Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

New Metal Organic Frameworks Derived from pyridine-3,5dicarboxylic acid: Structural Diversity Rising from the Addition of Templates in the Reaction Systems

Eleni E. Moushi,^a Andreas Kourtellaris,^{a,b} Eleni Andreou,^b Athina Fidelli,^c Giannis S. Papaefstathiou,*,^c John C. Plakatouras*,^{b,d,e} and Anastasios J. Tasiopoulos*,^b

^a Department of Life Sciences, School of Science, European University Cyprus, 1516 Nicosia, Cyprus

^b Department of Chemistry, University of Cyprus, Nicosia 1678, Cyprus

^c Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 157 71, Greece

^d University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece

^e On sabbatical leave from Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece

Contents

- 1. Experimental
- **2. Table S2** Selected bond distances (Å) and angles (°) for $[((CH_3)_2NH_2)_2[Cd_2(PDC)_3]]_n \cdot 4nDMF \cdot 6nH_2O$, [1].
- **3. Table S3** Selected bond distances (Å) and angles (°) for [Mn(PDC)(DMF)]_n [2]
- **4. Table S4** Selected bond distances (Å) and angles (°) for [Mn₃(PDC)₂(INA)₂(DMF)_{1.5}(H₂O)_{0.5}]_n·nDMF·2nH₂O, [3].
- **5. Table S5** Selected bond distances (Å) and angles (°) for $[Zn(PDC)(NMP)]_n \cdot nH_2O$, [4].
- 6. **Table S6** Selected bond distances (Å) and angles (°) for [Zn(PDC)(H₂O)(DMF)]_n, [5].
- 7. **Table S7** Selected bond distances (Å) and angles (°) for $[Zn(PDC)(3hmpH)]_n \cdot nDMF \cdot 0.5nH_2O$, [6].
- 8. **Table S8** Selected bond distances (Å) and angles (°) for [Zn(PDC)(2hmpH)₂]₂·2DMF, [7].
- 9. **Table S9** Selected bond distances (Å) and angles (°) for $[Co(PDC)(3hmpH)_2]_n \cdot 0.25nDMF$, [8].
- 10. **Table S10** Selected bond distances (Å) and angles (°) for [Cu(PDC)(3hmpH)₂]_n·0.5nDMF·1.5nH₂O, [9].
- 11. **Table S11** Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in $[Zn(PDC)(H_2O)(DMF)]_n$, [5]
- **12. Table S12** Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in $[Zn(PDC)(2hmpH)_2]_2 \cdot 2DMF$, [7].
- 13. **Table S13** Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in $[Co(PDC)(3hmpH)_2]_n \cdot 0.25nDMF$, [8].
- 14. **Table S14** Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in $[Cu(PDC)(3hmpH)_2]_n \cdot 0.5nDMF \cdot 1.5nH_2O$, [9].
- 15. **Table S15** Thermogravimetric analysis (TG) data for the prepared compounds.
- 16. **Table S16.** PDC²⁻ 2D coordination polymers with honeycomb topology.
- 17. Fig. S1 The simulated and experimental XRD powder patterns for [1].
- 18. Fig. S2 The simulated and experimental XRD powder patterns for [2].
- 19. Fig. S3 The simulated and experimental XRD powder patterns for [3].
- 20. Fig. S4 The simulated and experimental XRD powder patterns for [4].
- 21. Fig. S5 The simulated and experimental XRD powder patterns for [5].
- 22. Fig. S6 The simulated and experimental XRD powder patterns for [6].
- 23. Fig. S7 The simulated and experimental XRD powder patterns for [7].
- 24. Fig. S8 The simulated and experimental XRD powder patterns for [8].
- 25. Fig. S9 The simulated and experimental XRD powder patterns for [9].
- 26. **Fig. S10** Solvent accessible void space in the anionic network in **[1]** down to a (a) and to c (b). This is where the cations and the solvated molecules are accommodated.

- 27. **Fig. S11** Solvent accessible void space in the network in **[2]** after the removal of the coordinated DMF molecules down to a (a), b (b), and c (c).
- 28. **Fig. S12** Solvent accessible void space in the network in [3] after the removal of the coordinated DMF molecules down to a (a).
- 29. **Fig. S13** Solvent accessible void space in the network in **[4]** down to a (a).
- **30. Fig. S14** A perspective view of the pcu framework formed in [7] via $\pi \pi$ stacking interactions. The network nodes are located on the centroids of the binuclear complex.
- 31. Fig. S15 The TG/DTG curves for $[[(CH_3)_2NH_2]_2[Cd_2(PDC)_3]]_n\cdot 4nDMF\cdot 6nH_2O$, [1].
- 32. Fig. S16 The TG/DTG curves for [Mn(PDC)(DMF)]_n, [2]
- **33. Fig. S17** The TG/DTG curves for $[Mn_3(PDC)_2(INA)_2(DMF)_{1.5}(H_2O)_{0.5}]_n \cdot nDMF \cdot 2nH_2O$, [3].
- **34. Fig. S18** The TG/DTG curves for [Zn(PDC)(NMP)]_n·nH₂O, [4].
- **35. Fig. S19** The TG/DTG curves for $[Zn(PDC)(H_2O)(DMF)]_n$, [5].
- **36. Fig. S20** The TG/DTG curves for $[Zn(PDC)(3hmpH)]_n \cdot nDMF \cdot 0.5nH_2O$, **[6]**.
- **37. Fig. S21** The TG/DTG curves for $[Zn(PDC)(2hmpH)_2]_2 \cdot 2DMF$, [7].
- **38. Fig. S22** The TG/DTG curves for $[Co(PDC)(3hmpH)_2]_n \cdot 0.25nDMF$, [8].
- **39. Fig. S23** The TG/DTG curves for $[Cu(PDC)(3hmpH)_2]_n \cdot 0.5nDMF$, [9].

1. Experimental

Materials. Reagent grade chemicals were obtained from Aldrich and used without further purification. Water was distilled in-house.

Physical Measurements. Elemental analysis (C, H, N) was performed by the in-house facilities of the University of Cyprus, Chemistry Department on a Eurovector EA3000 Elemental Analyzer. IR spectra were recorded on KBr pellets in the $4000-400~cm^{-1}$ range using a Shimadzu Prestige -21 spectrometer. PXRD diffraction pattern was recorded on a Shimazdu 6000 Series X-ray diffractometer (Cu K α radiation, λ = 1.5418 Å). Thermal stability studies were performed with a Shimadzu TGA 50 thermogravimetric analyzer.

Single Crystal X-ray Crystallography. Single crystal X-ray diffraction data were collected on an Oxford-Diffraction Supernova diffractometer, equipped with an Atlas CCD area detector utilizing Cu $K\alpha$ (λ = (1.54184 Å) radiation. Suitable crystal was attached to Hampton cryoloops using paratone-N oil and transferred to the goniostat where they were cooled for data collection. Empirical absorption corrections (multiscan based on symmetry-related measurements) were applied using CrysAlis RED software. The same software package was used for data collection, cell refinement and data reduction. The structures were solved by direct methods using either SIR2014² or SHELXS,³ via the WinGX⁴ interface. They are refined on F² using full-matrix least-squares with SHELXL-2016/6⁵ via the ShelXle⁶ interface. The non-H atoms were treated anisotropically, whereas the aromatic H atoms were placed in calculated, ideal positions and refined as riding on their respective carbon atoms. Some of the O-H hydrogen atoms were located from difference Fourier maps and refined isotropically using SHELX restraints; others could not be located and they were placed in calculated positions using CALC-OH.7 Electron density contributions from disordered guest molecules (and dimethylammonium cations in case of [1]) were handled using the SQUEEZE procedure from the PLATON software suit.8 PLATON and DIAMOND9 were used for geometric calculations, and X-Seed10 for molecular graphics. The topological evaluation of the networks was performed with ToposPro. 11 Solvent accessible volumes were calculated with Mercury. Selected crystal data for [1] - [9] are summarized in Table S1. Selected bond distances (Å) and angles (°) are presented in Tables S2 – S10, respectively. CCDC 1958501-1958509 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

References

- 1 Oxford Diffraction, CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd., Abingdon, UK, 2008.
- 2 M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, *J. Appl. Cryst.*, 2015, **48**, 306-309.
- 3 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.
- 4 L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854.
- 5 G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
- 6 C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst., 2011, 44, 1281–1284.
- 7 M. Nardelli, J. Appl. Cryst., 1999, **32**, 563-571.
- 8 A. L. Spek, J. Appl. Crystallogr., 2003, **36**, 7-13.
- 9 K. Brandenburg, DIAMOND, Version 2003.2001d, Crystal Impact GbR: Bonn, Germany, 2006.
- 10 L. J. Barbour, J. Supramol. Chem., 2001, 1, 189-191.
- 11 V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des., 2014, 14, 3576–3586.
- 12 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466-470.

Synthesis of [[(CH₃)₂NH₂]₂[Cd₂(PDC)₃]]_n·4nDMF·6nH₂O, [1]. <u>Method A:</u> PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added deaH₂ (2.00 mL, 20.734 mmol). The mixture was sonicated for 3 minutes and to

the resulting solution was added solid $CdCl_2$ (0.100 g, 0.545 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, white polyhedral-like crystals of [1] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 75 mg (62 % based on PDCH₂). Elemental analysis: Anal. Calc. for $C_{37}H_{65}N_9O_{22}Cd_2$ ([1]) C 36.64, H 5.40, N 10.39, Found: C 36.78, H 5.51, N 10.61 %. IR data (cm⁻¹): 3300mbr ν (OH), 3080w ν (CH)_{ar}, 2958w ν (CH)_{al}, 2812w ν (NH), 1667m ν (CO)_{DMF}, 1603s ν (CC), 1560s, 1387ms ν (CO₂), 1429m ν (CN)_{ar}.

<u>Method B</u>: The same procedure was repeated replacing deaH₂ with teoaH₃ (2.00 mL, 15.068 mmol). Yield: \sim 61 %.

