Engineering MoS₂ nanostructures from various MoO₃ precursors towards hydrogen evolution reaction

Wenpin Wang, ^a Qing Yao, ^a Jiaojiao Ma, ^b Yue Xu, ^b Jiaqin Jiang, ^b Xien Liu ^b and Zhongcheng Li *^b

^a Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education

Department, School of Polymer Science and Engineering, Qingdao University of

Science and Technology, Qingdao 266042, China

^b Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life

Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China,

* Corresponding authors:

Dr. Zhongcheng Li

Email: zhongchengli@qust.edu.cn;

Fig. S1 SEM image (a), EDX analysis (b) and the corresponding Mo (c), S (d) elemental mappings images of MoS_2 nanoflowers.

Fig. S2 The survey XPS spectrum (a) and oxygen 1s spectrum (b) of the MoS_2 nanoflowers.

Fig. S3 SEM image (a), EDX analysis (b) and the corresponding Mo (c), O (d) , S (e) elemental mappings images of MoO_2 -MoS₂-B nanoflowers.

Fig. S4 SEM image (a), EDX analysis (b) and the corresponding Mo (c), O (d) , S (e) elemental mappings images of MoO_2 -MoS₂-R nanoflowers.

Fig. S5 Nyquist plots of MoS_2 nanoflowers, MoO_2 - MoS_2 -B nanoflowers and MoO_2 - MoS_2 -R nanoflowers electrocatalysts in 0.5 M H₂SO₄.