Supporting Information

Electro-deposition of Nickel-iron Nanoparticles on Flower-like MnCo₂O₄ Nanowires as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting

Yu Lin^a , Zhi Yang^a, Duanlin Cao^a, Yaqiong Gong^{ab*}

a. School of Chemical Engineering and Technology, North University of China, Taiyuan 030051,

b. State Key Laboratory of Coordination Chemistry, Nanjing, Jiangsu 210046

E-mail: gyq@nuc.edu.cn

Fig. S1. XRD patterns of (a) NiFe/NFF (b) Co₃O₄/NFF and NiFe-Co₃O₄/NFF (c) -0.7V NiFe-MnCo₂O₄/NFF, -0.8V NiFe-MnCo₂O₄/NFF, and -0.9V NiFe-MnCo₂O₄/NFF (d) -1.1V NiFe-MnCo₂O₄/NFF and -1.2V NiFe-MnCo₂O₄/NFF.

Fig. S2. SEM images of (a,b) NFF (c,d) NiFe/NFF (e,f) NiFe-Co₃O₄/NFF at different magnifications.

Fig. S3. Elemental mapping images of MnCo₂O₄/NFF nanoflower.

Fig. S4. HR-TEM images of NiFe-MnCo₂O₄/NFF.

Fig. S5. OER (a) Overpotentials required for 100 mA cm⁻². (b) Current density at $\eta = 500 \text{ mV}$ for the different catalysts. (c) LSV curve for NiFe-MnCo₂O₄/NFF in 30 wt% KOH. (d) LSV curves for -0.7V NiFe-MnCo₂O₄/NFF, -0.8V NiFe-MnCo₂O₄/NFF, -0.9V NiFe-MnCo₂O₄/NFF, -1.0V NiFe-MnCo₂O₄/NFF, -1.1V NiFe-MnCo₂O₄/NFF, and -1.2V NiFe-MnCo₂O₄/NFF. (e) Capacitive currents of the catalysts with a scan rate of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV s⁻¹. (f) Current density differences plotted against scan rates under a non-Faradaic range.

Fig. S6. The cyclic voltammograms (CVs) measurements for OER with various scan rates from 10 to 100 mV s⁻¹ for (a) NiFe/NFF (b) Co_3O_4/NFF (c) MnCo₂O₄/NFF (d) NiFe-Co₃O₄/NFF (e) NiFe-MnCo₂O₄/NFF.

Fig. S7. The cyclic voltammograms (CVs) measurements for OER with various scan rates from 10 to 100 mV s⁻¹ for (a) -0.7V NiFe-MnCo₂O₄/NFF (b) -0.8V NiFe-MnCo₂O₄/NFF (c) -0.9V NiFe-MnCo₂O₄/NFF (d) -1.0V NiFe-MnCo₂O₄/NFF (e) -1.1V NiFe-MnCo₂O₄/NFF (f) -1.2V NiFe-MnCo₂O₄/NFF

Fig. S8. The equivalent circuit diagram used for analysis of the EIS curves measured for the (a) OER and the (b) HER.

Fig. S9. EIS measured of as-deposited NiFe-MnCo₂O₄/NFF at varying depositing potential -0.7 V \sim -1.2 V vs Ag/AgCl (at an overpotential of 300 mV in 1M KOH).

Fig. S10. Nyquist plots of NiFe/NFF, Co_3O_4/NFF , $MnCo_2O_4/NFF$, NiFe- Co_3O_4/NFF , and NiFe-MnCo_2O_4/NFF for OER tested at (a) 1.43, (b) 1.48, (c) 1.53, and (d) 1.58 V (vs RHE), respectively. The inset shows the enlarged EIS activity of the NiFe-Co_3O_4/NFF, and NiFe-MnCo_2O_4/NFF electrodes.

Fig. S11. HER (a) Overpotentials required for 100 mA cm⁻². (b) Current density at $\eta = 400$ mV for the different catalysts. (c) LSV curves for -0.7V NiFe-MnCo₂O₄/NFF, -0.8V NiFe-MnCo₂O₄/NFF, -0.9V NiFe-MnCo₂O₄/NFF, -1.0V NiFe-MnCo₂O₄/NFF, -1.1V NiFe-MnCo₂O₄/NFF, and -1.2V NiFe-MnCo₂O₄/NFF with a scan rate of 5 mV s⁻¹ for the HER. (d) Capacitive currents of the catalysts with a scan rate of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mV s⁻¹. (e) Current density differences plotted against scan rates under a non-Faradaic range. (f) Current density differences plotted against scan rates under a non-Faradaic range.

Fig. S12. Cyclic voltammograms (CVs) measurements for HER of (a) NiFe/NFF (b) Co_3O_4/NFF (c) MnCo₂O₄/NFF (d) NiFe-Co₃O₄/NFF (e) NiFe-MnCo₂O₄/NFF with different scan rates (10-100 mV s⁻¹) in the region from -1.08 to -1.02 vs RHE.