Synthesis of [Mn(PDC)(DMF)]_n, [2]. <u>Method A:</u> PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added phdeaH₂ (0.200 g, 1.104 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid Mn(NO₃)₂·4H₂O (0.100 g, 0.398 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, pinkish polyhedral-like crystals of [2] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 52 mg (59 % based on PDCH₂). Elemental analysis: Anal. Calc. for $C_{10}H_{10}N_2O_5Mn$ ([2]) C 40.97, H 3.44, N 9.56, Found: C 40.80, H 3.51, N 9.30 %. IR data (cm⁻¹): 3072w ν (CH)_{ar}, 1670s ν (CO)_{DMF}, 1605m ν (CC), 1560s, 1391ms ν (CO₂), 1431m ν (CN)_{ar}

Methods B, C, D: Method A was repeated, using 2hmpH (200 μ L, 2.073 mmol)(B) or 3hmpH (200 μ L, 2.073 mmol)(C) or 3hppH (200 μ L, 1.545 mmol)(D) instead of phdeaH₂. The yields span the range 58 – 59 %.

<u>Method E</u>: [2] can be synthesized successfully in the absence of any template molecule with similar yield.

Synthesis of [Mn₃(PDC)₂(INA)₂(DMF)_{1.5}(H₂O)_{0.5}]_n·nDMF·2nH₂O, [3]. PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added 4hmpH (0.200 g, 1.833 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid Mn(NO₃)₂·4H₂O (0.100 g, 0.398 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, very pale pink polyhedral-like crystals of [3] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 105 mg (72 % based on PDCH₂). Elemental analysis: Anal. Calc. for C_{33.5}H_{36.5}N_{6.5}O₁₇Mn₃ ([3]) C 41.61, H 3.80, N 9.42, Found: C 41.83, H 3.65, N 9.59 %. IR data (cm⁻¹): 3317mbr ν (OH), 3072w ν (CH)_{ar}, 2927w ν (CH)_{al}, 1667s ν (CO)_{DMF}, 1600m ν (CC), 1552s, 1384ms ν (CO₂).

Synthesis of [Zn(PDC)(NMP)]_n·nH₂**O**, **[4].** PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in NMP (8 mL) and to this solution was added pdH₂ (200 μL, 2.786 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid Zn(O₂CMe)₂·2H₂O (0.100 g, 0.455 mmol). The mixture was sonicated for 3 min, and sealed in a 23 mL Teflon-lined autoclave and then, heated at 150 °C for 48 h. The autoclave left to cool slowly at room temperature. Colourless polyhedral-like crystals of **[4]** were formed. They were isolated by filtration, washed several times successively with NMP, DMF and diethylether, and dried under vacuum. Yield: 84 mg (81 % based on PDCH₂). Elemental analysis: Anal. Calc. for C₁₂H₁₄N₂O₆Zn (**[4]**) C 41.46, H 4.06, N 8.06, Found: C 41.44, H 4.23, N 8.10 %. IR data (cm⁻¹): 3279mbr, 2889wbr ν (OH), 3100w ν (CH)_{ar}, 2969w ν (CH)_{al}, 1667m ν (CO)_{NMP}, 1609s ν (CC), 1567s, 1407ms ν (CO₂), 1430m ν (CN)_{ar}. **Synthesis of [Zn(PDC)(H₂O)(DMF)]**_n, **[5]**. *Method A*: PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added phdeaH₂ (0.200 g, 1.104 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid Zn(NO₃)₂·6H₂O (0.100 g, 0.336 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, colourless

polyhedral-like crystals of **[5]** were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 64 mg (67 % based on PDCH₂). Elemental analysis: Anal. Calc. for $C_{10}H_{12}N_2O_6Zn$ (**[5]**) C 37.35, H 3.76, N 8.71, Found: C 37.51, H 3.99, N 8.52 %. IR data (cm⁻¹): 3278mbr, ν (OH), 3103w ν (CH)_{ar}, 1694m ν (CO)_{DMF}, 1605s ν (CC), 1551s, 1399ms ν (CO₂), 1436m ν (CN)_{ar}.

Methods B, C, D: Method A was repeated, using deaH₃ (200 μL, 2.087 mmol)(B) or teoaH₃ (200 μL, 1.507 mmol)(C) or pdH₂ (200 μL, 2.768 mmol)(D) instead of phdeaH₂. The yields span the range 65 – 68 %.

Synthesis of [Zn(PDC)(3hmpH)]_n·nDMF·0.5nH₂O, [6]. PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added 3hmpH (900 μL, 9.327 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid $Zn(O_2CMe)_2 \cdot 2H_2O$ (0.300 g, 1.367 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, white polyhedral-like crystals of [6] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 96 mg (76 % based on PDCH₂). Elemental analysis: Anal. Calc. for $C_{16}H_{18}N_3O_{6.5}Zn$ ([6]) C 45.57, H 4.30, N 9.96, Found: C 48.43, H 4.11, N 9.69 %. IR data (cm⁻¹): 3340mbr, ν (OH), 3085w ν (CH)_{ar}, 2942w ν (CH₃)_{DMF}, 2874w ν (CH₂), 1626s ν (CO)_{DMF}, 1590s ν (CC)_{ring}, 1568s, 1376s ν (CO₂), 1436m ν (CN)_{ar}, 1026m ν (C-OH).

Synthesis of [Zn(PDC)(2hmpH)₂]₂·2DMF, [7]. PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added 2hmpH (500 μ L, 5.182 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid Zn(O₂CMe)₂·2H₂O (0.100 g, 0.455 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, colourless polyhedral-like crystals of [7] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 80 mg (51 % based on PDCH₂). Elemental analysis: Anal. Calc. for C₂₂H₂₄N₄O₇Zn ([7]) C 50.64, H 4.64, N 10.74, Found: C 50.93, H 4.70, N 10.41 %. IR data (cm⁻¹): 3355mbr, ν (OH), 3083w ν (CH)_{ar}, 2940w ν (CH₃)_{DMF}, 2873w ν (CH₂), 1665s ν (CO)_{DMF}, 1589s ν (CC)_{ring}, 1588s, 1372s ν (CO₂), 1438m ν (CN)_{ar}, 1029m ν (C-OH).

Synthesis of [Co(PDC)(3hmpH)₂]_n·0.25nDMF, [8]. PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added 3hmpH (1.50 mL, 15.467 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid $Co(NO_3)_2$ · GH_2O (0.100 g, 0.343 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, pink polyhedral-like crystals of [8] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 95 mg (69 % based on PDCH₂). Elemental analysis: Anal. Calc. for $C_{19.75}H_{18.75}N_{3.25}O_{6.25}Co$ ([8]) C 51.50, H 4.10, N 9.88, Found: C 51.81, H 4.38, N 10.07 %. IR data (cm⁻¹): 3326mbr, ν (OH), 3077w ν (CH)_{ar}, 2891w ν (CH₂), 1587s ν (CC)_{ring}, 1569s, 1377s ν (CO₂), 1446m ν (CN)_{ar}, 1023m ν (C-OH).

Synthesis of [Cu(PDC)(3hmpH)₂]_n·0.5nDMF, [9]. PDCH₂ (0.050 g, 0.299 mmol) was dissolved (after sonication for 3 minutes) in DMF (8 mL) in a 20 mL glass vial and to this solution was added 3hmpH (1.50 mL, 15.467 mmol). The mixture was sonicated for 3 minutes and to the resulting solution was added solid Cu(NO₃)₂·2.5H₂O (0.100 g, 0.429 mmol). The mixture was sonicated for 3 min, sealed and then, heated without stirring at 100 °C for 48 h. During this period, blue polyhedral-like crystals of [9] were formed. They were isolated by filtration, washed several times with DMF and diethylether, and dried under vacuum. Yield: 87 mg (57 % based on PDCH₂). Elemental analysis: Anal. Calc. for $C_{20.5}H_{20.5}N_{3.5}O_{6.5}Cu$ ([9]) C 50.93, H 4.27, N 10.14, Found: C 50.48, H 4.55, N 9.79 %. IR data (cm⁻¹): 3295mbr, ν (OH), 3078w ν (CH)_{ar}, 2882w ν (CH₂), 1591s ν (CC)_{ring}, 1557s, 1356s ν (CO₂), 1435m ν (CN)_{ar}, 1031m ν (C-OH).

 Table S1 Selected crystal data and refinement details for the prepared compounds.

