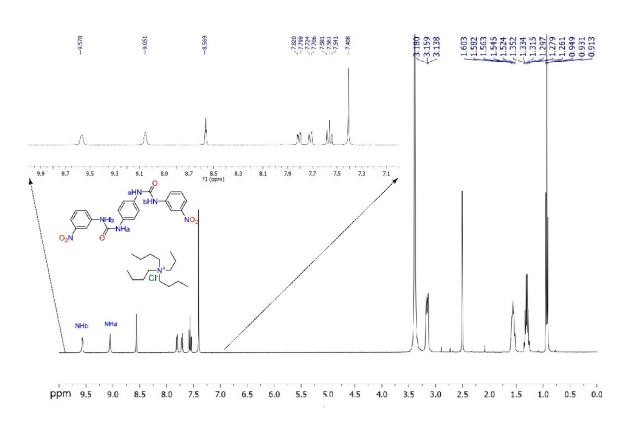
Electronic Supplementary Information

Effect of Substitution on Halide/Hydrated Halide Binding: A Case Study of Neutral Bis Urea Receptors

Asesh Das, Biswajit Nayak and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati,


Assam-781039, India

E-mail: gdas@iitg.ac.in

Table of Contents

¹ H-NMR spectrum (full as well as expanded) of Chloride complex of L ₁	Figure S1
FT-IR spectrum of Chloride complex of receptor L ₁	Figure S2
¹ H-NMR spectrum (full as well as expanded) of Bromide complex of L ₁	Figure S3
FT-IR spectrum of Bromide complex of receptor L ₁	Figure S4
¹ H-NMR spectrum (full as well as expanded) of free receptor L ₂	Figure S5
FT-IR spectrum of receptor L_2	Figure S6
ESI-Mass spectrum of dipodal receptor L ₂	Figure S7
¹ H-NMR spectrum (full as well as expanded) of Chloride complex of L ₂	Figure S8
FT-IR spectrum of Chloride complex of receptor L ₂	Figure S9
¹ H-NMR spectrum (full as well as expanded) of Bromide complex of L ₂	Figure S10
FT-IR spectrum of Bromide complex of receptor L ₂	Figure S11
¹ H-NMR spectrum (full as well as expanded) of free receptor L ₃	Figure S12
ESI-Mass spectrum of dipodal receptor L ₃ .	Figure S13
FT-IR spectrum of receptor L ₃ recorded	Figure S14
¹ H-NMR spectrum (full as well as expanded) of Chloride complex of L ₃	Figure S15
FT-IR spectrum of Chloride complex of receptor L ₃	Figure S16
¹ H-NMR spectrum (full as well as expanded) of Bromide complex of L ₃	Figure S17
FT-IR spectrum of Bromide complex of receptor L ₃	Figure S18
¹ H-NMR spectrum (full as well as expanded) of free receptor L ₄	Figure S19
ESI-Mass spectrum of dipodal receptor L ₄ .	Figure S20
FT-IR spectrum of receptor L ₄ recorded	Figure S21
¹ H-NMR spectrum (full as well as expanded) of Chloride complex of L ₄	Figure S22
FT-IR spectrum of chloride complex of receptor L ₄	Figure S23
¹ H-NMR spectrum (full as well as expanded) Bromide complex of receptor L ₄	Figure S24
FT-IR spectrum of Bromide complex of dipodal receptor L ₄	Figure S25
X-ray structure analysis of complex 1a showing coordination environment of	Figure S26
anion as well as extra stabilization through C-H _{aliphatic} ···O _{urea} and C-H _{aliphatic} ··· π _{aromatic} interaction with proper bond distances in Angstrom.	<i>3.</i>
interaction with proper cond distances in rangitions.	
X-ray structure analysis of complex 1b showing coordination environment of anion as well as extra stabilization through C-H _{aliphatic} ···O _{urea} , C-H _{aliphatic} ··· $\pi_{aromatic}$ C-H _{aliphatic} ···O _{water} interaction with proper bond distances in Angstrom.	Figure S27
X-ray structure analysis of complex 2a showing coordination environment of anion as well as extra stabilization through two C-H _{aliphatic} ···O _{urea} with proper bond distances in Angstrom.	Figure S28
X-ray structure analysis of complex 2b showing coordination environment of anion as well as extra stabilization through C-H _{aliphatic} O _{urea} , with proper bond distances in Angstrom.	Figure S29
X-ray structure analysis of complex $\bf 3a$ showing coordination environment of anion as well as extra stabilization through three C-H _{aliphatic} ···O _{urea} , four C-H _{aliphatic} ···O interaction.	Figure S30
X-ray structure analysis of complex 3b showing coordination environment of anion as well as extra stabilization through three C-H _{aliphatic} O _{urea} , two C-H	Figure S31

aliphatic "O interaction involving one oxygen atom of substituted NO ₂ group with	
proper bond distances in Angstrom.	
X-ray structure analysis of complex 4a showing coordination environment of	Figure S32
anion as well as extra stabilization through two C-H aliphatic O urea interaction with	
proper distances in Angstrom.	
X-ray structure analysis of complex 4b showing coordination environment of	Figure S33
anion as well as extra stabilization through three C-H _{aliphatic} O _{urea} interaction with	
proper distances in Angstrom.	
The scatter plot of N-H···A angle vs. H···A distance of the hydrogen bonds in the	Figure S34
complexes (1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b).	
¹ H NMR titration plot and bind-fit curve of Chloride complex of L ₁	Figure S35
¹ H NMR titration plot and bind-fit curve of Bromide complex of L ₁	Figure S36
¹ H NMR titration plot and bind-fit curve of Chloride complex of L ₂	Figure S37
¹ H NMR titration plot and bind-fit curve of Bromide complex of L ₂	Figure S38
Hydrogen bonding distances (Å) and Bond angles (°) in the neutral anion-receptor	Table S1
complexes.	
Contact contributions from the d _{norm} surface areas of dipodal segments in free	Table S2
receptors and in anion complexes.	

Figure S1: Integrated $^1\text{H-NMR}$ spectrum (full as well as expanded) of Chloride complex of L_1 in DMSO- d_6 at 25°C.

