Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Tilts and shifts in molecular perovskites SUPPLEMENTARY INFORMATION

Hanna L. B. Boström a,b*

 a Department of Chemistry, Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden.

^b Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.

*To whom correspondence should be addressed; E-mail: hanna.bostrom@kemi.uu.se

Table S1 contains the data generated from the decompositions of a large number of molecular perovskites. For each entry, the chemical formula, space group, active distortion modes and a sensible set of primary order parameters are given. The number of possible order parameter generally increases as the symmetry decreases and in one case,¹ the number of possibilities exceeded the upper limit for what ISODISTORT² could provide. Another nontrivial example is the low-temperature phase of $[CH_3NH_3]Co(HCOO)_3$, where the of primary order parameters are R_5^- , M_2^+ and C, where C is either member of the set $\{\Gamma_{4,5}^+, R_{2,3}^-, X_{1,4}^-, M_5^+\}$. It should be remembered that an active mode may not be sufficiently strongly activated to be visible by inspection. For that reason, the (up to) three strongest distortion modes are highlighted in bold. Notation such as $M_{2,3}^+$ indicates that either M_2^+ or M_3^+ may be considered as a primary order parameter—this also applies to irreps separated by strokes, *e.g.* R_5^-/X_5^- . Distortion modes comprising propagation vector components other than 0 and $\frac{1}{2}$ are provided separately in Table S2.

Table S1: Structural details of the molecular perovskites considered here. Structures are at ambient conditions unless otherwise stated. Abbreviations are as follows: PPN = bis(triphenylphosphine)iminium, DAB = dabconium, TAz = triazolium, FA = formamidinium, MHy = methylhydrazinium, HIm = imidazolium, Ace = acetamidinium, Aze = azetidinium, Et = ethyl, Pr = propyl, cPr = cyclopropyl, Bu = butyl, Bn = benzyl. M refers to several cations. $C^* \in {\Gamma_4^+, \Gamma_5^+, R_2^-, R_3^-, X_1^-, X_4^-, M_5^+}$.

s. g.	R_5^-	M_2^+	Γ_4^+	X_1^-	X_5^-	M_5^+	X_5^+	M_2^-	Γ_5^+	POPs	compound	condition	ref.
P1	x	x	x	х	х	х	x	x	х	-	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Fe}(\mathrm{HCOO})_3$	$7.9\mathrm{GPa}$	1
P1	x		x						x	$R_5^- \Gamma_4^-$	$[MHy]Mn(HCOO)_3$	$100\mathrm{K}$	3
Cc	x		x						х	$R_5^- \Gamma_4^-$	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Mn}(\mathrm{HCOO})_3$	$100\mathrm{K}$	4
$P2_1/c$	x	x	x	х	x	x			х	$R_5^- M_2^+ C^*$	$[\rm CH_3\rm NH_3]\rm Co(\rm HCOO)_3$	$45\mathrm{K}$	5
$P2_1/c$	x	x	x	х	x	х	x		х	$R_5^- X_5^+$	$[HIm]Mn(HCOO)_3$		6
$P2_1/c$	x		x				x	x	х	$R_{5}^{-} X_{5}^{+}$	$[Ace]Mn(HCOO)_3$	$250\mathrm{K}$	7
$P2_1/c$	x	x	x		x		x	x	х	$R_5^- M_2^-/X_5^+$	$[Aze]Mn(HCOO)_3$	$180\mathrm{K}$	8
C2/c	x		x						х	R_5^-	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Cu}(\mathrm{HCOO})_3$		9
C2/c	x		x						\mathbf{x}	R_5^-	$\rm KM(\rm HCOO)_3$		$10,\!11$
C2/c	x		x						x	R_5^-	$\rm RbMn(HCOO)_3$		12
C2/c	x		x						х	R_5^-	$[FA]Mn(HCOO)_3$	$110\mathrm{K}$	13
$Pna2_1$	x	х			x		x		х	$R_5^-/X_5^- X_5^+ M_{2,3}^+$	$[\mathrm{C(NH_2)_3}]\mathrm{Cu(HCOO)_3}$		14
$Pna2_1$	x	x			x		x		х	$R_5^-/X_5^- X_5^+ M_{2,3}^+$	$[\rm NH_2\rm NH_3]\rm Mn(\rm HCOO)_3$	$110\mathrm{K}$	15
$Pna2_1$	x	\mathbf{x}			x		x		x	$R_5^-/X_5^- X_5^+ M_{2,3}^+$	$[{\rm EtNH_3}]{\rm M}({\rm HCOO})_3$		8,16
$Pna2_1$	x	\mathbf{x}			\mathbf{x}		x		x	$R_5^-/X_5^- X_5^+ M_{2,3}^+$	$[NH_4]Cd(HCOO)_3$		11
Pnna	x						x		x	$R_5^- X_5^+$	$[C(NH_2)_3]M(HCOO)_3$		$14,\!17$
Pnma	x	x			х				х	$R_5^- M_2^+$	$[CH_3NH_3]M(HCOO)_3$		8,18
Pnma	x	\mathbf{x}			x				x	$R_5^- M_2^+$	$[\rm NH_2\rm NH_3]\rm Mn(\rm HCOO)_3$	$400\mathrm{K}$	15