Compound	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
Empirical formula	a C ₂₁ H ₉ N ₃ O ₁₂ Co	d ₂ C ₃₀ H ₃₀ N ₆ O ₁₅ Mı	n ₃ C _{30.97} H _{24.94} Mn ₃ N _{5.66} O	₁₄ C ₁₂ H ₁₂ N ₂ O ₅ Z	n C ₁₀ H ₁₁ N ₂ O ₆ Zn	$C_{13}H_9N_2O_5Zn$	C ₄₄ H ₄₈ N ₈ O ₁₄ Zn	₂ C ₁₉ H ₁₇ CoN ₃ O ₆	C ₅₇ H ₅₁ Cu ₃ N ₉ O ₁₈
Formula weight	720.13	879.42	864.87	329.63	320.60	338.61	1043.68	442.29	1340.72
Temperature (K)	100	113	101	100	100	100	100	100	100
Crystal System	orthorhombi	c monoclinic	monoclinic	orthorhomb	icmonoclinic	orthorhombic	triclinic	monoclinic	monoclinic
Space group	Cmc2 ₁	<i>P</i> 2₁/n	P2 ₁ /c	$P2_12_12_1$	P2 ₁ /c	$P2_12_12_1$	P-1	P2 ₁	<i>C</i> 2/c
a (Å)	10.1522(3)	12.3457(2)	11.5931(6)	11.203(5)	11.0431(6)	7.878(5)	9.0778(8)	7.7534(3)	11.1680(8)
b (Å)	33.2337(12)	11.3248(2)	13.5663(5)	11.394(5)	9.7384(5)	12.877(5)	9.6883(8)	15.3166(4)	25.2917(18)
c (Å)	12.3547(4)	29.2277(4)	27.2835(13)	14.313(5)	12.1390(5)	17.325(5)	13.9491(13)	8.7169(4)	21.2081(19)
α (°)	90	90	90	90	90	90	76.153(8)	90	90
β (°)	90	98.689(1)	89.922(5)	90	90.252(4)	90	73.459(8)	112.728(5)	96.363(7)
γ (° <u>)</u>	90	90	90	90	90	90	84.233(7)	90	90
<i>V</i> (ų)	4168.4(2)	4039.50(11)	4291.0(3)	1827.0(13)	1305.44(11)	1757.5(14)	1141.17(18)	954.80(7)	5953.5(8)
Z	4	4	4	4	4	4	1	2	4
$D_{\rm c}$ (g cm ⁻³)	1.148	1.446	1.339	1.198	1.631	1.280	1.519	1.538	1.496
μ (mm $^{-1}$)	8.546	8.131	7.628	1.359	1.905	2.124	1.946	7.428	1.921
F(000)	1392	1788	1750	672	652	684	540	454	2748
Refls collected	11467	15902	28319	7256	7436	3968	7215	5627	11010
Unique refls	3050	7822	8198	3211	2304	2623	4055	2197	5731
R_{int}	0.034	0.036	0.085	0.034	0.036	0.029	0.027	0.040	0.023
R_1	0.0198	0.0393	0.0897	0.0315	0.0439	0.0485	0.0305	0.0374	0.0350
wR_2	0.0512	0.1073	0.3064	0.0756	0.1232	0.1394	0.0840	0.0916	0.0971
GOF	1.015	1.028	1.122	1.052	1.078	1.083	0.898	1.034	1.038
$\Delta ho_{ m min/max}$ (e Å ⁻³)	-0.33, 0.35	-0.52, 0.89	-1.61, 0.91	-0.27, 0.62	-1.25, 0.91	-0.63, 1.12	-0.44, 0.34	-0.48, 0.55	-0.46, 1.02

 $\textbf{Table S2} \ \, \textbf{Selected bond distances (Å) and angles (°) for [[(CH_3)_2NH_2]_2[Cd_2(PDC)_3]]_n\cdot 4nDMF\cdot 6nH_2O, \textbf{[1]}.$

Table 32 Selected bond dista	inces (A) and angles (°) for [[i	$[CH_3]_2NH_2]_2[CG_2(PDC)_3]]_n$ ·4NDIVIF·6NH ₂ O, [1]	·	
Bond distances				
Cd(1) - O(3)	2.224(6)	Cd(1) – O(7)	2.538(3)	
Cd(1) - O(8)	2.341(3)	Cd(1) - N(1)	2.362(5)	
$Cd(1) - O(3)_d$	2.224(6)	Cd(1) – O(7)_d	2.538(3)	
$Cd(1) - O(8)_d$	2.341(3)	Cd(1) – N(3)_h	2.359(5)	
Cd(2) - N(2)	2.302(8)	Cd(2) – O(5)_a	2.371(5)	
Cd(2) - O(6)_a	2.331(7)	$Cd(2) - N(2)_d$	2.302(8)	
Cd(2) – O(5)_e	2.371(5)	Cd(2) - O(6)_e	2.331(6)	
Cd(2) – O(1)_h	2.261(3)	Cd(2) – O(2)_h	2.532(3)	
Cd(2) – O(1)_I	2.261(3)	Cd(2) - O(2)_I	2.532(3)	
Bond angles				
O(3) - Cd(1) - O(7)	85.9(5)	O(3) $d - Cd(1) - N(3) h$	81.4(2)	
O(3) - Cd(1) - O(8)	97.8(4)	$O(7)_d - Cd(1) - O(8)_d$	53.35(14)	
O(3) - Cd(1) - N(1)	165.5(3)	$O(7)_d - Cd(1) - N(3)_h$	86.27(11)	
O(3) - Cd(1) - O(3) d	10.2(7)	$O(8)_d - Cd(1) - N(3)_h$	139.39(8)	
$O(3) - Cd(1) - O(7)_d$	96.1(5)	$O(5)_a - Cd(2) - N(2)$	89.3(2)	
$O(3) - Cd(1) - O(8)_d$	104.5(3)	$O(6)_a - Cd(2) - N(2)$	143.8(2)	
O(3) - Cd(1) - N(3) h	81.4(2)	$N(2) - Cd(2) - N(2)_d$	8.1(11)	
O(7) - Cd(1) - O(8)	53.35(14)	$O(5)_e - Cd(2) - N(2)$	88.6(2)	
O(7) - Cd(1) - N(1)	88.14(7)	$O(6)_e - Cd(2) - N(2)$	142.9(3)	
O(3) d - Cd(1) - O(7)	96.1(5)	O(1) h - Cd(2) - N(2)	96.4(5)	
$O(3)_u - Cd(1) - O(7)_d$	171.92(14)	$O(2)_h - Cd(2) - N(2)$	84.6(8)	
$O(7) - Cd(1) - O(7)_d$ O(7) - Cd(1) - O(8) d	133.75(14)	$O(2)_{-1} - Cd(2) - N(2)$ $O(1)_{-1} - Cd(2) - N(2)$	101.9(5)	
$O(7) - Cd(1) - O(8)_d$ O(7) - Cd(1) - N(3) h	86.27(11)	$O(2)_1 - Cd(2) - N(2)$ $O(2)_1 - Cd(2) - N(2)$	92.6(8)	
$O(7) - Cd(1) - N(3)_1$ O(8) - Cd(1) - N(1)	89.16(12)	$O(2)_{-1} - Cd(2)_{-1} - O(2)_{-1}$ $O(5)_{-1} - Cd(2)_{-1} - O(6)_{-1}$	54.6(2)	
O(3) - Cd(1) - N(1) $O(3)_d - Cd(1) - O(8)$	104.5(3)	$O(5)_a - Cd(2) - O(0)_a$ $O(5)_a - Cd(2) - N(2)_d$	88.6(2)	
$O(3)_d - Cd(1) - O(8)$ $O(7)_d - Cd(1) - O(8)$	133.75(14)	$O(5)_a - Cd(2) - N(2)_d$ $O(5)_a - Cd(2) - O(5)_e$	9.3(7)	
· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1 1 1 1 1		
$O(8) - Cd(1) - O(8)_d$ $O(8) - Cd(1) - N(3)_h$	80.46(12) 139.39(8)	O(5)_a – Cd(2) – O(6)_e O(1)_h – Cd(2) – O(5)_a	55.3(3) 140.8(5)	
$O(3)_d - Cd(1) - N(1)$	165.5(3)	$O(2)_h - Cd(2) - O(5)_a$	88.8(5)	
$O(7)_d - Cd(1) - N(1)$	88.14(7)	$O(1)_{-}I - Cd(2)_{-} - O(5)_{-}a$	131.7(5)	
$O(8)_d - Cd(1) - N(1)$	89.16(12)	$O(2)_{-1} - Cd(2)_{-1} - O(5)_{-2}$	79.5(5)	
$N(1) - Cd(1) - N(3)_h$	84.98(17)	$O(6)_a - Cd(2) - N(2)_d$	142.9(4)	
$O(3)_d - Cd(1) - O(7)_d$	85.9(5)	$O(5)_e - Cd(2) - O(6)_a$	55.3(3)	
$O(3)_d - Cd(1) - O(8)_d$	97.8(4)	$O(1)_{-}I - Cd(2)_{-} - O(2)_{-}I$	53.52(11)	
O(6)_a - Cd(2) - O(6)_e	7.5(18)	$O(2)_h - Cd(2) - O(5)_e$	79.5(5)	
$O(1)_h - Cd(2) - O(6)_a$	110.0(9)	$O(1)_{-}I - Cd(2)_{-} - O(5)_{-}e$	105.9(5)	
$O(2)_h - Cd(2) - O(6)_a$	91.4(12)	$O(2)_{-1} - Cd(2)_{-1} - O(5)_{-2}$	88.8(5)	
$O(1)_l - Cd(2) - O(6)_a$	104.7(9)	$O(1)_h - Cd(2) - O(6)_e$	104.7(9)	
O(2)_I - Cd(2) - O(6)_a	84.0(12)	$O(2)_h - Cd(2) - O(6)_e$	84.0(12)	
$O(5)_e - Cd(2) - N(2)_d$	89.3(2)	$O(1)_{-}I - Cd(2) - O(6)_{-}e$	110.0(9)	
$O(6)_e - Cd(2) - N(2)_d$	143.8(2)	$O(2)_{-}I - Cd(2)_{-} - O(6)_{-}e$	91.4(12)	
$O(1)_h - Cd(2) - N(2)_d$	101.9(5)	$O(1)_h - Cd(2) - O(2)_h$	53.52(11)	
$O(2)_h - Cd(2) - N(2)_d$	92.6(8)	$O(1)_h - Cd(2) - O(1)_l$	84.97(11)	
$O(1)_{-}I - Cd(2)_{-} - N(2)_{-}d$	96.4(5)	$O(1)_h - Cd(2) - O(2)_l$	138.49(11)	
$O(2)_I - Cd(2) - N(2)_d$	84.6(8)	$O(1)_l - Cd(2)_l - O(2)_h$	138.49(11)	
O(5)_e - Cd(2) - O(6)_e	54.6(2)	$O(2)_h - Cd(2) - O(2)_l$	167.99(12)	
O(1)_h – Cd(2) – O(5)_e	131.7(5)			
Translation of Symmetry Con	to to Equivalent Decitions: a -	$= -v \cdot 1 - v \cdot -1/2 + z \cdot h = -v \cdot 1 - v \cdot 1/2 + z \cdot c = -1 - v \cdot z$	d - yyz = 0 - y1y 1/2 + y	7 f – v 1

Translation of Symmetry Code to Equivalent Positions: a = -x,1-y,-1/2+z, b = -x,1-y,1/2+z, c = -1-x,y,z, d = -x,y,z, e = x,1-y,-1/2+z, f = x,1-y,1/2+z, g = 1/2+x,-1/2+y,z, h = -1/2-x,1/2-y,-1/2+z, i = -1/2-x,1/2-y,1/2+z, j = 1/2-x,-1/2+y,z, k = -1/2+x,1/2-y,1/2+z, l = 1/2+x,1/2-y,-1/2+z.