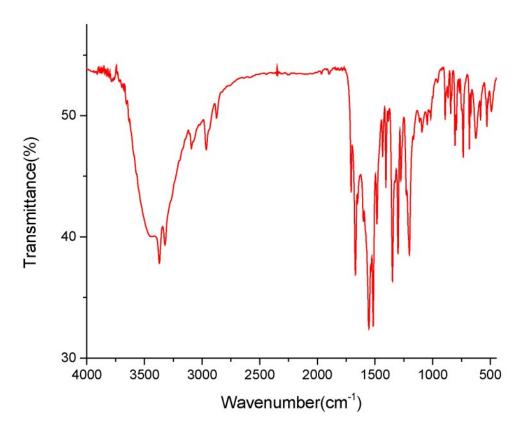
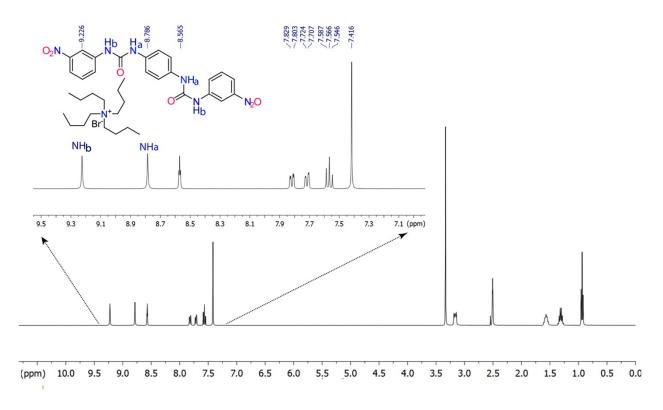



Figure S2: FT-IR spectrum of Chloride complex of receptor L₁ recorded in KBr pellet.

Figure S3: Integrated ${}^{1}\text{H-NMR}$ spectrum (full as well as expanded) of Bromide complex of L₁ in DMSO-d₆ at 25°C.

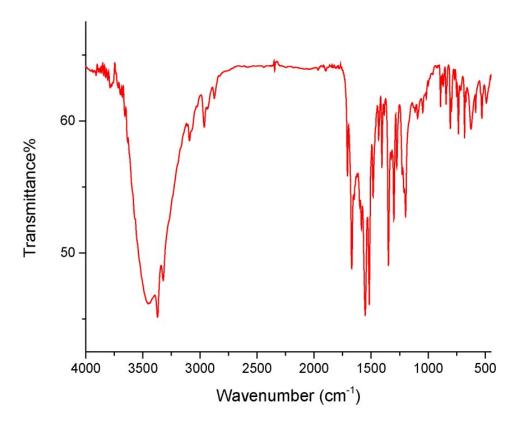
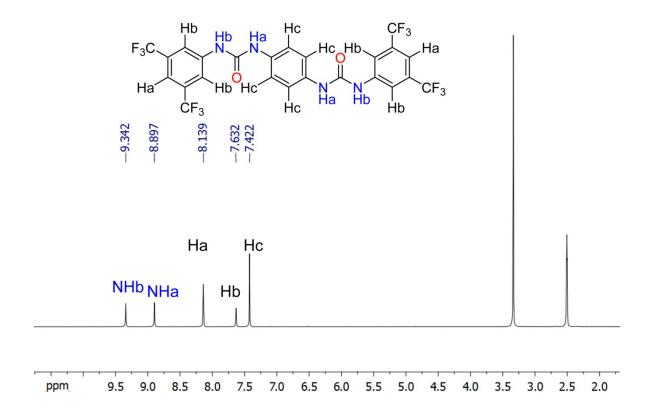



Figure S4: FT-IR spectrum of Bromide complex of receptor L_1 recorded in KBr pellet.

Figure S5: Integrated ¹H-NMR spectrum (full as well as expanded) and explanation of all hydrogen atoms of free dipodal receptor L₂ in DMSO-d₆ at 25°C.

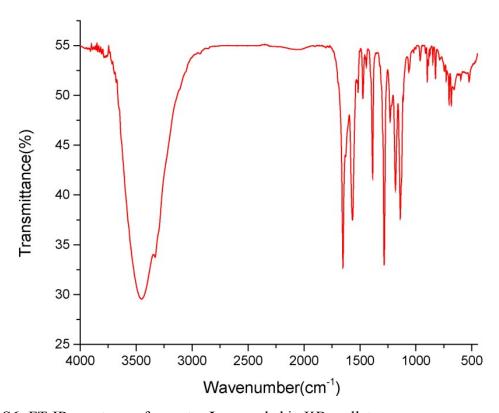


Figure S6: FT-IR spectrum of receptor L₂ recorded in KBr pellet.

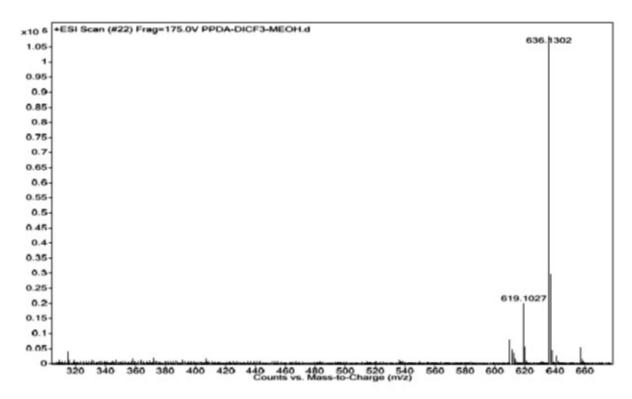
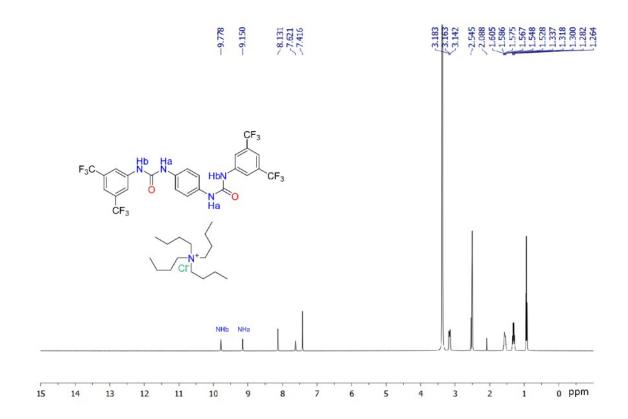



Figure S7: ESI-Mass spectrum of dipodal receptor L₂.