ಲು

s. g.	R_5^-	M_2^+	Γ_4^+	X_1^-	X_5^-	M_5^+	X_5^+	M_2^-	Γ_5^+	POPs	compound	condition	ref.
Pnma	x	x			х				x	$R_5^- M_2^+$	$[Aze]Mn(HCOO)_3$		8
Pnma	x	\mathbf{x}			х				x	$R_5^- M_2^+$	$[N(CH_3)_4]Mn(HCOO)_3$		19?
Imma	x								x	R_5^-	$[EtNH_3]Mg(HCOO)_3$	$430\mathrm{K}$	16
Imma	x								x	R_5^-	$[Ace]Mn(HCOO)_3$	$330\mathrm{K}$	7
$P\bar{4}2_1m$		x								$M_2^+ \Gamma_5^-$	$[HIm]Mn(HCOO)_3$	$453\mathrm{K}$	6
$R\bar{3}$	x		x						x	$R_5^- \Gamma_4^+ / R_2^- / R_4^-$	$[EtNH_3]Mg(HCOO)_3$	$378\mathrm{K}$	16
R3c	x								x	$R_5^- \Gamma_4^-$	$[MHy]Mn(HCOO)_3$	$230\mathrm{K}$	3
$R\bar{3}c$	x								x	R_5^-	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{M}(\mathrm{HCOO})_3$		20
$R\bar{3}c$	x								x	R_5^-	$[\mathrm{C(NH_2)_3}]\mathrm{Mn(HCOO)_3}$	$1.61\mathrm{GPa}$	21
$R\bar{3}c$	x								x	R_5^-	$[\mathrm{C(NH_2)_3}]\mathrm{Cd(HCOO)_3}$		22
$R\bar{3}c$	x								x	R_5^-	$[FA]Mn(HCOO)_3$	$355\mathrm{K}$	13
$R\bar{3}c$	x								x	R_5^-	$[MHy]Mn(HCOO)_3$	$330\mathrm{K}$	3
$Im\bar{3}$		x								M_2^+	$[NH_4]Mn(HCOO)_3$		19
$P\bar{1}$	x	x	x	х	х	х			x	$\Lambda_1 \ \mathrm{M}_2^+$	$[DAB]Mn(H_2POO)_3$	$120\mathrm{K}$	23
$P\bar{1}$	x		x						x	Λ_3	$[\mathrm{C(NH_2)_3}]\mathrm{Mn(H_2POO)_3}$		23
C2/m	x		x						x	R_5^-	$[\mathrm{C(NH_2)_3}]\mathrm{Mn(H_2POO)_3}$		23
$P2_1/c$	x		x				x	\mathbf{x}	x	$R_5^- M_2^- / X_5^+$	$[TAz]Mn(H_2POO)_3$		23
$P2_1/c$	x		x				x	х	\mathbf{x}	$R_5^- M_2^- / X_5^+$	$[FA]Mn(H_2POO)_3$	$115\mathrm{K}$	23
$P2_1/c$		\mathbf{x}	x			х	x		x	$S_3 B_1$	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Mn}(\mathrm{H}_2\mathrm{POO})_3$		24
$P2_1/c$	x		x				x		x	$X_5^+ S_2$	$[HIm]Mn(H_2POO)_3$		23
$P2_1/c$	x	\mathbf{x}	x		х	x			х	$R_5^- M_2^+$	$V(H_2POO)_3$		25
$P2_1/c$		\mathbf{x}	x			x	x		х	X_5^+	$M(H_2POO)_3$		25
C2/c	x		x						х	R_5^-	$Al(H_2POO)_3$		25