Table S3 Selected bond distances (Å) and angles (°) for [Mn(PDC)(DMF)]_n [2]

Table 53 Selected bond distar	ices (A) and angles (°) to	r [IVIN(PDC)(DIVIF)] _n [2]		
Bond distances				
Mn(1) - O(3S)	2.154(14)	Mn(2) – O(10)_a	2.1247(18)	
Mn(1) – O(7)	2.2670(18)	$Mn(2) - O(3)_d$	2.1806(19)	
Mn(1) - O(8)	2.2922(18)	Mn(2) – O(6)_e	2.1412(19)	
Mn(1) – O(12)	2.0933(18)	Mn(3) – O(1)	2.1193(19)	
Mn(1) - O(3S)	2.164(17)	Mn(3) - O(1S)	2.1891(19)	
Mn(1) – N(3)_b	2.264(2)	Mn(3) – O(2S)	2.223(2)	
Mn(1) – O(4)_d	2.1585(19)	Mn(3) – O(9)_a	2.1904(18)	
Mn(2) – O(2)	2.1388(19)	Mn(3) – N(1)_c	2.305(2)	
Mn(2) – O(8)	2.2836(19)	Mn(3) – O(5)_e	2.1491(19)	
Mn(2) – O(11)	2.1581(19)			
Bond angles				
$O(3S)_1 - Mn(1) - O(7)$	88.8(3)	O(8) - Mn(2) - O(11)	83.68(7)	
$O(3S)_1 - Mn(1) - O(8)$	103.8(4)	$O(8) - Mn(2) - O(10)_a$	87.53(7)	
$O(3S)_1 - Mn(1) - O(12)$	88.6(3)	$O(3)_d - Mn(2) - O(8)$	97.48(7)	
$O(3S)_1 - Mn(1) - N(3)_b$	87.4(4)	$O(6)_e - Mn(2) - O(8)$	87.76(7)	
$O(3S)_1 - Mn(1) - O(4)_d$	163.2(4)	O(10)_a - Mn(2) - O(11)	90.43(7)	
O(7) - Mn(1) - O(8)	57.89(6)	$O(3)_d - Mn(2) - O(11)$	90.88(7)	
O(7) - Mn(1) - O(12)	156.30(7)	$O(6)_e - Mn(2) - O(11)$	168.31(7)	
$O(3S)_2 - Mn(1) - O(7)$	84.5(5)	$O(3)_d - Mn(2) - O(10)_a$	174.93(7)	
$O(7) - Mn(1) - N(3)_b$	113.04(7)	O(6)_e – Mn(2) – O(10)_a	97.16(7)	
$O(4)_d - Mn(1) - O(7)$	84.49(7)	$O(3)_d - Mn(2) - O(6)_e$	82.34(7)	
O(8) - Mn(1) - O(12)	100.04(7)	O(1) - Mn(3) - O(1S)	170.21(8)	
$O(3S)_2 - Mn(1) - O(8)$	96.5(5)	O(1) - Mn(3) - O(2S)	87.13(8)	
$O(8) - Mn(1) - N(3)_b$	164.76(7)	$O(1) - Mn(3) - O(9)_a$	90.22(7)	
$O(4)_d - Mn(1) - O(8)$	85.64(7)	$O(1) - Mn(3) - N(1)_c$	86.39(8)	
$O(3S)_2 - Mn(1) - O(12)$	90.2(5)	$O(1) - Mn(3) - O(5)_e$	105.68(7)	
$O(12) - Mn(1) - N(3)_b$	90.37(7)	O(1S) - Mn(3) - O(2S)	97.08(8)	
$O(4)_d - Mn(1) - O(12)$	103.65(7)	O(1S) – Mn(3) – O(9)_a	85.88(7)	
$O(3S)_2 - Mn(1) - N(3)_b$	94.6(5)	$O(1S) - Mn(3) - N(1)_c$	84.80(7)	
$O(3S)_2 - Mn(1) - O(4)_d$	165.5(5)	O(1S) – Mn(3) – O(5)_e	83.57(7)	
$O(4)_d - Mn(1) - N(3)_b$	81.06(8)	O(2S) – Mn(3) – O(9)_a	176.58(8)	
O(2) - Mn(2) - O(8)	168.89(7)	$O(2S) - Mn(3) - N(1)_c$	89.71(8)	
O(2) - Mn(2) - O(11)	85.26(7)	O(2S) – Mn(3) – O(5)_e	84.91(8)	
O(2) - Mn(2) - O(10)_a	93.63(7)	$O(9)_a - Mn(3) - N(1)_c$	92.26(7)	
$O(2) - Mn(2) - O(3)_d$	81.61(7)	O(5)_e – Mn(3) – O(9)_a	93.76(7)	
O(2) - Mn(2) - O(6)_e	103.04(7)	O(5)_e - Mn(3) - N(1)_c	166.47(8)	
Translation of Symmetry Code	to Equivalent Positions	x = 1/2 - x - 1/2 + y 3/2 - z h = 1/2-x 1/2+y 3/2-z	c = 3/2 - x - 1/2 + y 3/2 - z	1 = 3/2-

Translation of Symmetry Code to Equivalent Positions: a = 1/2-x,-1/2+y,3/2-z, b = 1/2-x,1/2+y,3/2-z, c = 3/2-x,-1/2+y,3/2-z, d = 3/2-x,1/2+y,3/2-z, e = 1-x,1-y,1-z.

Table S4 Selected bond distances (Å) and angles (°) for $[Mn_3(PDC)_2(INA)_2(DMF)_{1.5}(H_2O)_{0.5}]_n \cdot nDMF \cdot 2nH_2O$, [3].

Bond distances	, , , ,	[WIII3(PDC) ₂ (IIWA) ₂ (DIVIF) _{1.5} (H ₂ O) _{0.5} J _n ·IIDIVIF·.	2 / 3 4
Mn(1) - O(1)	2.133(9)	Mn(2) – O(3)_e	2.115(11)
Mn(1) - O(2S)	2.211(8)	$Mn(2) - O(5)_g$	2.181(8)
Mn(1) - N(4)	2.363(9)	Mn(2) – O(12)_h	2.137(9)
$Mn(1) - N(3)_b$	2.325(12)	Mn(3) - O(1S)	2.196(8)
Mn(1) – O(4)_e	2.161(8)	Mn(3) - O(10)	2.170(7)
$Mn(1) - O(6)_g$	2.137(10)	Mn(3) - N(2)	2.275(9)
Mn(2) - O(2)	2.146(8)	$Mn(3) - O(7)_c$	2.137(9)
Mn(2) - O(9)	2.117(10)	$Mn(3) - N(1)_c$	2.320(12)
$Mn(2) - O(8)_c$	2.184(8)	$Mn(3) - O(11)_h$	2.133(10)
Bond angles			
O(1) - Mn(1) - O(2S)	90.7(4)	O(9) – Mn(2) – O(12)_h	108.4(4)
O(1) - Mn(1) - N(4)	178.1(4)	$O(3)_e - Mn(2) - O(8)_c$	80.2(4)
$O(1) - Mn(1) - N(3)_b$	91.3(4)	$O(5)_g - Mn(2) - O(8)_c$	165.9(4)
$O(1) - Mn(1) - O(4)_e$	100.8(3)	$O(8)_c - Mn(2) - O(12)_h$	94.7(3)
$O(1) - Mn(1) - O(6)_g$	100.4(4)	$O(3)_e - Mn(2) - O(5)_g$	112.9(4)
O(2S) - Mn(1) - N(4)	88.2(4)	O(3)_e – Mn(2) – O(12)_h	87.7(5)
$O(2S) - Mn(1) - N(3)_b$	84.9(4)	$O(5)_g - Mn(2) - O(12)_h$	81.2(3)
$O(2S) - Mn(1) - O(4)_e$	164.1(4)	O(1S) - Mn(3) - O(10)	167.0(4)
$O(2S) - Mn(1) - O(6)_g$	88.0(4)	O(1S) - Mn(3) - N(2)	84.9(3)
$N(3)_b - Mn(1) - N(4)$	87.1(4)	$O(1S) - Mn(3) - O(7)_c$	85.8(3)
$O(4)_e - Mn(1) - N(4)$	80.1(3)	$O(1S) - Mn(3) - N(1)_c$	84.0(4)
$O(6)_g - Mn(1) - N(4)$	81.1(4)	$O(1S) - Mn(3) - O(11)_h$	85.1(4)
$O(4)_e - Mn(1) - N(3)_b$	83.9(3)	O(10) - Mn(3) - N(2)	85.6(3)
$O(6)_g - Mn(1) - N(3)_b$	166.4(4)	$O(7)_c - Mn(3) - O(10)$	103.1(3)
$O(4)_e - Mn(1) - O(6)_g$	100.5(3)	$O(10) - Mn(3) - N(1)_c$	86.9(3)
O(2) - Mn(2) - O(9)	83.9(3)	$O(10) - Mn(3) - O(11)_h$	103.0(4)
$O(2) - Mn(2) - O(8)_c$	101.4(3)	$O(7)_c - Mn(3) - N(2)$	170.2(3)
$O(2) - Mn(2) - O(3)_e$	84.3(4)	$N(1)_c - Mn(3) - N(2)$	88.5(4)
$O(2) - Mn(2) - O(5)_g$	85.7(3)	$O(11)_h - Mn(3) - N(2)$	85.8(4)
$O(2) - Mn(2) - O(12)_h$	160.5(4)	$O(7)_c - Mn(3) - N(1)_c$	87.5(4)
$O(8)_c - Mn(2) - O(9)$	86.2(3)	$O(7)_c - Mn(3) - O(11)_h$	96.5(4)
$O(3)_e - Mn(2) - O(9)$	159.8(4)	$O(11)_h - Mn(3) - N(1)_c$	168.1(4)
$O(5)_g - Mn(2) - O(9)$	82.4(4)		

Translation of Symmetry Code to Equivalent Positions: a = -1+x,y,z, b = 1+x,y,z, c = -x,-1/2+y,3/2-z, d = -x,1/2+y,3/2-z, e = 1-x,-1/2+y,3/2-z, f = 1-x,1/2+y,3/2-z, g = -x,-y,1-z, h = 1-x,-y,1-z

Table S5 Selected bond distances (Å) and angles (°) for $[Zn(PDC)(NMP)]_n \cdot nH_2O$, [4].

