
Electronic Supplementary Information Single-phase ZrO₂ nanocrystals obtained by solvothermal synthesis with different growth controlling-agents

Mayara S. Santos, Jair C. C. Freitas, Cleocir J. Dalmaschio

Table S1. Raman shift values observed for ZrO₂ samples synthesized in different solvents and different zirconium butoxide concentration.

	$[Zr(OBut)_4] = 0.25$	Μ		
Solvent				
oleic acid	benzyl alcohol	octyl alcohol		
179	141	146		
217	255	179		
306	307	217		
330	451	269		
344	633	316		
381		330		
478		381		
501		474		
538		501		
556		538		
615		556		
		615		
		638		
	$[Zr(OBut)_4] = 0.5$	М		
Solvent				
oleic acid	benzyl alcohol	octyl alcohol		
179	269	146		
269	311	269		
307	460	311		
330	637	460		
380		602		
478		642		
556				

Figure S1. Solution ¹³C NMR spectra of the solvents used in the reaction systems: (a) oleic acid; (b) benzyl alcohol (solid line) and butyl alcohol (dashed line); (c) octyl alcohol.

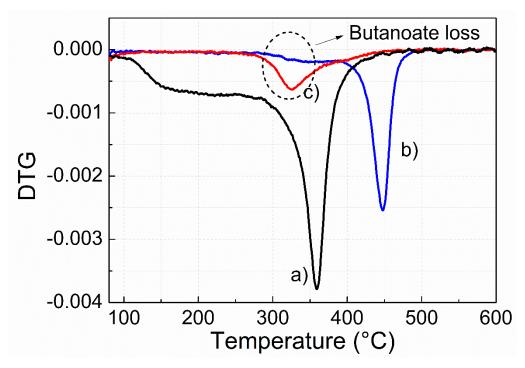
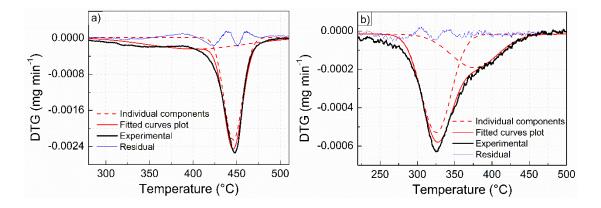

Oleio	c acid	Benzyl	alcohol	Butyl a	alcohol	Octyl A	lcohol
δ (ppm)	Carbon	δ (ppm)	Carbon	δ (ppm)	Carbon	δ (ppm)	Carbon
13.64	C18	63.34	C1	13.25	C4'	10.40	C8
22.45	C17	125 – 129	C3-7	18.71	C3'	13.48	C7
24 - 35	C3	140.28	C2	34.47	C2'	22.77	C6
28.7	C2-8,			161.13	C1'	28.83	C5
	C11-16						
129.35	C9, C10					29.81	C4
179.8	C1					41.53	C2, C3
						63.82	C1

Table S2. Spectral assignments of the signals detected in the solution ¹³C NMR spectra obtained for the solvents used in the syntheses.


Table S3. Spectral assignments of the signals detected in the 13 C CP/MAS NMR spectra obtained for the ZrO₂ NCs.

$ZrO_2 - OAc$		$ZrO_2 - BnOH$		$ZrO_2 - OcOH$	
δ (ppm)	Carbon	δ (ppm)	Carbon	δ (ppm)	Carbon
14.79	C18	118.28 -	C2-C7	17.08	C8
17.34 –	C2-8, C11-17	144.18 173.48	dC	23.44	C7
49.18					
131.14	C9, C10	13.40	C4'	27.27	C3
28.7	C8, C11	18.92	C3'	34.06	C4, C5
182.63	C1	38.88	C2'	43.83	C6
		183.25	dC'	53.59	C2
				187.35	dC

Determination of number of ligand molecules per surface area on the nanocrystals From the TGA curves (Figure 8), the DTG curves (Figure S2) were obtained, in order to evidence the mass losses. A mass loss was observed around 330 °C for the samples synthesized in benzyl alcohol and octyl alcohol, being associated to a butanoate type of ligand. The curves shown in Figure S2b and c were deconvoluted into two Gaussian components (Figure S3). The area of the Gaussian peak centered at 330 °C was taken as the butanoate content and normalized with respect to the total organic mass loss (associated with the total area of the fitted DTG curves).

Figure S2. DTG curves obtained for the ZrO_2 NCs synthesized in (a) oleic acid, (b) benzyl alcohol and (c) octyl alcohol.

Figure S3. Deconvolution of DTG curves obtained for the ZrO₂ NCs synthesized in (a) benzyl alcohol and (b) octyl alcohol.

With the DTG analysis, it was then possible to determine the mass contents of organic ligands from the TGA curves, as 36.4% (oleate); 12.6% (4.6% butanate and 8.0% benzoate) and 6.5% (4.2% butanoate and 2.3% octanoate) for the samples synthesized in

OAc, BnOH and OcOH, respectively. These results were correlated with the molecular mass of each organic ligand, giving the result in equation S1. The specific surface area was estimated from the average particle sizes obtained from the analysis of the TEM images, using either equation S2 (assuming nearly spherical particles for the samples synthesized in benzyl alcohol) or equation S3 (assuming cylindrical particles for the samples synthesized in oleic acid and octyl alcohol). Finally, combining equation S1 and equations S2 and S3, the number of ligand molecules per area unit on the surface of the nanocrystals can be estimated (equation S4).

$$\frac{N}{m_{ZrO_2}} = \frac{\binom{\% m_{lig}}{\% m_{ZrO_2}}}{M M_{lig}} \cdot N_A \quad , \tag{S1}$$

where:

N = number of ligand molecules;

m_{ZrO2} = mass of zirconia;

 $%m_{lig} = ligand$ mass content on the sample obtained by TGA experiments;

 $%m_{ZrO2}$ = zirconia mass content on the sample obtained by TGA experiments;

MM_{lig} = ligand molar mass;

N_A = Avogadro number.

$$\frac{A_S}{m_{ZrO_2}} = \frac{4\pi r^2}{V_{ZrO_2} \cdot \rho_{ZrO_2}} = \frac{4\pi r^2}{(4/_3)\pi r^3 \cdot \rho_{ZrO_2}} = \frac{3}{r \cdot \rho_{ZrO_2}} \quad , \tag{S2}$$

$$\frac{A_S}{m_{ZrO_2}} = \frac{2\pi r(r+h)}{V_{ZrO_2} \cdot \rho_{ZrO_2}} = \frac{2\pi r(r+h)}{\pi r^2 h \cdot \rho_{ZrO_2}} = \frac{2(r+h)}{r h \cdot \rho_{ZrO_2}} \quad , \tag{S3}$$

where:

 $A_S = surface area;$

V = volume of the particles;

r = average particle width obtained from TEM results;

h = average particle length obtained from TEM results;

%mlig = ligand mass content on the sample obtained by TGA experiments;

 ρ_{ZrO2} = zirconia specific mass.

Taking the ratio from the results of equation S1 and S2 or S3:

$$\frac{N/m_{ZrO_2}}{A_S/m_{ZrO_2}} = \frac{N}{A_S}$$
(S4)