s. g.	R_5^-	M_2^+	Γ_4^+	X_1^-	X_5^-	M_5^+	X_5^+	M_2^-	Γ_5^+	POPs	compound	$\operatorname{condition}$	ref.
C2/c	x		x						\mathbf{x}	R_5^-	$[FA]Mn(H_2POO)_3$		23
$R\bar{3}$	x		x						x	$\Lambda_1 \ \mathrm{R}_5^-$	$[DAB]Mn(H_2POO)_3$		23
$P2_{1}/c$	x		x				x	х	х	Λ_3	$[\mathrm{Bu}_3\mathrm{NCH}_3]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_2]_3$	$295\mathrm{K}$	26
$P2_1/c$	x		x				x	\mathbf{x}	x	$R_5^- M_2^- / X_5^+$	$[\mathrm{Et}_3\mathrm{PCH}_2\mathrm{CHCH}_2]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_2]_3$		27
$P2_1/c$	x		x				x	\mathbf{x}	х	$R_5^- M_2^- / X_5^+$	$[{\rm SPh}_3]{\rm Mn}[{\rm N}({\rm CN})_2]_3$		28
$P2_1/c$	x		x				x	\mathbf{x}	х	$R_5^- M_2^- / X_5^+$	$[\mathrm{Et}_{3}\mathrm{P}(\mathrm{CH}_{2})_{2}\mathrm{Cl}]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_{2}]_{3}$		29
$P2_1/c$	x		x				x	\mathbf{x}	х	$R_5^- X_5^+$	$[\mathrm{Et}_{3}\mathrm{PCH}_{2}\mathrm{OCH}_{3}]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_{2}]_{3}$	$173\mathrm{K}$	27
$P2_1/c$	x		x				x	\mathbf{x}	х	$R_5^- X_5^+$	$[\rm Et_3PPr]Cd[N(\rm CN)_2]_3$	$223\mathrm{K}$	30
$P2_1/c$	x	х	x		х		x	\mathbf{x}	х	$R_5^- M_2^- / X_5^+$	$[\mathrm{NPr}_4]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_2]_3$	$3.3\mathrm{GPa}$	31
$P2_1/c$	x	x	x		х		x	\mathbf{x}	х	$R_5^- M_2^- / X_5^+$	$[\mathrm{NPr}_4]\mathrm{Cd}[\mathrm{N}(\mathrm{CN})_2]_3$	$100\mathrm{K}$	32
C2/c	x		x						х	R_5^-	$[\mathrm{Et}_3\mathrm{P}(\mathrm{CH}_2)_2\mathrm{F}]\mathrm{Cd}[\mathrm{N}(\mathrm{CN})_2]_3$		33
C2/c	x		x						х	R_5^-	$[Et_3P(CH_2)_2F]Mn[N(CN)_2]_3$		29
$P2_{1}2_{1}2_{1}$	x	х			x		x	\mathbf{x}	x	$R_5^- X_5^- M_2^-$	$[\rm Et_3 PPr] M [N(\rm CN)_2]_3$		$27,\!30$
$P2_{1}2_{1}2_{1}$	x	x			\mathbf{x}		x	\mathbf{x}	х	$R_5^- X_5^- M_2^-$	$[Et_3PCH_2OCH_3]Mn[N(CN)_2]_3$		27
$P2_{1}2_{1}2_{1}$	x	х			x		x	\mathbf{x}	х	$R_5^- X_5^- M_2^-$	$[Et_3P(CH_2)_2Cl]Cd[N(CN)_2]_3$		33
Pnna	x			х			x	x	х	$\Sigma_3 \ \mathrm{R}_5^- \ \mathrm{S}_1$	$[\mathrm{NPr}_4]\mathrm{M}[\mathrm{N}(\mathrm{CN})_2]_3$		$34,\!35$
Pbcn	x	x			х		x	\mathbf{x}		$R_5^- M_2^-$	$[\mathrm{NPr}_4]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_2]_3$	$0.5\mathrm{GPa}$	31
Pbcn	х	x			\mathbf{x}		x	\mathbf{x}		$R_5^- M_2^-$	$[Et_3P(CH_2)_2Cl]Cd[N(CN)_2]_3$	$333\mathrm{K}$	33
Pbcn	x	х			х		x	\mathbf{x}		$R_5^- M_2^-$	$[Et_3P(CH_2)_2F]Mn[N(CN)_2]_3$	$347\mathrm{K}$	29
Pnma	х	x			х				х	$R_5^- M_2^+$	$[\rm Et_3NBn]Fe[N(\rm CN)_2]_3$		36
Pnma	x	x			х				х	$R_5^- M_2^+$	$[\mathrm{Bu}_3\mathrm{NBn}]\mathrm{Co}[\mathrm{N}(\mathrm{CN})_2]_3$		36
Pnma	x	x			х				х	$R_5^- M_2^+$	$[\mathrm{Bu_3NCH_3}]\mathrm{Mn}[\mathrm{N}(\mathrm{CN})_2]_3$	$375\mathrm{K}$	26
Cmce	x						x	\mathbf{x}		$R_5^- M_2^-/X_5^+$	$[\mathrm{Et}_3\mathrm{P}(\mathrm{CH}_2)_2\mathrm{F}]\mathrm{Cd}[\mathrm{N}(\mathrm{CN})_2]_3$	$373\mathrm{K}$	33