Figure S8: Integrated ${}^{1}\text{H-NMR}$ spectrum (full as well as expanded) of Chloride complex of receptor L_2 in DMSO-d₆ at 25°C.

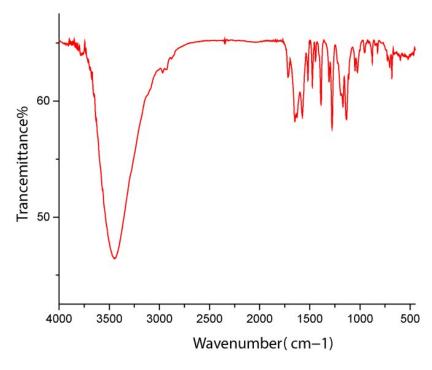
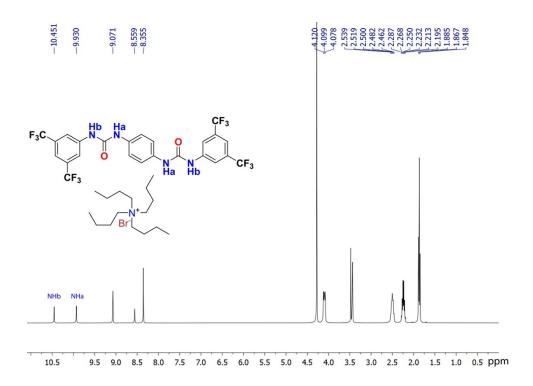



Figure S9: FT-IR spectrum of Chloride complex of receptor L₂ recorded in KBr pellet.

Figure S10: Integrated ${}^{1}\text{H-NMR}$ spectrum (full as well as expanded) of Bromide complex of receptor L₂ in DMSO-d₆ at 25°C.

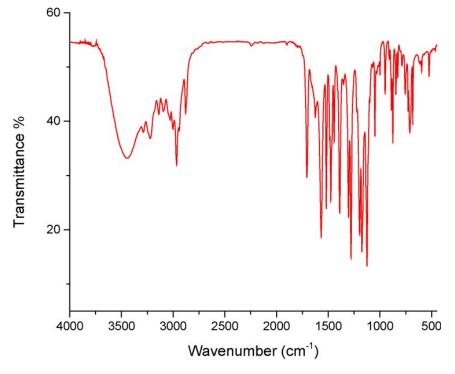
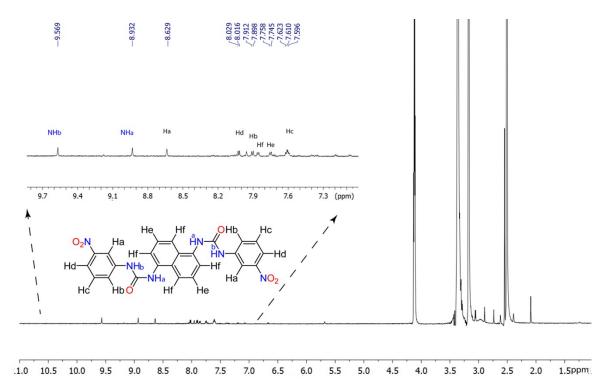



Figure S11: FT-IR spectrum of Bromide complex of receptor L2 recorded in KBr pellet.

Figure S12: Integrated 1H -NMR spectrum (full as well as expanded) and explanation of all hydrogen atoms of free dipodal bis-urea receptor L_3 in DMSO- d_6 at 25°C.

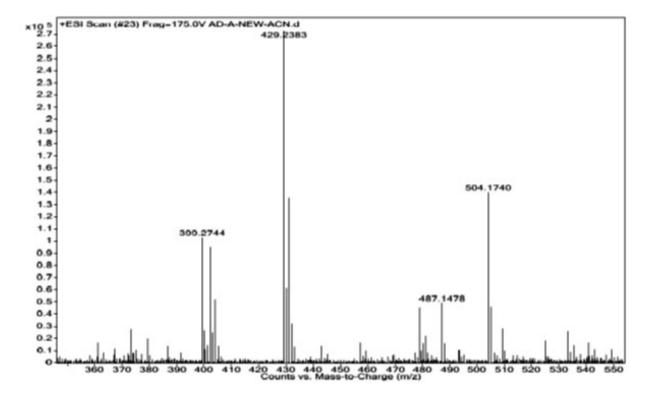


Figure S13: ESI-Mass spectrum of dipodal receptor L₃.

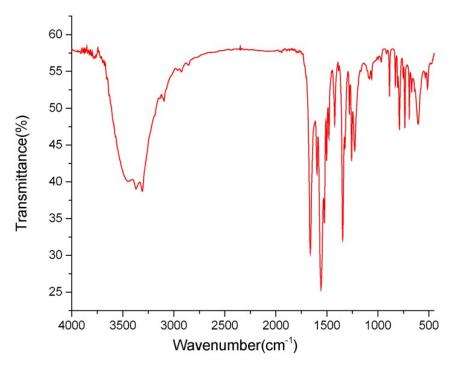
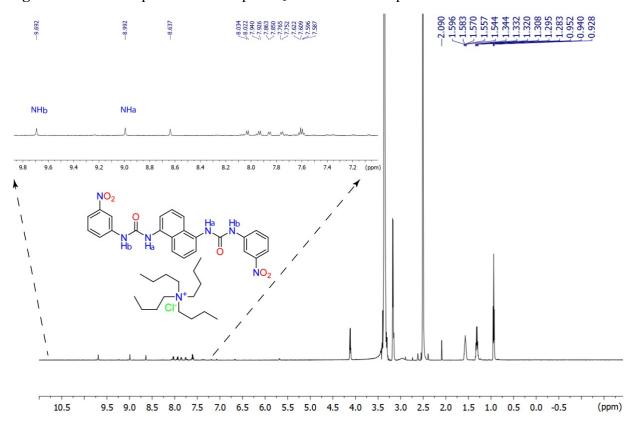



Figure S14: FT-IR spectrum of receptor L₃recorded in KBr pellet.