Bond distances				
Zn(1) - O(1)	1.946(3)	Zn(1) – O(4)_a	1.954(3)	
Zn(1) – O(5)	1.975(3)	Zn(1) - N(1)_c	2.049(3)	
Bond angles				
O(1) - Zn(1) - O(5)	105.71(13)	O(4)_a – Zn(1) – O(5)	119.60(13)	
$O(1) - Zn(1) - O(4)_a$	116.44(12)	$O(5) - Zn(1) - N(1)_c$	94.70(14)	
$O(1) - Zn(1) - N(1)_c$	121.22(12)	$O(4)_a - Zn(1) - N(1)_c$	97.98(14)	

Translation of Symmetry Code to Equivalent Positions: a = 1/2-x,1-y,-1/2+z, c = -1/2+x,3/2-y,1-z

Table S6 Selected bond distances (Å) and angles (°) for [Zn(PDC)(H₂O)(DMF)]_n, [5].

Bond distances				
Zn(1) - O(1)	1.993(3)	Zn(1) – O(3)_b	2.035(3)	
Zn(1) - O(5)	2.154(3)	$Zn(1) - N(1)_c$	2.098(4)	
Zn(1) – O(6)	2.075(3)			
Bond angles				
O(1) - Zn(1) - O(5)	90.82(13)	O(3)_b - Zn(1) - O(5)	92.58(12)	
O(1) - Zn(1) - O(6)	89.92(13)	$O(5) - Zn(1) - N(1)_c$	87.04(13)	
$O(1) - Zn(1) - O(3)_b$	125.76(11)	$O(3)_b - Zn(1) - O(6)$	91.42(13)	
$O(1) - Zn(1) - N(1)_c$	137.78(11)	$O(6) - Zn(1) - N(1)_c$	88.74(14)	
O(5) - Zn(1) - O(6)	174.49(13)	$O(3)_b - Zn(1) - N(1)_c$	96.46(11)	

Translation of Symmetry Code to Equivalent Positions: b = x,1+y,z, c = x,5/2-y,-1/2+z.

Table S7 Selected bond distances (Å) and angles (°) for $[Zn(PDC)(3hmpH)]_n \cdot nDMF \cdot 0.5nH_2O$, [6].

Bond distances		
Zn(1) - N(1)	2.009(5)	Zn(1) – O(3)_a 2.612(6)
Zn(1) - N(2)	2.040(5)	$Zn(1) - O(4)_d$ 1.958(5)
Zn(1) – O(2)_a	1.981(4)	
Bond angles		
N(1) - Zn(1) - N(2)	106.4(2)	$O(3)_a - Zn(1) - N(2)$ 155.46(18)
$O(2)_a - Zn(1) - N(1)$	120.2(2)	$O(4)_d - Zn(1) - N(2)$ 111.09(19)
$O(3)_a - Zn(1) - N(1)$	81.3(2)	$O(2)_a - Zn(1) - O(3)_a$ 55.52(17)
$O(4)_d - Zn(1) - N(1)$	114.5(2)	$O(2)_a - Zn(1) - O(4)_d$ 102.07(18)
O(2)_a - Zn(1) - N(2)	101.90(19)	$O(3)_a - Zn(1) - O(4)_d$ 85.34(17)

Translation of Symmetry Code to Equivalent Positions: a = -1+x,y,z, d = 2-x,1/2+y,3/2-z.

Table S8 Selected bond distances (Å) and angles (°) for $[Zn(PDC)(2hmpH)_2]_2 \cdot 2DMF$, [7].

Bond distances				
Zn(1) – O(1)	2.1986(16)	Zn(1) – N(1)	2.0972(18)	
Zn(1) - O(2)	2.2697(16)	Zn(1) - N(2)	2.0888(17)	
Zn(1) – O(3)	2.0711(14)	Zn(1) – O(5)_a	2.0406(15)	
Bond angles				
O(1) - Zn(1) - O(2)	91.54(6)	O(2) – Zn(1) – O(5)_a	92.58(6)	
O(1) - Zn(1) - O(3)	88.40(6)	O(3) - Zn(1) - N(1)	102.78(6)	
O(1) - Zn(1) - N(1)	77.67(6)	O(3) - Zn(1) - N(2)	95.01(6)	
O(1) - Zn(1) - N(2)	92.35(6)	$O(3) - Zn(1) - O(5)_a$	88.98(6)	
O(1) – Zn(1) – O(5)_a	169.90(6)	N(1) - Zn(1) - N(2)	159.22(6)	
O(2) - Zn(1) - O(3)	170.96(6)	$O(5)_a - Zn(1) - N(1)$	93.42(7)	
O(2) - Zn(1) - N(1)	86.02(6)	$O(5)_a - Zn(1) - N(2)$	97.60(6)	
O(2) - Zn(1) - N(2)	75.96(6)			

Translation of Symmetry Code to Equivalent Positions: a = -x,1-y,2-z

Table S9 Selected bond distances (Å) and angles (°) for [Co(PDC)(3hmpH)₂]₀·0.25nDMF, [8].

Bond distances				
Co(1) - N(1)	2.121(3)	Co(1) – O(3)_a	2.163(3)	
Co(1) - N(2)	2.158(3)	Co(1) – O(4)_a	2.214(3)	
Co(1) - N(3)	2.149(3)	$Co(1) - O(2)_d$	2.037(3)	
Bond angles				
N(1) - Co(1) - N(2)	94.33(14)	O(2)_d - Co(1) - N(2)	86.16(15)	
N(1) - Co(1) - N(3)	94.23(14)	$O(3)_a - Co(1) - N(3)$	92.16(13)	
$O(3)_a - Co(1) - N(1)$	90.46(13)	$O(4)_a - Co(1) - N(3)$	89.36(14)	
$O(4)_a - Co(1) - N(1)$	150.76(12)	$O(2)_d - Co(1) - N(3)$	87.75(13)	
$O(2)_d - Co(1) - N(1)$	109.66(13)	$O(3)_a - Co(1) - O(4)_a$	60.38(11)	
N(2) - Co(1) - N(3)	170.79(15)	$O(2)_d - Co(1) - O(3)_a$	159.83(13)	
$O(3)_a - Co(1) - N(2)$	91.19(14)	$O(2)_d - Co(1) - O(4)_a$	99.46(12)	
$O(4)_a - Co(1) - N(2)$	84.84(12)			

Translation of Symmetry Code to Equivalent Positions: a = -1+x,y,z, d = 1-x,1/2+y,1-z

Table S10 Selected bond distances (Å) and angles (°) for $[Cu(PDC)(3hmpH)_2]_n \cdot 0.5nDMF \cdot 1.5nH_2O$, [9].

Bond distances			
Cu(1) - O(1)	1.9781(14)	Cu(2) – O(5)	1.9656(14)
Cu(1) - O(3)	2.2153(16)	Cu(2) - N(1)	2.269(2)
Cu(1) - N(3)	2.0112(17)	Cu(2) - N(5)	2.0385(17)
Cu(1) - N(4)	2.0130(18)	Cu(2) – O(5) a	1.9656(14)
Cu(1) – O(4)_b	1.9551(16)	Cu(2) – N(5)_a	2.0385(17)
Bond angles			
O(1) - Cu(1) - O(3)	87.39(6)	O(5) – Cu(2) – N(1)	86.03(4)
O(1) - Cu(1) - N(3)	88.55(6)	O(5) - Cu(2) - N(5)	89.61(6)
O(1) - Cu(1) - N(4)	88.44(6)	$O(5) - Cu(2) - O(5)_a$	172.06(6)
$O(1) - Cu(1) - O(4)_b$	156.19(7)	$O(5) - Cu(2) - N(5)_a$	91.82(6)
O(3) - Cu(1) - N(3)	94.90(7)	N(1) - Cu(2) - N(5)	100.36(5)
O(3) - Cu(1) - N(4)	90.05(7)	$O(5)_a - Cu(2) - N(1)$	86.03(4)
$O(3) - Cu(1) - O(4)_b$	116.15(6)	$N(1) - Cu(2) - N(5)_a$	100.36(5)
N(3) - Cu(1) - N(4)	174.09(8)	$O(5)_a - Cu(2) - N(5)$	91.82(6)
$O(4)_b - Cu(1) - N(3)$	92.71(7)	N(5) – Cu(2) – N(5)_a	159.29(8)
O(4)_b - Cu(1) - N(4)	88.01(7)	O(5)_a – Cu(2) – N(5)_a	89.61(6)

Translation of Symmetry Code to Equivalent Positions: a = 1-x,y,1/2-z, b = -x,-y,-z

Table S11 Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in [Zn(PDC)(H₂O)(DMF)]_n,

[5]

D – H ··· A	D – H	H A	D A	∠ D – H ··· A	Symmetry
O(6) – H(6A) ··· O(4)	0.82(4)	1.88(4)	2.690(4)	169(4)	1-x,2-y,1-z
O(6) - H(6B) ··· O(2)	0.81(4)	1.90(4)	2.703(4)	169(5)	1-x.1/2+v.1/2-z

 $\textbf{Table S12} \ \ \textbf{Geometrical characteristics (distances in \ \mathring{\textbf{A}} \ \ \textbf{and angles in } ^o\textbf{)} \ \ \textbf{of the conventional H-bonds found in}$

 $[Zn(PDC)(2hmpH)_2]_2 \cdot 2DMF, [7].$

D – H … A	D – H	Н … А	D A	∠ D – H ··· A	Symmetry
O(1) - H(1A) ··· O(4)	0.82(3)	1.78(3)	2.586(2)	170(2)	_
O(2) – H(2A) ··· O(6)	0.82(3)	1.79(3)	2.609(2)	172(5)	-x,1-y,2-z

 Table S13 Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in

 $[Co(PDC)(3hmpH)_2]_n \cdot 0.25nDMF, [8].$

	, , ,					
D – H … A	D – H	Н … А	D A	∠ D – H ··· A	Symmetry	
O(6) – H(6) ··· O(5)	0.82	2.05	2.801(6)	153	x,y,1+z	
O(5) - H(7A) ··· O(1)	0.80(2)	2.38(3)	2.725(5)	107(3)	-x,1/2+y,-z	

Table S14 Geometrical characteristics (distances in Å and angles in °) of the conventional H-bonds found in

 $[Cu(PDC)(3hmpH)_2]_n\cdot 0.5nDMF\cdot 1.5nH_2O$, [9].