ĊT

s. g.	R_5^-	M_2^+	Γ_4^+	X_1^-	X_5^-	M_5^+	X_5^+	M_2^-	Γ_5^+	POPs	compound	condition	ref.
Cmce					x			x		$X_5^- M_2^-$	$[Et_3PPr]Cd[N(CN)_2]_3$	$427\mathrm{K}$	30
Ibam		x						\mathbf{x}		M_2^-	$[Et_3PPr]Cd[N(CN)_2]_3$	$397\mathrm{K}$	30
Ibam	x								x	$\mathrm{R}_5^- \ \mathrm{R}_3^- / \Gamma_5^+$	$[\mathrm{NPr}_4]\mathrm{M}[\mathrm{N}(\mathrm{CN})_2]_3$	$323\mathrm{K}$	34
$P\bar{4}2_1c$	x	\mathbf{x}			x		x	\mathbf{x}		$R_5^- M_2^-$	$[\mathrm{NPr}_4]\mathrm{M}[\mathrm{N}(\mathrm{CN})_2]_3$	$200\mathrm{K}$	$32,\!34,\!35$
I4/mcm	x									R_5^-	$[\mathrm{NPr}_4]\mathrm{M}[\mathrm{N}(\mathrm{CN})_2]_3$	$368\mathrm{K}$	32,34
$P\bar{1}$			x						х	Γ_4^+	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Cd}(\mathrm{N}_3)_3$	$[(CH_3)_2NH_2]Cd(N_3)_3 150K$	
$P2_1$		x	x			x		\mathbf{x}	x	$M_2^+ M_5^+ M_2^-$	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Mn}(\mathrm{N}_3)_3$	$173\mathrm{K}$	38
Cc			x	х	х		x		\mathbf{x}	X_5^+ Γ_4^-	$[\mathrm{Et}_2(\mathrm{CH}_3)\mathrm{NH}]\mathrm{Mn}(\mathrm{N}_3)_3$		39
$P2_1/m$			x		x				х	X_5^-	$[\mathrm{N}(\mathrm{CH}_3)_4]\mathrm{M}(\mathrm{N}_3)_3$		$38,\!40,\!41$
$P2_1/c$			x	x	x			х	x	$\Gamma_5^+ \ \mathrm{X}_5^- \ \mathrm{M}_2^-$	$[(CH_3)_3NH]M(N_3)_3$ 173 K		38,42
$P2_1/c$			x					x	x	$\Sigma_2 \ \mathrm{M}_2^-$	$[CH_3NH_3]Mn(N_3)_3$ 173 K		38
$P2_1/c$	x		x				x	x	x	$R_5^- M_2^-/X_5^+$	$[\mathrm{CH}_3\mathrm{NH}_3]\mathrm{Mn}(\mathrm{N}_3)_3$	$320\mathrm{K}$	38
C2/c			x	x	x				x	$\Gamma_5^+ \ \mathrm{X}_5^-/\mathrm{X}_1^-$	$[(\mathrm{CH}_3)_3\mathrm{NH}]\mathrm{M}(\mathrm{N}_3)_3$		38,42
C2/c	x		x						x	R_5^-	$[\mathrm{N}(\mathrm{CH}_3)_4]\mathrm{Cd}(\mathrm{N}_3)_3$	$220\mathrm{K}$	41
Pbca	x						x		x	$\Sigma_3 \ \mathrm{R}_5^-$	$[c\mathrm{PrNH}_3]\mathrm{Mn}(\mathrm{N}_3)_3$		43
Cmce	x						x	x		$X_5^+ M_2^-$	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Mn}(\mathrm{N}_3)_3$	$323\mathrm{K}$	38
P4/nmm								x		M_2^-	$[\mathrm{N}(\mathrm{CH}_3)_4]\mathrm{Ca}(\mathrm{N}_3)_3$		44
$R\bar{3}$			x						x	Γ_4^+	$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Cd}(\mathrm{N}_3)_3$	$273\mathrm{K}$	37
$R\bar{3}m$									x	Γ_5^+	$[(CH_3)_3NH]Mn(N_3)_3$ 360 K		38
$Pm\bar{3}m$											$[N(CH_3)_4]M(N_3)_3$ 333 K		$38,\!40,\!41$
C2/c	x		x						x	R_5^-	$[PPN]Mn[Au(CN)_2]_3$		45
$R\bar{3}c$	x								х	R_5^-	$[PPN]Ni[Au(CN)_2]_3$		46