Figure S15: Integrated ${}^{1}\text{H-NMR}$ spectrum (full as well as expanded) of Chloride complex of receptor L_3 in DMSO-d₆ at 25°C.

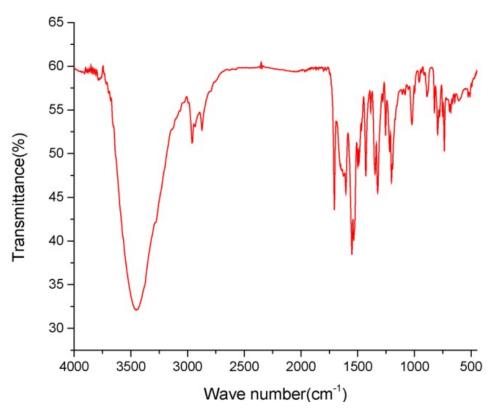
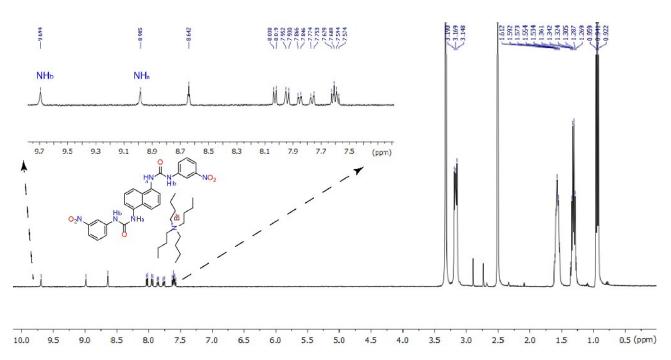



Figure S16: FT-IR spectrum of Chloride complex of receptor L₃ recorded in KBr pellet.

Figure S17: Integrated ¹H-NMR spectrum (full as well as expanded) of Bromide complex of receptor L₃ in DMSO-d₆ at 25°C.

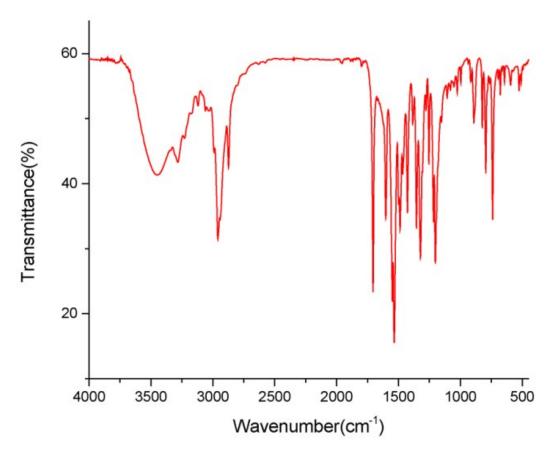
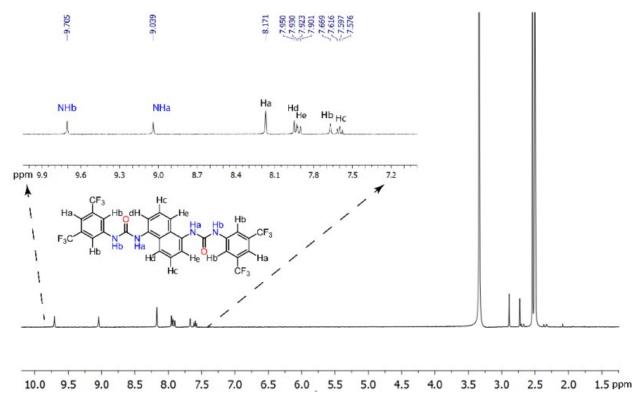



Figure S18: FT-IR spectrum of Bromide complex of receptor L_3 recorded in KBr pellet.

Figure S19: Integrated 1 H-NMR spectrum (full as well as expanded) and explanation of all hydrogen atoms of free dipodal bis urea receptor L_{4} in DMSO- d_{6} at 25°C.

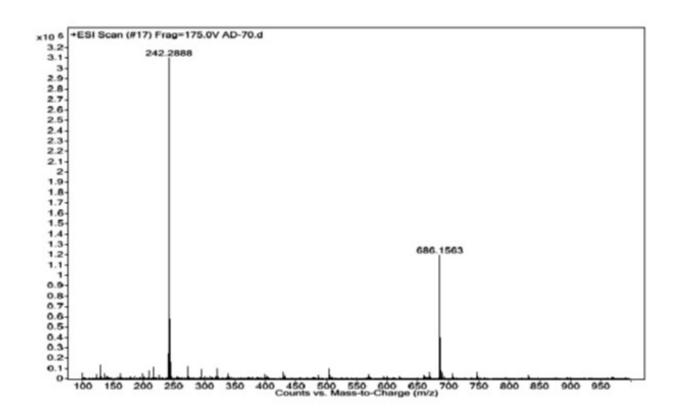


Figure S20: ESI-Mass spectrum of dipodal receptor L₄.