Fig. S13. Cyclic voltammograms (CVs) measurements for HER of (a) -0.7V NiFe-MnCo₂O₄/NFF (b) -0.8V NiFe-MnCo₂O₄/NFF (c) -0.9V NiFe-MnCo₂O₄/NFF (d) -1.0V NiFe-MnCo₂O₄/NFF (e) -1.1V NiFe-MnCo₂O₄/NFF (f) -1.2V NiFe-MnCo₂O₄/NFF with different scan rates (10-100 mV s⁻¹) in the region from -1.08 to -1.02 vs RHE.

Fig. S14. Nyquist plots of NiFe/NFF, Co₃O₄/NFF, MnCo₂O₄/NFF, NiFe-Co₃O₄/NFF, and NiFe-MnCo₂O₄/NFF for HER tested at (a) -1.2, (b) -1.25, (c) -1.3, and (d) -1.35 V versus RHE, respectively.

Fig. S15. (a) The polarization curves of NiFe/NFF, Co₃O₄/NFF, MnCo₂O₄/NFF, and NiFe-Co₃O₄/NFF catalysts in a two-electrode configuration. (b) The polarization curves of -0.7V NiFe-MnCo₂O₄/NFF, -0.8V NiFe-MnCo₂O₄/NFF, -0.9V NiFe-MnCo₂O₄/NFF, -1.0V NiFe-MnCo₂O₄/NFF, -1.1V NiFe-MnCo₂O₄/NFF, and -1.2V NiFe-MnCo₂O₄/NFF catalysts in a two-electrode configuration.

Fig. S16. XRD patterns of post-OER and post-HER of NiFe-MnCo₂O₄/NFF electrocatalysts.

Fig. S17. The morphologies of NiFe-MnCo₂O₄/NFF after long-term (a and a') OER and (b and b') HER electrolysis.

Fig. S18. The XPS spectra of NiFe-MnCo₂O₄/NFF (cathode) after overall water splitting stability test (a) survey (b) Ni 2p (c) Fe 2p (d) Mn 2p (e) Co 2p (f) O 1s regions.

Composites	Atomic% Ni	Atomic% Fe	Element contant ratio of
			Ni : Fe (%)
MnCo ₂ O ₄ /NFF	87.624%	0.614%	142.71%
NiFe-MnCo ₂ O ₄ /NFF	88.199%	3.009%	29.31%

Table S1 The ICP-AES analysis of the content of Ni and Fe for $MnCo_2O_4/NFF$ and NiFe-MnCo₂O₄/NFF.

Electrode	Electrolyte	η (mV)	Reference	
-1.0V	1 M KOH	272 mV@ 100 mAcm ⁻²	This work	
NiFe-MnCo ₂ O ₄ /NFF				
NiFe/NFF	1 M KOH	349 mV@ 100 mAcm ⁻²	This work	
Ru ₂ O/NFF	1 M KOH	387 mV@ 100 mAcm ⁻²	This work	
Ir ₂ O/NFF	1 M KOH	457 mV@100 mA cm ⁻²	This work	
NiFe/NF	1 M KOH	191 mV@ 10 mAcm ⁻²	Electrochimica Acta. 2019, 299,	
			567-574	
Ni-Fe LDH hollow	1 M KOH	280 mV@ 10 mAcm ⁻²	Angew Chem Int Edit. 2018, 57,	
Nanoprisms/NF			172-176.	
Fe-Ni(OH) ₂ /NF	1 M KOH	267 mV@ 10 mAcm ⁻²	Chemical Communications 2018,	
			54, 463-466.	
FeNi LDH/NF	1 M KOH	232 mV@ 10 mAcm ⁻²	Angew Chem Int Edit. 2014, 53,	
			7584-7588-466.	
NiFe LDH	1 M KOH	280 mV@ 10 mAcm ⁻²	J Am Chem Soc. 2014, 136,	
			13118-21.	
NiFeV LDHs	1 M KOH	192 mV@ 10 mAcm ⁻²	Advanced Energy Materials 2018,	
			8(15), 1703341.	
NiFe foam	1 M KOH	240 mV@ 10 mAcm ⁻²	Int J Hydrogen Energ 2015, 40,	
			13258-63.	
$Co_1Mn_1CH^*$	1 M KOH	322 mV@50 mA cm ⁻²	J. Am. Chem. Soc. 2017, 139,	
			8320-8328.	
NiFe/NiCo ₂ O ₄ /NF	1 M KOH	320 mV@600 mA cm ⁻²	Adv. Funct. Mater. 2016, 26,	
			3515-3523.	
NiFe-LDH/CNT	1 M KOH	250 mV@ 10 mAcm ⁻²	J. Am. Chem. Soc. 2013, 135, 8452	
NiFe- rGO-LDH	1 M KOH	210 mV@ 10 mAcm ⁻²	Angew. Chem. 2014 , 126 , 7714 .	
NiFe-NS	1 M KOH	300 mV@ 10 mAcm ⁻²	Nat. Mater. 2014, 5, 4477.	