s. g.	$\mathbf{R}_5^ \mathbf{M}_2^+$	$\frac{1}{2}$ Γ_4^+ $X_1^ X_5^ M_5^+$		X_5^+	M_2^-	Γ_5^+	POPs	compound	condition	ref.		
$Pa\bar{3}$		x x		x				X_5^-	X_5^- [PPN]Cd[Ag(CN) ₂] ₃			
		-				-						

-7

compound	$\langle \frac{1}{4}, \frac{1}{4}, 0 \rangle$	$\langle \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \rangle$	$\langle \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \rangle$	$\langle \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \rangle$	$\left< \frac{1}{6}, \frac{1}{2}, \frac{1}{3} \right>$	ref.
$[DAB]Mn(H_2POO)_3, 120 K$		$\Lambda_1 \ \Lambda_2 \ \Lambda_3$				23
$[\mathrm{C(NH_2)_3}]\mathrm{Mn(H_2POO)_3}$		$\Lambda_1 \ \Lambda_2 \ \Lambda_3$				23
$[(\mathrm{CH}_3)_2\mathrm{NH}_2]\mathrm{Mn}(\mathrm{H}_2\mathrm{POO})_3$	$\Sigma_1 \Sigma_2$		$\mathrm{S}_3~\mathrm{S}_4$	A_2	B_1	24
$[\mathrm{HIm}]\mathrm{Mn}(\mathrm{H_2POO})_3$	$\Sigma_3 \Sigma_4$		$S_1 S_2$			23
$[DAB]Mn(H_2POO)_3$		$\Lambda_1 \ \Lambda_2$				23
$[CH_3NH_3]Mn(N_3)_3, 173 \mathrm{K}$	$\Sigma_2 \Sigma_4$					38
$[c PrNH_3]Mn(N_3)_3, 173 K$	Σ_3	S_2				43
$[Bu_3NCH_3]Mn[N(CN)_2]_3$		$\Lambda_2 \ \Lambda_3$				26
$[\mathrm{NPr}_4]\mathrm{M}[\mathrm{N}(\mathrm{CN})_2]_3$	$\Sigma_3 \Sigma_4$		$\mathrm{S}_1 \ \mathrm{S}_2$			35

Table S2: Compounds exhibiting distortion modes with unusual periodicities.

1 References

- I. E. Collings, M. Bykov, E. Bykova, M. Hanfland, S. van Smaalen, L. Dubrovinsky and N. Dubrovinskaia, *CrystEngComm*, 2018, 20, 3512–3521.
- [2] B. J. Campbell, H. T. Stokes, D. E. Tanner and D. M. Hatch, J. Appl. Cryst., 2006, 39, 607–614.
- [3] M. Mączka, A. Gągor, M. Ptak, W. Paraguassu, T. Almeida da Silva, A. Sieradzki and A. Pikul, *Chem. Mater.*, 2017, 29, 2264–2275.
- [4] M. Sánchez-Andújar, L. C. Gómez-Aguirre, B. Pato Doldán, S. Yáñez-Vilar, R. Artiaga, A. L. Llamas-Saiz, R. S. Manna, F. Schnelle, M. Lang, F. Ritter, A. A. Haghighirad and M. A. Señarís-Rodríguez, *CrystEngComm*, 2014, 16, 3558–3566.
- [5] L. Mazzuca, L. Cañadillas-Delgado, O. Fabelo, J. A. Rodríguez-Velamazán, J. Luzón,
 O. Vallcorba, V. Simonet, C. V. Colin and J. Rodríguez-Carvajal, *Chem. Eur. J.*, 2018, 24, 388–399.
- [6] B.-Q. Wang, H.-B. Yan, Z.-Q. Huang and Z. Zhang, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2013, 69, 616–619.
- [7] M. Mączka, J. Janczak, M. Trzebiatowska, A. Sieradzki, S. Pawlus and A. Pikul, *Dalton Trans.*, 2017, 46, 8476–8485.