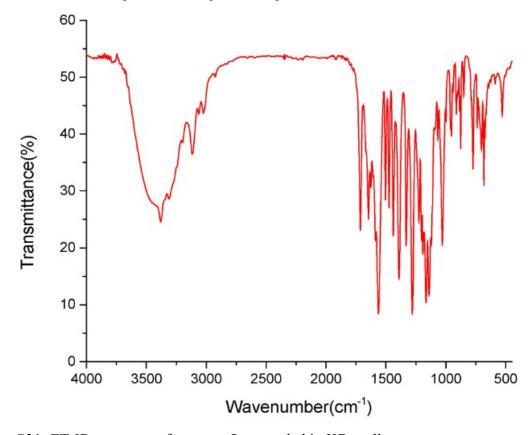
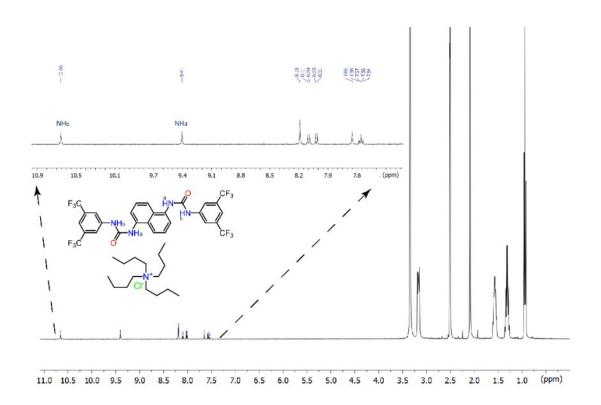
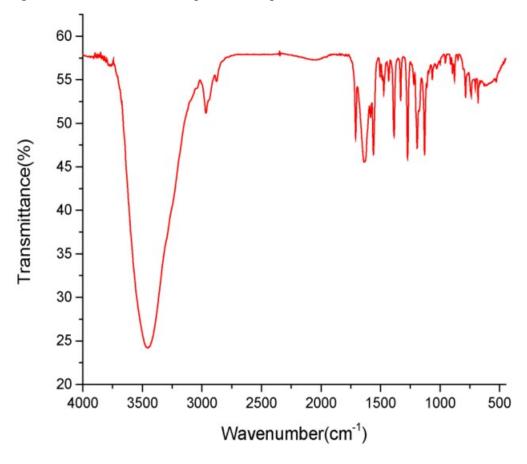
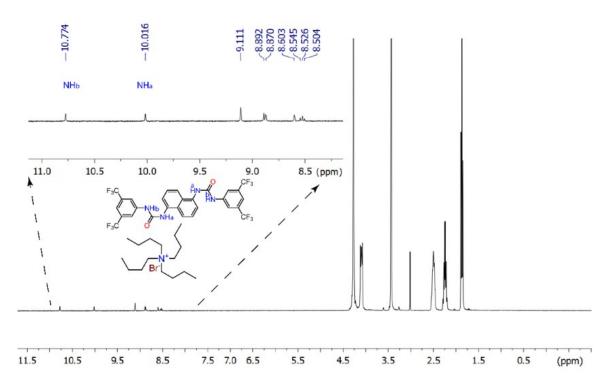
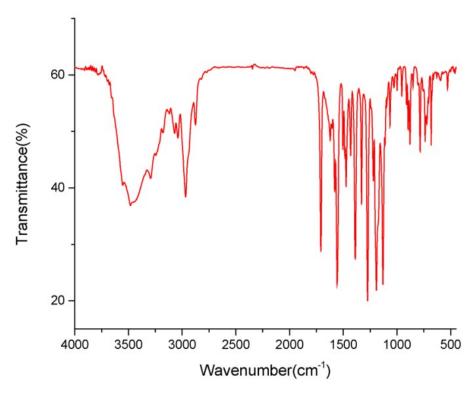
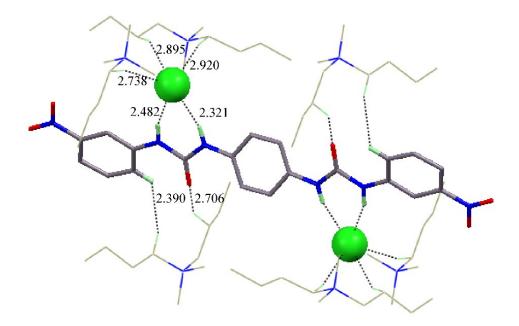
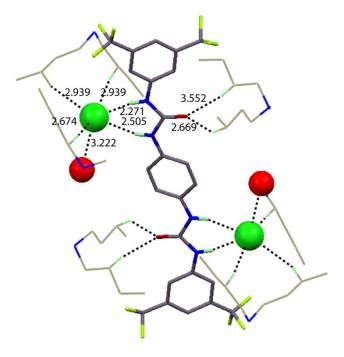



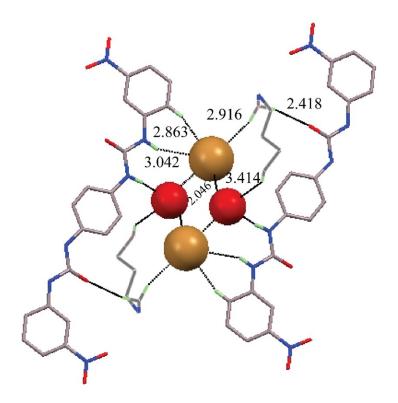
Figure S21: FT-IR spectrum of receptor L₄ recorded in KBr pellet.

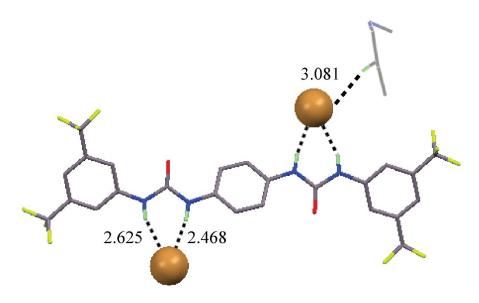
Figure S22: Integrated 1H -NMR spectrum (full as well as expanded) and explanation of all hydrogen atoms of Chloride complex of receptor L_4 in DMSO-d₆ at 25°C.

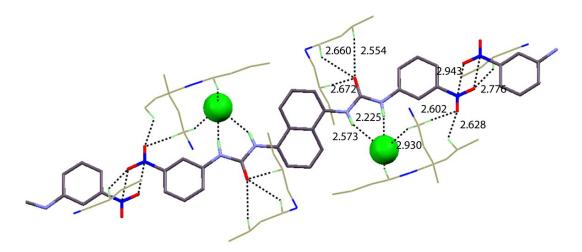




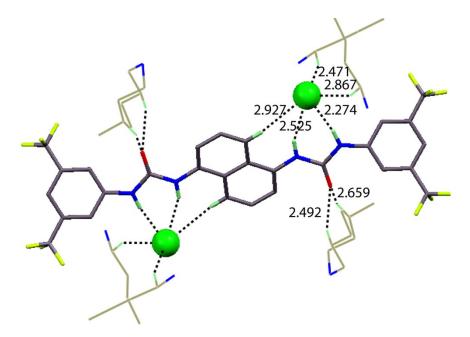

Figure S23: FT-IR spectrum of Bhloride complex of receptor L₄ recorded in KBr pellet.