Table S2 Comparison of OER properties for electrocatalysts of catalytic materials

Electrode	Electrolyte	η (mV)	Reference
NiFe-MnCo ₂ O ₄ /NFF	1 М КОН	98 mV@ 10 mAcm ⁻²	This work
PtC/NFF	1 М КОН	18 mV@ 10 mAcm ⁻²	This work
NiFe/NiCo ₂ O ₄ /NF	1 M KOH	105 mV@10 mA cm ⁻²	Adv. Funct. Mater. 2016,
			26, 3515-3523.
47.6% Pt/C	1 М КОН	40 mV@10 mA cm ⁻²	J. Mater. Chem. A 2015, 3, 20080.
Mn-CoP	1.0 M KOH	95 mV@ 10 mAcm ⁻²	<i>Catal. Sci. Technol.</i> 2018 , 8, 4407
Co1Mn1CH/NF	1 М КОН	180 mV@ 10 mAcm ⁻²	J. Am. Chem. Soc 2017 139, 8320-8328.
NiFe LDH/Cu foam	1 М КОН	192 mV@ 100 mAcm ⁻²	Environ. Sci. 2017 , 10, 1820.
NiCo ₂ O ₄ /NiFe LDH	1 М КОН	192 mV@ 10 mAcm ⁻²	ACS Appl. Mater. Interfaces. 2017 , 9, 1488.
NCNT/Ni-NiFe ₂ O ₄ /Ni foam	1 М КОН	140 mV@ 10 mAcm ⁻²	<i>Catal. Sci. Technol.</i> , 2019 , 9, 1595-1601
NiFe LDH/NF	1 M KOH	210 mV@ 10 mAcm ⁻²	<i>Science</i> , 2014 , 345, 1593.
P-Co ₃ O ₄	1 М КОН	120 mV@ 10 mAcm ⁻²	<i>Energ. Environ. Sci.</i> 2017 , 10, 2563-2569
NiCo ₂ O ₄ *	1 M KOH	110 mV@ 10 mAcm ⁻²	Angew. Chem. Int. Ed. 2016 , 55, 6290.

 Table S3
 Comparison of HER properties for electrocatalysts of catalytic materials

Electrode	Electrolyte	η (mV)	Reference
NiFe-MnCo ₂ O ₄ /NFF	1 M KOH	1.49 V@ 10 mAcm ⁻²	This work
Co ₁ Mn ₁ CH	1 M KOH	1.68 V@ 10 mAcm ⁻²	J. Am. Chem. Soc 2017
			139, 8320-8328.
NiFe LDH/NF	1 M KOH	1.70 V@ 10 mAcm ⁻²	Science, 2014 , 345,
			1593-1596.
NiCo2O4 hollow	1 M KOH	1.65 V@ 10 mAcm ⁻²	Angew. Chem., Int. Ed.,
microcuboids			2016 , 55, 1-6.
CoMnO@CN	1 M KOH	~1.5 V@ 10 mAcm ⁻²	J. Am. Chem. Soc. 2015,
			13, 14305.
Ni ₃ FeN/r-GO	1 M KOH	1.60 V@ 10 mAcm ⁻²	ACS Nano. 2018, 12,
			245
Co ₅ Mo ₁ Composite	1 M KOH	1.68 V@ 10 mAcm ⁻²	Nano Energy, 2018 , 45,
@Ni foam			448-455.
Ni ₂ Fe ₁ -O	1 M KOH	1.64 V@ 10 mAcm ⁻²	Adv. Energy Mater.
			2017 , 8, 1701347.
Cu@CoFe LDH	1 M KOH	1.68 V@ 10 mAcm ⁻²	Angew. Chem. Int. Ed.
			2018 , 130, 178-182.
NiFe-LDH/NiCo ₂ O ₄	1 M KOH	1.60V@ 10 mA cm ⁻²	ACS Appl. Mater.
			Interfaces. 2017, 9,
			15364-15372.
Mo ₅₁ Ni ₄₀ Fe ₉	1 M KOH	1.55V@ 10 mA cm ⁻²	ACS Catal. 2019, 9,
			1013-1018.
NiS/NiS ₂	1 M KOH	$1.62V@ 10 \text{ mA cm}^{-2}$	J. Mater. Chem. A, 2018,
			6, 8233

Table S4 Comparison of overall water splitting performance for the recently reported catalysts and ours.