- [8] Z. Wang, B. Zhang, T. Otsuka, K. Inoue, H. Kobayashi and M. Kurmoo, *Dalton Trans.*, 2004, 2209–2216.
- [9] E. Sletten and L. H. Jensen, Acta Crystallogr. B Struct. Cryst. Cryst. Chem., 1973, 29, 1752–1756.
- [10] Z. Duan, Z. Wang and S. Gao, *Dalton Trans.*, 2011, 40, 4465–4473.
- [11] A. S. Antsyshkina, M. A. Porai Koshits, V. N. Ostrikova and G. G. Sadikov, Koord. Khim., 1983, 9, 855–858.
- [12] S. M. Bovill and P. J. Saines, CrystEngComm, 2015, 17, 8319–8326.
- [13] M. Mączka, A. Ciupa, A. Gągor, A. Sieradzki, A. Pikul, B. Macalik and M. Drozd, *Inorg. Chem.*, 2014, **53**, 5260–5268.
- [14] K.-L. Hu, M. Kurmoo, Z. Wang and S. Gao, Chem. Eur. J., 2009, 15, 12050–12064.
- [15] S. Chen, R. Shang, K.-L. Hu, Z.-M. Wang and S. Gao, Inorg. Chem. Front., 2014, 1, 83–98.
- [16] R. Shang, G.-C. Xu, Z.-M. Wang and S. Gao, Chem. Eur. J., 2014, 20, 1146–1158.
- [17] E. A. Donlan, H. L. B. Boström, H. S. Geddes, E. M. Reynolds and A. L. Goodwin, *Chem. Commun.*, 2017, 53, 11233–11236.
- [18] G. A. Nifontova, O. S. Filipenko, A. S. Astakhova, I. P. Lavrent'ev and L. O. Atovmyan, *Koord. Khim.*, 1990, 16, 218–224.
- [19] J.-Q. Liu, J. Wu, J. Wang, L. Lu, C. Daiguebonne, G. Calvez, O. Guillou, H. Sakiyama, N. S. Weng and M. Zeller, *RSC Adv.*, 2014, 4, 20605–20611.
- [20] X.-Y. Wang, L. Gan, S.-W. Zhang and S. Gao, Inorg. Chem., 2004, 43, 4615–4625.
- [21] Z. Yang, G. Cai, C. L. Bull, M. G. Tucker, M. T. Dove, A. Friedrich and A. E. Phillips, *Phil. Trans. R. Soc. A.*, 2019, **377**, 20180227.
- [22] I. E. Collings, J. A. Hill, A. B. Cairns, R. I. Cooper, A. L. Thompson, J. E. Parker, C. C. Tang and A. L. Goodwin, *Dalton Trans.*, 2016, 45, 4169–4178.
- [23] Y. Wu, S. Shaker, F. Brivio, R. Murugavel, P. D. Bristowe and A. K. Cheetham, J. Am. Chem. Soc., 2017, 139, 16999–17002.
- [24] Y. Wu, T. Binford, J. A. Hill, S. Shaker, J. Wang and A. K. Cheetham, Chem. Commun., 2018, 54, 3751–3754.
- [25] H. A. Evans, Z. Deng, I. E. Collings, Y. Wu, J. L. Andrews, K. Pilar, J. M. Tuffnell, G. Wu, J. Wang, S. E. Dutton, P. D. Bristowe, R. Seshadri and A. K. Cheetham, *Chem. Commun.*, 2019, 55, 2964–2967.