D – H ··· A	D – H	Н … А	D A	∠ D – H ··· A	Symmetry
O(7) – H(7A) ··· O(6)	0.98(3)	1.68(2)	2.651(2)	172(3)	-1/2+x,1/2+y,z
O(8A) – H(8A) ··· O(7)	0.92	1.81	2.722(4)	168	1+x,y,z
O(9) - H(9A) ··· O(2)	0.94(4)	1.76(4)	2.691(2)	174(3)	1/2+x,-1/2+y,z

Table S15 Thermogravimetric analysis (TG) data for the prepared compounds.

Lattice solvent loss (°C)		Coordinated solvent or		PDC ²⁻ decomposition		Final residue reached		
		pyridinealcohol loss (°C)		(°C)		(°C) (MO)		
Found (%)	Calcd. (%)	Found (%)	Calcd. (%)	Found (%)	Calcd. (%)	Found (%)	Calcd. (%)	
8.5	8.9(H ₂ O)	O Ep	7.6	20.1	40.0	21.2	22.5	
24.5	24.1(DMF)	9.5	7.0	38.1	40.8	21.2	22.5	
RT – 110, 130-220 ^a		280 – 325		375 – 440		440		
		25.0	24.9	52.0	50.8	24.0	24.2	
		120 -	120 – 300		350 – 470		470	
4.0	4.7	18.9	19.0	55.0	54.5	22.9	22.0	
RT – 110		140 – 330°		335 – 445 ^d		450		
		35.0	33.7	43.0	42.9	22.5	23.4	
RT –		195 ^e		390 – 480		480		
		28.0	28.3	46.5	46.4	25.5	25.3	
		90 – 240		400 – 510		510		
19.0	19.5	25.0	25.9	36.9	35.5	18.1	19.4	
30 -	- 250	280 – 370		380 – 480		480		
12.9	14.0	40.1	41.8	28.6	30.5	15.5	15.6	
70 – 150		180 – 290		355 – 390		420		
3.8	4.0	46.1	47.4	31.0	32.4	18.0	16.3	
RT – 120		235 – 310		315 – 430		430		
7.3	7.6			76.0	76.0 ^f	17.0	16.5	
RT -	- 205			230 – 380		380		
	Found (%) 8.5 24.5 RT – 110 4.0 RT – 19.0 30 – 12.9 70 – 3.8 RT – 7.3	Found (%) Calcd. (%) 8.5 8.9(H ₂ O) 24.5 24.1(DMF) RT – 110, 130-220 ^a 4.0 4.7 RT – 110 RT – 19.0 19.5 30 – 250 12.9 14.0 70 – 150 3.8 4.0 RT – 120	And the series of the series o	Lattice solvent loss (°C) Found (%) Calcd. (%) Pound (%) Calcd. (%) 8.5 8.9(H₂O) 24.5 9.5b 7.6 RT − 110, 130-220³ 280 − 325 25.0 24.9 120 − 300 4.0 4.7 18.9 19.0 RT − 110 140 − 330° 33.7 RT − 195° 28.0 28.3 90 − 240 19.0 19.5 25.0 25.9 30 − 250 280 − 370 12.9 14.0 40.1 41.8 70 − 150 180 − 290 3.8 4.0 46.1 47.4 RT − 120 235 − 310 7.3 7.6	Lattice solvent loss (°C) pyridinealcohol loss (°C) (°C) Found (%) Calcd. (%) Found (%) Calcd. (%) Found (%) 8.5 8.9 (H ₂ O) 9.5 b 7.6 38.1 RT – 110, 130-220a 280 – 325 375 25.0 24.9 52.0 120 – 300 350 4.0 4.7 18.9 19.0 55.0 RT – 110 140 – 330c 33.7 43.0 RT – 195e 390 28.3 46.5 90 – 240 400 400 19.0 19.5 25.0 25.9 36.9 30 – 250 280 – 370 380 380 12.9 14.0 40.1 41.8 28.6 70 – 150 180 – 290 355 355 3.8 4.0 46.1 47.4 31.0 RT – 120 235 – 310 315 76.0	Lattice solvet loss (°C) pyridinealcolol loss (°C) (°C) Found (%) Calcd. (%) Found (%) Calcd. (%) 8.5 8.9 (H₂O) 24.5 9.5b 7.6 38.1 40.8 RT - 110, 130-220a 280 - 325 375 - 440 50.8 50.	Pound (%) Calcd. (%) Found (%)	

^a H₂O and DMF were lost in two distinguishable steps.

^b In this case is the decomposition of the cation (CH₃)₂NH₂.

^c The loss of lattice and coordinated DMF is not distinguishable.

^d Both PDC²⁻ and INA⁻ are decomposed over this temperature range.

^e H₂O and NMP loss is indistinguishable.

 $^{^{\}rm f}$ This is assigned to the loss (and/or decomposition) of both 3hmph and pdc²⁻; it is a 4-step procedure but no assignments could be done for the individual steps.

Table S16. PDC²⁻ 2D coordination polymers with honeycomb topology.

		Lattice dimensions								
	Compound	а	b	С	α	в	γ	Space	Ref.	
								Group		
1	[Cd(PDC)(H ₂ O) ₂] _n	10.21	12.32	7.53	90	106.3	90	C2/c	53	
2	$[Cd(PDC)(DMA)_2]_n$	9.29	11.97	16.35	90	101.7	90	P2 ₁	54	
3	$[Mn(PDC)(H_2O)_2]_n$	10.07	12.17	7.37	90	106.1	90	C2/c	55	
4	$[Zn(PDC)(H_2O)_2]_n$	10.01	11.91	7.33	90	105.1	90	C2/c	56	
5	$[Co(PDC)(H_2O)(py)]_n$	10.87	9.87	11.91	90	91.5	90	$P2_1/c$	57	
6	$[Co(PDC)(H_2O)_2]_n$	9.89	11.96	7.39	90	105.1	90	C2/c	58	
7	$[Cu(PDC)(im)_2]_n$	15.78	12.38	7.86	90	90	90	Pnma	59	
8	$[Cu(PDC)(py)_2]_n$	10.09	11.60	14.68	90	93.7	90	$P2_1/n$	60	
9	$[Cu(PDC)(H_2O)_2]_n$	10.11	11.86	7.06	90	105.4	90	C2/c	61	
10	$[Fe(PDC)(H_2O)_2]_n$	9.95	12.07	7.41	90	105.9	90	C2/c	62	
11	$[Mg(PDC)(H_2O)_2]_n$	9.24	12.07	7.28	90	106.5	90	C2/c	63	
12	[Ca(PDC)(H2O)2]n	10.25	12.68	7.53	90	106.3	90	Cc	64	
13	$[Zn(PDC)(H_2O)(DMF)]_n$	11.04	9.74	12.14	90	90.3	90	$P2_1/c$	[5]*	
14	$[Co(PDC)(3hmpH)_2]_n$	7.75	15.32	8.72	90	112.7	90	$P2_1$	[8]*	

^{*} This work

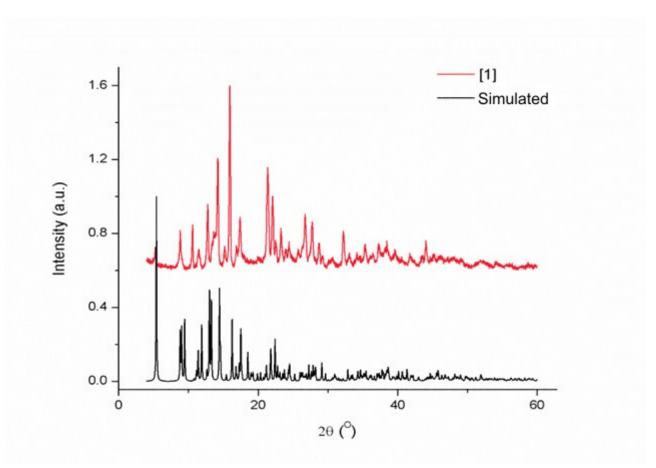


Fig. S1 The simulated and experimental XRD powder patterns for [1].

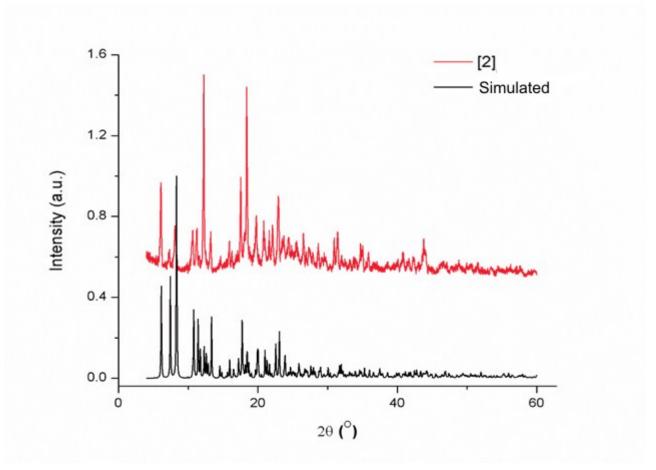


Fig. S2 The simulated and experimental XRD powder patterns for [2].