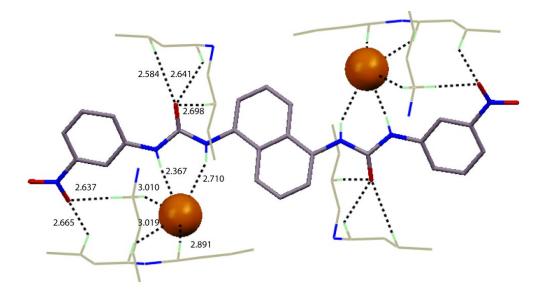

Figure S24: Integrated 1H -NMR spectrum (full as well as expanded) Bromide complex of receptor L_4 in DMSO- d_6 at 25°C.


Figure S25: FT-IR spectrum of Bromide complex of dipodal receptor L_4 recorded in KBr pellet.


Figure S26: X-ray structure analysis of complex **1a** showing coordination environment of anion as well as extra stabilization through C-H_{aliphatic}···O_{urea} and C-H_{aliphatic}··· $\pi_{aromatic}$ interaction with proper bond distances in Angstrom.


Figure S27: X-ray structure analysis of complex **2a** showing coordination environment of anion as well as extra stabilization through two C-H_{aliphatic}···O_{urea} with proper bond distances in Angstrom.


Figure S28: X-ray structure analysis of complex **1b** showing coordination environment of anion as well as extra stabilization through C-H_{aliphatic}···O_{urea}, C-H_{aliphatic}··· $\pi_{aromatic}$ C-H_{aliphatic}···O_{water} interaction with proper bond distances in Angstrom.


Figure S29: X-ray structure analysis of complex **2b** showing coordination environment of anion as well as extra stabilization through C- $H_{aliphatic}$ ···O_{urea}, with proper bond distances in Angstrom.

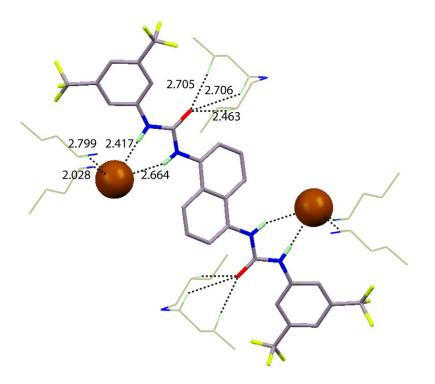
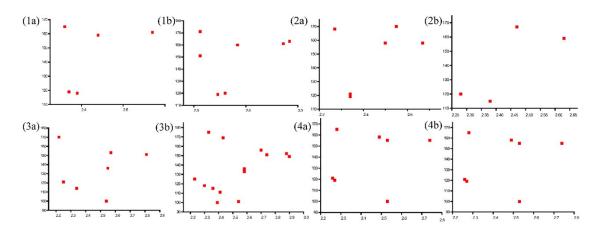
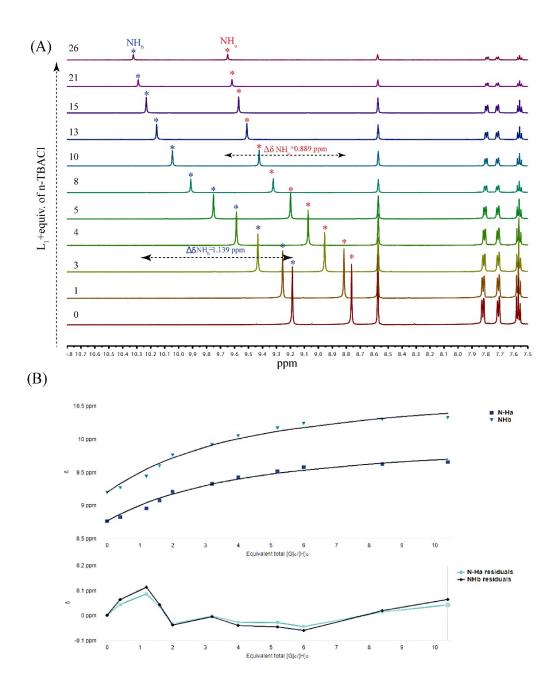
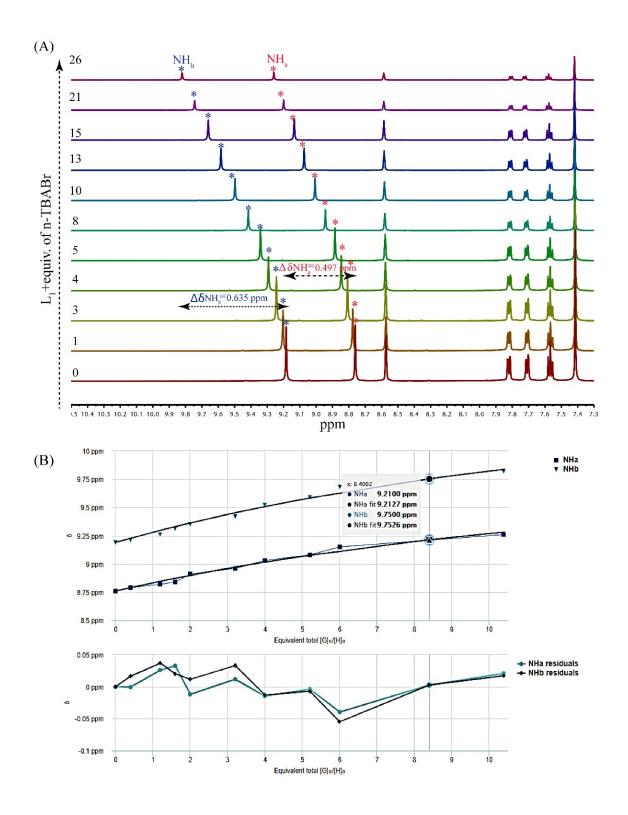

Figure S30: X-ray structure analysis of complex **3a** showing coordination environment of anion as well as extra stabilization through three C-H _{aliphatic}···O _{urea}, four C-H _{aliphatic}···O interaction from two different oxygen of substituted NO₂ group and one cross connected parallel C-H···O interaction between two NO₂ groups of each host site with proper bond distances in Angstrom.

Figure S31: X-ray structure analysis of complex **4a** showing coordination environment of anion as well as extra stabilization through two C-H _{aliphatic}···O _{urea} interaction with proper distances in Angstrom.