- [26] M. Mączka, A. Gągor, M. Ptak, D. Stefańska, L. Macalik, A. Pikul and A. Sieradzki, *Dalton Trans.*, 2019, 48, 13006–13016.
- [27] F.-J. Geng, L. Zhou, P.-P. Shi, X.-L. Wang, X. Zheng, Y. Zhang, D.-W. Fu and Q. Ye, J. Mater. Chem. C, 2017, 5, 1529–1536.
- [28] J. A. Schlueter, J. L. Manson, K. A. Hyzer and U. Geiser, *Inorg. Chem.*, 2004, 43, 4100–4102.
- [29] M.-M. Zhao, L. Zhou, P.-P. Shi, X. Zheng, X.-G. Chen, J.-X. Gao, L. He, Q. Ye, C.-M. Liu and D.-W. Fu, *Chem. Eur. J.*, 2019, **25**, 6447–6454.
- [30] L. Zhou, X. Zheng, P.-P. Shi, Z. Zafar, H.-Y. Ye, D.-W. Fu and Q. Ye, *Inorg. Chem.*, 2017, 56, 3238–3244.
- [31] M. Mączka, I. E. Collings, F. Furtado Leite and W. Paraguassu, Dalton Trans., 2019, 48, 9072–9078.
- [32] J. M. Bermúdez-García, S. Yáñez-Vilar, A. García-Fernández, M. Sánchez-Andújar, S. Castro-García, J. López-Beceiro, R. Artiaga, M. Dilshad, X. Moya and M. A. Señarís-Rodríguez, J. Mater. Chem. C, 2018, 6, 9867–9874.
- [33] M.-M. Zhao, L. Zhou, P.-P. Shi, X. Zheng, X.-G. Chen, J.-X. Gao, F.-J. Geng, Q. Ye and D.-W. Fu, *Chem. Commun.*, 2018, 54, 13275–13278.
- [34] J. M. Bermúdez-García, M. Sánchez-Andújar, S. Yáñez-Vilar, S. Castro-García, R. Artiaga, J. López-Beceiro, L. Botana, A. Alegría and M. A. Señarís-Rodríguez, J. Mater. Chem. C, 2016, 4, 4889–4898.
- [35] J. A. Schlueter, J. L. Manson and U. Geiser, *Inorg. Chem.*, 2005, 44, 3194–3202.
- [36] M.-L. Tong, J. Ru, Y.-M. Wu, X.-M. Chen, H.-C. Chang, K. Mochizuki and S. Kitagawa, New. J. Chem., 2003, 27, 779–782.
- [37] Z.-Y. Du, T.-T. Xu, B. Huang, Y.-J. Su, W. Xue, C.-T. He, W.-X. Zhang and X.-M. Chen, Angew. Chem. Int. Ed., 2015, 54, 914–918.
- [38] X.-H. Zhao, X.-C. Huang, S.-L. Zhang, D. Shao, H.-Y. Wei and X.-Y. Wang, J. Am. Chem. Soc., 2013, 135, 16006–16009.
- [39] J. Yang, Y. Huang, T. Fang, K. Qian, W.-B. Chen, X.-F. Yu, Y.-C. Ai, J.-L. Ye and X.-Y. Li, Z. Naturforsch. B, 2019, 74, 335–339.
- [40] F. A. Mautner, R. Cortés, L. Lezama and T. Rojo, Angew. Chem. Int. Ed. Engl., 1996, 35, 78–80.

- [41] Z.-Y. Du, Y.-P. Zhao, W.-X. Zhang, H.-L. Zhou, C.-T. He, W. Xue, B.-Y. Wang and X.-M. Chen, *Chem. Commun.*, 2014, **50**, 1989–1991.
- [42] Z.-Y. Du, Y.-S. Sun, S.-L. Chen, B. Huang, Y.-J. Su, T.-T. Xu, W.-X. Zhang and X.-M. Chen, Chem. Commun., 2015, 51, 15641–15644.
- [43] K. Qian, Y. Xu, Z. Wang and J. Yang, Z. Naturforsch. B, 2017, 72, 409-413.
- [44] F. A. Mautner, H. Krischner and C. Kratky, Monat. Chem., 1988, 119, 1245–1249.
- [45] J. A. Hill, A. L. Thompson and A. L. Goodwin, J. Am. Chem. Soc., 2016, 138, 5886–5896.
- [46] J. Lefebvre, D. Chartrand and D. B. Leznoff, Polyhedron, 2007, 26, 2189–2199.