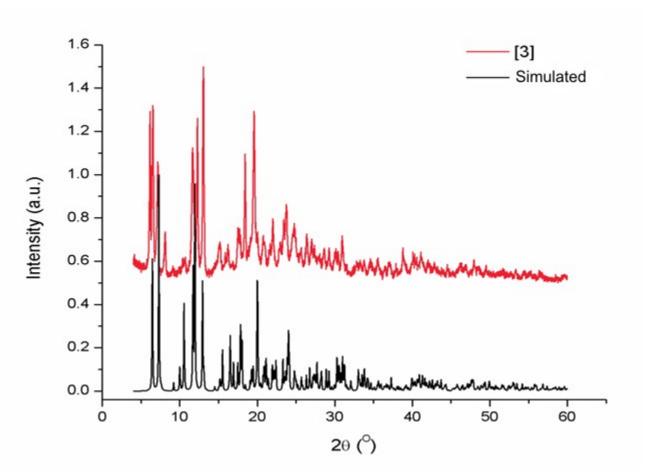


Fig. S3 The simulated and experimental XRD powder patterns for [3].

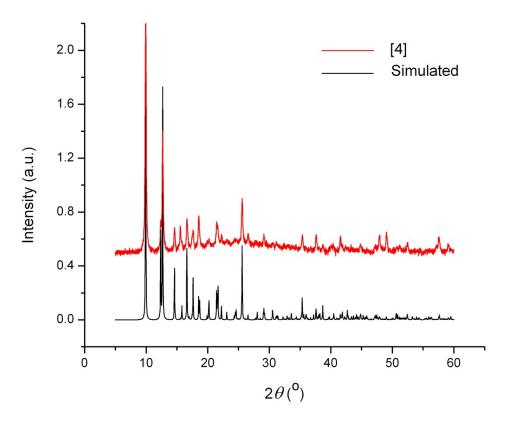


Fig. S4 The simulated and experimental XRD powder patterns for [4].

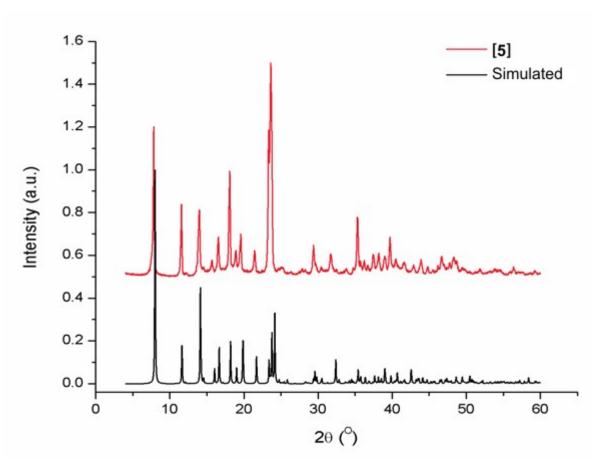


Fig. S5 The simulated and experimental XRD powder patterns for [5].

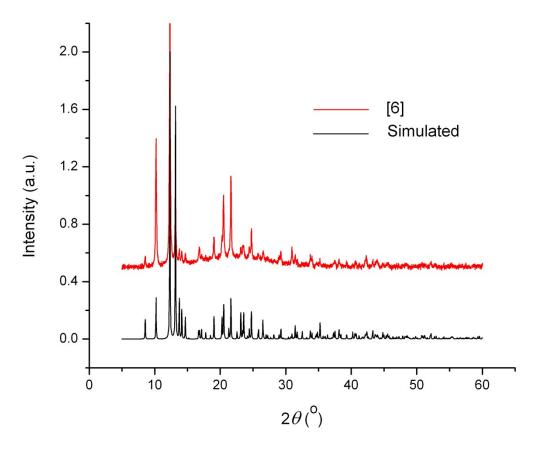


Fig. S6 The simulated and experimental XRD powder patterns for [6].

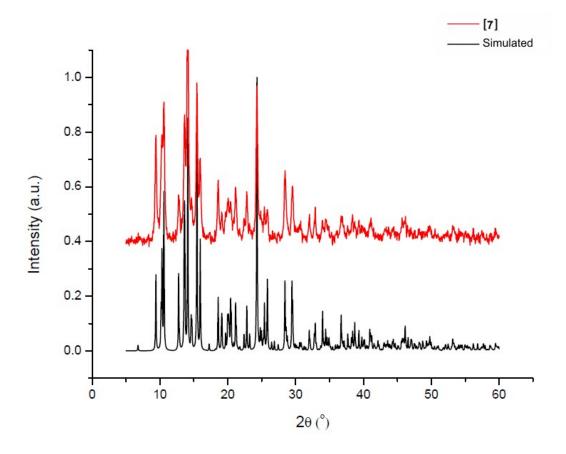


Fig. S7 The simulated and experimental XRD powder patterns for [7].

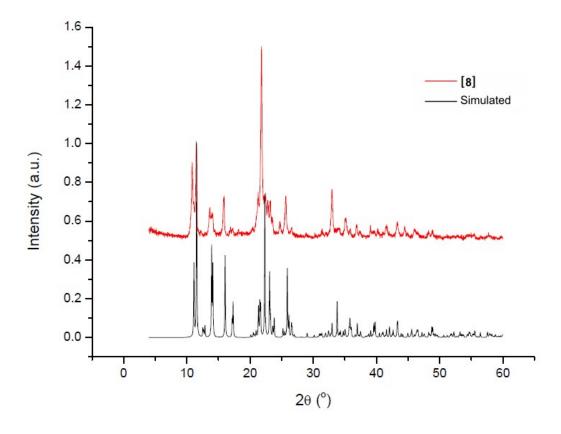
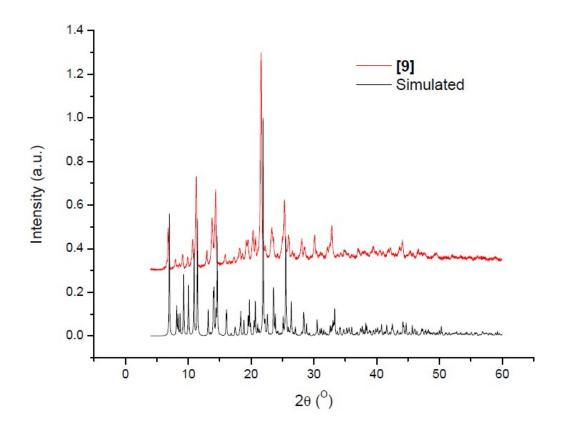
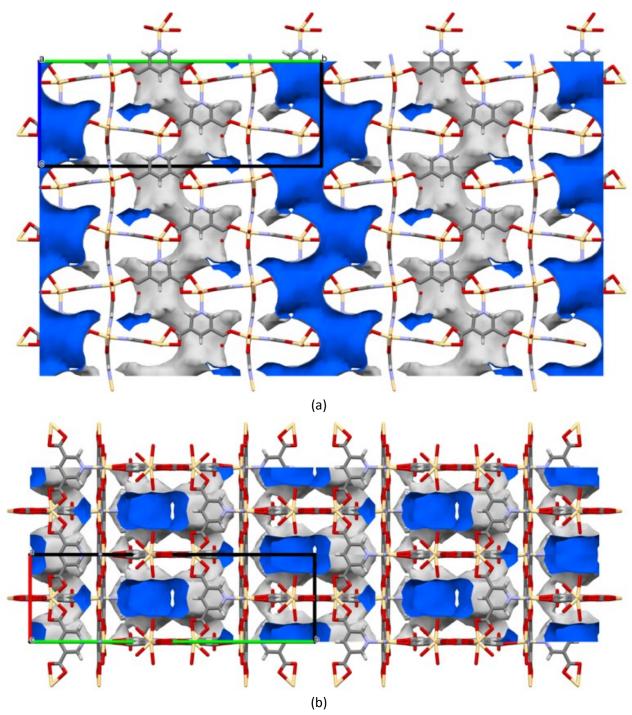
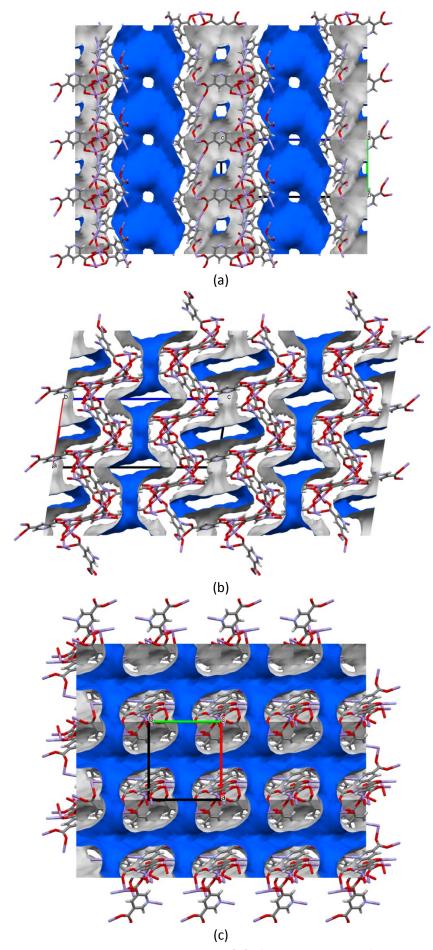
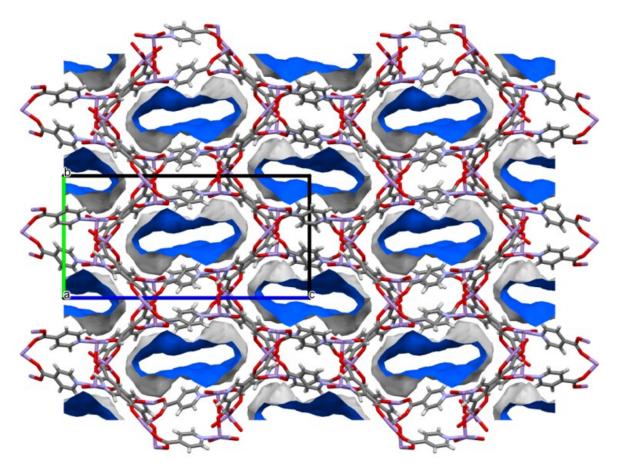
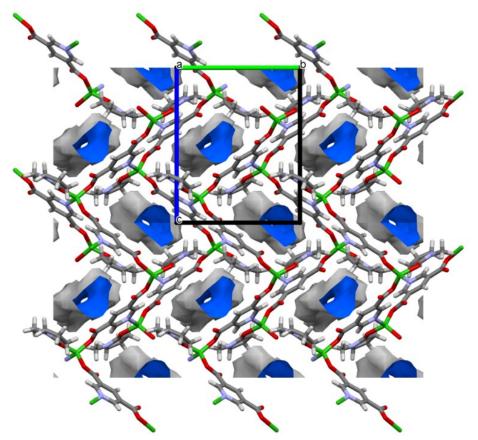
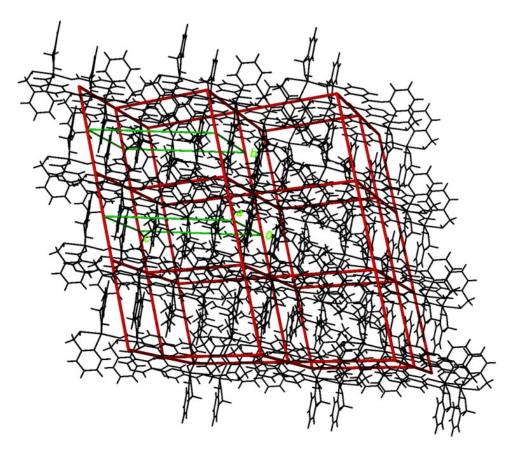


