.3</td>
<td>-11.1</td>
</tr>
<tr>
<td>x, y, z</td>
<td>8.15</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-28.5</td>
<td>-10.8</td>
<td>-25.0</td>
<td>34.8</td>
<td>-38.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6.95</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-27.0</td>
<td>-7.4</td>
<td>-13.2</td>
<td>19.9</td>
<td>-33.3</td>
</tr>
<tr>
<td>-</td>
<td>6.48</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-0.7</td>
<td>-1.9</td>
<td>-15.6</td>
<td>8.3</td>
<td>-10.7</td>
</tr>
<tr>
<td>-x, -y, -z</td>
<td>6.70</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-83.4</td>
<td>-15.0</td>
<td>-32.1</td>
<td>103.9</td>
<td>-63.1</td>
</tr>
<tr>
<td>-</td>
<td>7.86</td>
<td>B3LYP/6-31G(d,p)</td>
<td>-23.0</td>
<td>-5.2</td>
<td>-13.9</td>
<td>23.3</td>
<td>-25.8</td>
</tr>
<tr>
<td>-</td>
<td>8.09</td>
<td>B3LYP/6-31G(d,p)</td>
<td>0.7</td>
<td>-1.4</td>
<td>-15.4</td>
<td>12.3</td>
<td>-6.1</td>
</tr>
<tr>
<td>-</td>
<td>7.65</td>
<td>B3LYP/6-31G(d,p)</td>
<td>2.2</td>
<td>-2.6</td>
<td>-6.1</td>
<td>3.5</td>
<td>-2.8</td>
</tr>
<tr>
<td>-</td>
<td>7.21</td>
<td>B3LYP/6-31G(d,p)</td>
<td>3.6</td>
<td>-1.9</td>
<td>-11.6</td>
<td>6.3</td>
<td>-3.8</td>
</tr>
</tbody>
</table>