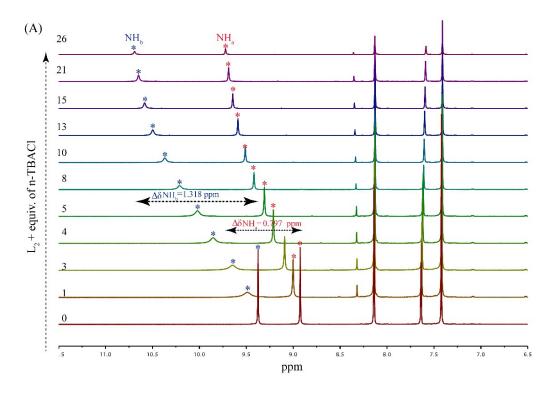
Figure S32: X-ray structure analysis of complex **3b** showing coordination environment of anion as well as extra stabilization through three C-H _{aliphatic}····O _{urea}, two C-H _{aliphatic}····O interaction involving one oxygen atom of substituted NO₂ group with proper bond distances in Angstrom.

Figure S33: X-ray structure analysis of complex **4b** showing coordination environment of anion as well as extra stabilization through three C-H_{aliphatic}···O _{urea} interaction with proper distances in Angstrom.


Figure S34: The scatter plot of N-H···A angle vs. H···A distance of the hydrogen bonds in the complexes (1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b).

Anion binding analysis by ${}^{1}H$ -NMR titrations — The ${}^{1}H$ NMR titration of the compounds was performed in DMSO- d_{6} solvent. The stock solutions of the compound (10 mM), tetrabutyl ammonium Chloride (TBACl; 2 M) and tetrabutyl ammonium Bromide (TBABr; 2 M) were prepared in DMSO- d_{6} . The TBACl and TBABr were used as the source of Cl⁻ and Br⁻ ion. The changes in chemical shift ($\Delta\delta$) value of the N-H protons of the urea-moieties were analysed. Significant extents of chemical shift ($\Delta\delta$) of both N-H protons were observed. All ${}^{1}H$ NMR spectra were stacked through the MestReNova software. Changes in chemical shift against the concentration of Cl⁻ as well as Br⁻ ions were fitted using BindFit v0.5 program. 1


Figure S35: (A) Expanded partial ${}^{1}H$ NMR spectra of L_{1} upon titration with n-TBACl in DMSO-d₆. (B) Showing the raw vs. fitted data (fitted to 1:1 NMR binding data) (top) and the corresponding residual plot (bottom). Binding constant (K) = 24.36 M⁻¹ (Ref. 2).

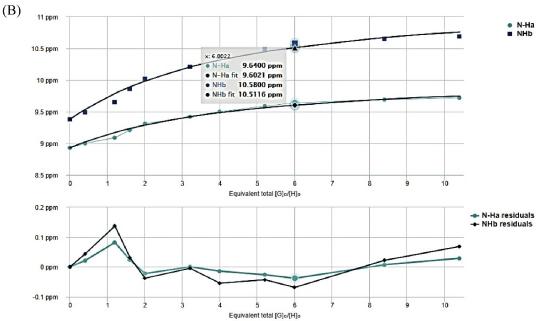

(http://app.supramolecular.org/bindfit/view/a04aa7b4-1b10-4ec4-b62a-004488bc153d)

Figure S36: (A) Expanded partial ¹H NMR spectra of L_1 upon titration with n-TBABr in DMSO-d₆. (B) Showing the raw vs. fitted data (fitted to 1:1 NMR binding data) (top) and the corresponding residual plot (bottom). Binding constant (K) = 2.85 M⁻¹ (Ref 2).

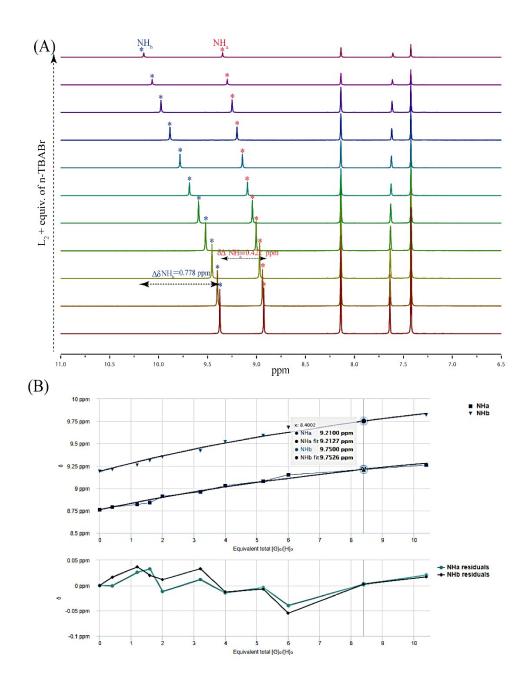

(http://app.supramolecular.org/bindfit/view/2f704e70-704c-4c4a-b586-861ec75747dc)

Figure S37: (A) Expanded partial 1 H NMR spectra of L_{2} upon titration with n-TBACl in DMSO-d₆. (B) Showing the raw vs. fitted data (fitted to 1:1 NMR binding data) (top) and the corresponding residual plot (bottom). Binding constant (K) = 24.43 M⁻¹ (Ref 2).

