Coordination polymer templated engineering of YVO₄:Eu submicron crystals and photoluminescence

Sai Huang,^{abc} Zhenshu Fan,^{ab} Qi Zhu,^{ab} Xiaodong Li,^{ab} Xudong Sun,^{abd} Ji-Guang Li^{c*}

^{*a*} Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

^b Institute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China

 ^c Research Center for Functional Materials, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

^d School of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning 116622, China

*Corresponding author Dr. Ji-Guang Li National Institute for Materials Science Tel: +81-29-860-4394 E-mail: LI.Jiguang@nims.go.jp

Fig. S1 FE-SEM image of the CP precursor.

Fig. S2 FTIR spectrum of the $(Y_{0.95}Eu_{0.05})VO_4$ cuboids hydrothermally synthesized at 180 °C for 24 h under $VO_4^{3-}/(Y_{0.95}Eu_{0.05})^{3+}$ molar ratio R = 1.0.

Fig. S3 XRD patterns of the products synthesized via hydrothermal reaction under different temperatures (80-200 °C) for 24 h, where $VO_4^{3-}/(Y_{0.95}Eu_{0.05})^{3+}$ molar ratio R = 1.0.

Fig. S4 XRD patterns of the samples synthesized via hydrothermal reaction for different periods of time under 180 °C and $VO_4^{3-}/(Y_{0.95}Eu_{0.05})^{3+}$ molar ratio R = 1.0.

Fig. S5 FTIR spectra of the products synthesized via hydrothermal reaction under different temperatures (80-200 °C) for 24 h, where $VO_4^{3-}/(Y_{0.95}Eu_{0.05})^{3+}$ molar ratio R = 1.0.