(http://app.supramolecular.org/bindfit/view/ee741007-4a26-4279-9860-6c57eaca46fb)

Figure S38: (A) Expanded partial 1H NMR spectra of L_2 upon titration with n-TBABr in DMSO-d₆. (B) Showing the raw vs. fitted data (fitted to 1:1 NMR binding data) (top) and the corresponding residual plot (bottom). Binding constant (K) = 2.72 M⁻¹ (Ref 2)

(http://app.supramolecular.org/bindfit/view/c24e85bf-7407-49e2-87cb-19270479e6fd))

Table S1: Hydrogen bonding distances (Å) and Bond angles (°) in the neutral anion-receptor complexes:

Complex	D-H···A	d(D···H)/Å	d(H···A)/Å	d(D···A)/Å	<d-h····a th="" °<=""><th>Symmetry codes</th></d-h····a>	Symmetry codes
	N2-H2N···Cl1	0.86	2.48	3.299(5)	159	1-
1a	N3-H3N···Cl1	0.86	2.32	3.159(5)	165	x,1/2+y,1/2-z 1- x,1/2+y,1/2-z
	C6-H6···O3	0.93	2.34	2.901(9)	119	X, 1/2 + y, 1/2 - Z X, Y, Z
	C10-H10···O3	0.93	2.38	2.934(9)	118	x, y, z
	C16-H16B···O1	0.97	2.61	3.515(1)	154	x, y, z
	C15-H15A···Cl1	0.97	2.92	3.861(7)	163	x, y, z
	C11-H11A···Cl1	0.97	2.74	3.669(7)	161	x, y, z
	C20-H20B···C11	0.97	2.89	3.748(8)	147	x, y, z
	N2-H2N···Br1	0.86	2.06	3.838(6)	151	-x,1-y,-z
	N3-H3N···O4	0.86	2.05	2.898(8)	170	1-x, 1-y, -z
11.	C4-H4···Br1	0.93	2.86	3.753(8)	161	x,y,z
1b	C6-H6···O3	0.93	2.23	2.798(8)	119	x,y,z
	C10-H10···O3	0.93	2.29	2.867(9)	119	x,y,z
	C18-H18A···O3	0.97	2.42	3.348(10)	161	x,-1+y,z
	O4-H4A···Br1	0.85	2.70	3.413(7)	143	x,y,z
	O4-H4B···Br1	0.85	2.37	3.206(6)	167	1-x, 1-y, -z
	C18-H18B···Br1	0.97	2.92	3.851(10)	162	x,y,z
	N1-H1···Cl1	0.86	2.27	3.115(6)	168	x,y,z
	N2-H2···Cl1	0.86	2.50	3.317(6)	158	x,y,z
2	C8-H8···O1	0.93	2.34	2.908(7)	119	x,y,z
2a	C12-H12···O1	0.93	2.34	2.929(7)	121	x,y,z
	C14-H14B···O1	0.97	2.55	3.510(8)	170	x,1-y,1/2+z
	C24-H24A···Cl1	0.97	2.67	3.589(6)	158	x,y,z
		0.06	2 (2	2 111(1)	1.50	
24	N1-H1N···Br1	0.86	2.63	3.441(4)	159	x,y,z
2b	N2-H2N···Br1	0.86	2.47	3.312(4)	167	x,y,z
	C6-H6···O1	0.93	2.28	2.855(6)	120	x,y,z
	C11-H11···O1	0.93	2.38	2.894(6)	115	x,y,z
	N1-H1N···Cl1	0.86	2.57	3.360(2)	153	x,y,z
	N2-H2N···Cl1	0.86	2.22	3.076(2)	170	x,y,z
3a	C4-H4···O1	0.93	2.25	2.850(3)	121	x,y,z
	C9-H9···O1	0.93	2.34	2.854(3)	114	x,y,z
	C11-H11···N1	0.93	2.54	2.850(3)	100	1-x,1-y,1-z
	C14-H14A···O1	0.97	2.55	3.318(4)	136	x,y,z
	C20-H20B···Cl1	0.97	2.81	3.691(4)	152	x,-1+y,z
	N2-H2N···Br1	0.86	2.36	2.367(4)	173	1+x,1+y,z
	-					*

	N3-H3N··· Br1	0.86	2.70	2.709(5)	154	1+x, 1+y, z
3b	C16-H16···Br1	0.97	2.89	3.767(3)	150	1+x, y, z
	C22-H22B···O3	0.97	2.58	2.584(2)	134	x, y, z
	C22-H22A···O2	0.97	2.66	3.334(5)	126	x, y, z
	C23-H23A···O1	0.97	2.66	3.534(3)	149	x, y, z
	C24-H24A···O3	0.97	2.64	3.394(4)	134	x, y, z
	C27-H27A···O3	0.97	2.69	3.666(4)	175	x, y, z
	C28-H28A···O2	0.97	2.63	3.522(4)	151	x, y, z
4a	N1-H1N···Cl1	0.86	2.28	3.115(4)	165	x,y,z
	N2-H2N···Cl1	0.86	2.53	3.326(4)	155	x,y,z
	C7-H7···O1	0.93	2.27	2.835(6)	119	x,y,z
	C11-H11···O1	0.93	2.26	2.852(6)	121	x,y,z
	C13-H13···N2	0.93	2.53	2.841(5)	100	-x,1-y,-z
	C17-H17A···O1	0.97	2.49	3.414(6)	158	x,1-y,1/2+z
	C22-H22B···Cl1	0.97	2.74	3.642(5)	155	x,y,z
	N10-H10N···Br1	0.86	2.67	3.472(4)	157	x,y,z
	N17-H17N···Br1	0.86	2.42	3.258(4)	166	x,y,z
	C5-H5···O25	0.93	2.29	2.856(7)	119	x,y,z
	C24-H24···O25	0.93	2.26	2.851(8)	121	x,y,z
4b	C28-H28B···O25	0.97	2.47	3.390(9)	159	x,1-y,1/2+z
	C29-H29A···Br(1)	0.97	2.93	3.803(6)	151	x,1+y,z
	C35-H35A···Br(1)	0.97	2.80	3.702(6)	155	x,y,z
	C57-H57···N10	0.93	2.53	2.841(7)	100	x,y,z

Table S2: Contact contributions from the d_{norm} surface areas of dipodal segments in free receptors and in anion complexes.

Bond	1a	1b	2a	2b	3a	3b	4a	4b
CH	21.4	16.9	11.8	9.5	20.3	19.9	15.2	14.7
OH	19.6	27.6	10.5	3.4	20.5	20.3	116	11.8
FH	0	0	24.8	36.4	0	0	24.6	24
NH	4	4.6	2.4	1.7	3.9	3.9	2.4	2.4
Н…Н	37.8	33.6	21.4	22.3	41.2	41.2	25.1	25
Cl···H	12.7	0	19.2	0	11.2	0	8.5	0
BrH	0	13.4	0	12.7	0	12.4	0	9.3

References:

- 1. D. Brynn Hibbert and P. Thordarson, Chem Commun, 2016, **52**, 12792-12805.
- 2. http://supramolecular.org.