Fig. S8 The simulated and experimental XRD powder patterns for [8].


Fig. S9 The simulated and experimental XRD powder patterns for [9].


Fig. S10 Solvent accessible void space (internal wall is blue) in the anionic network in [1] down to a (a) and to c (b). The diameter of the channels is approximately 7 - 8 Å. This is where the cations and the solvated molecules are accommodated.


Fig. S11 Solvent accessible void space in the network in **[2]** after the removal of the coordinated DMF molecules down to a (a), b (b), and c (c). (The internal wall is blue). The parallelogram channels formed have approximate dimensions 9 x 4 Å.

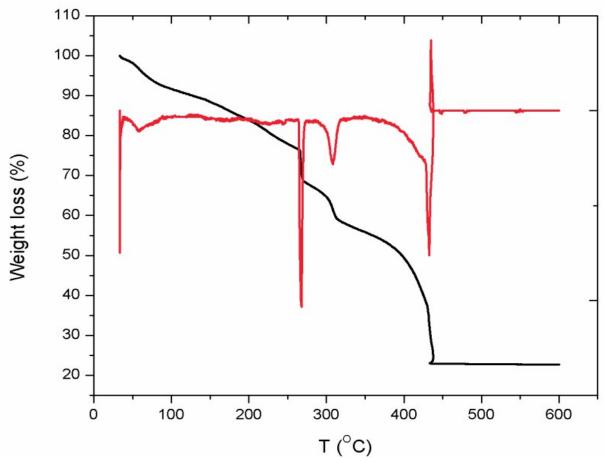

Fig. S12 Solvent accessible void space in the network in **[3]** after the removal of the coordinated DMF molecules down to a (a). (The internal wall is blue). The approximate dimensions of the channels are 17 x 9 Å.

Fig. S13 Solvent accessible void space in the network in **[4]** down to a (a). (The internal wall is blue). The diameter of the channels is approximately 4-5 Å.

Fig. S14 A perspective view of the **pcu** framework formed in [7] via $\pi - \pi$ stacking interactions. The network nodes are located on the centroids of the binuclear complex.

 $\textbf{Fig. S15} \ \ The \ \ TG/DTG \ \ curves \ for \ [[(CH_3)_2NH_2]_2[Cd_2(PDC)_3]]_n \cdot 4nDMF \cdot 6nH_2O, \textbf{[1]}.$

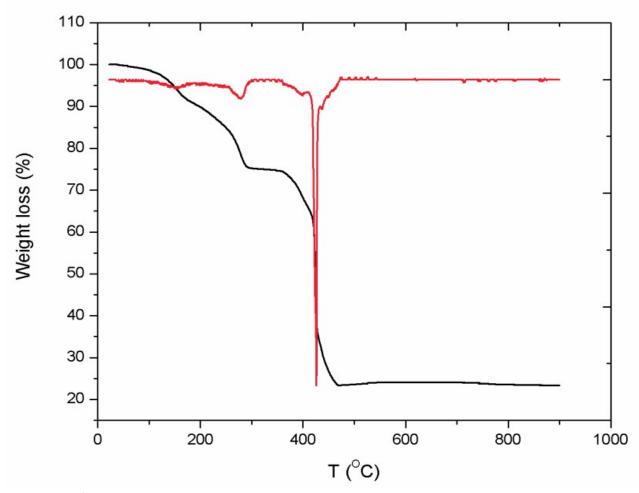
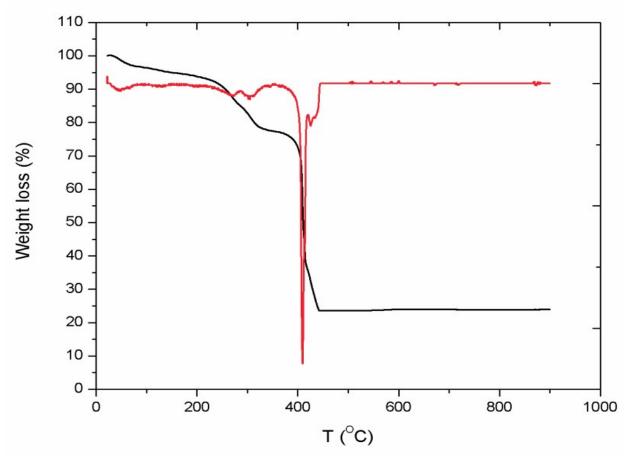



Fig. S16 The TG/DTG curves for [Mn(PDC)(DMF)]_n, [2]

 $\textbf{Fig. S17} \ \ The \ \ TG/DTG \ curves \ for \ [Mn_3(PDC)_2(INA)_2(DMF)_{1.5}(H_2O)_{0.5}]_n \cdot nDMF \cdot 2nH_2O, \textbf{[3].}$

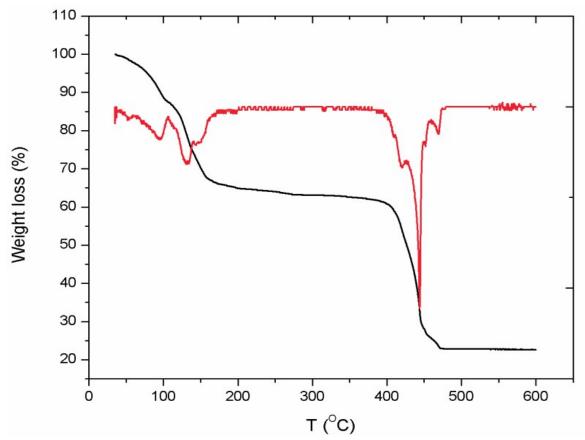


Fig. S18 The TG/DTG curves for $[Zn(PDC)(NMP)]_n \cdot nH_2O$, [4].

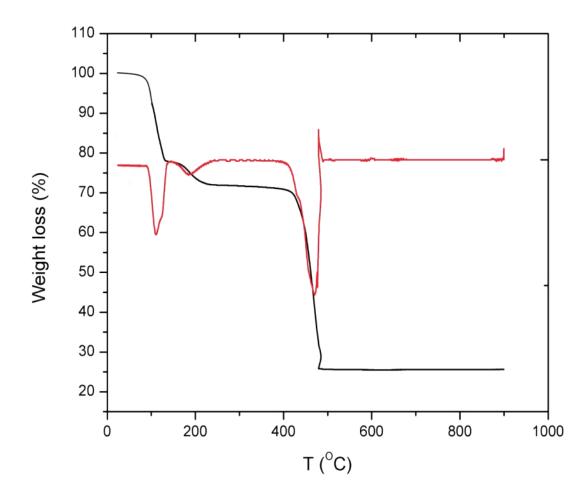


Fig. S19 The TG/DTG curves for $[Zn(PDC)(H_2O)(DMF)]_{n_r}$ [5].

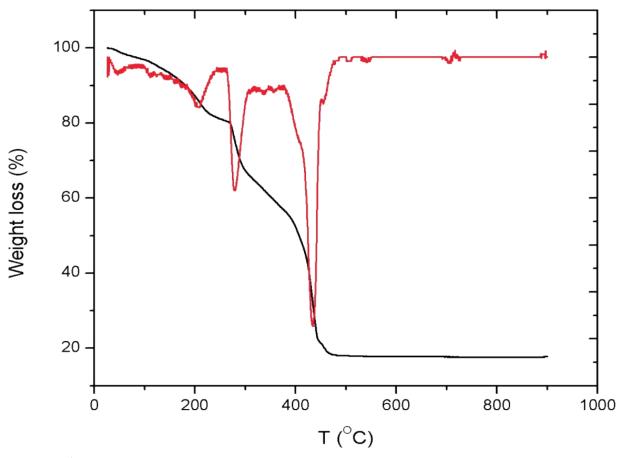


Fig. S20 The TG/DTG curves for [Zn(PDC)(3hmpH)] $_{n}\cdot$ nDMF·0.5nH $_{2}$ O, [6].

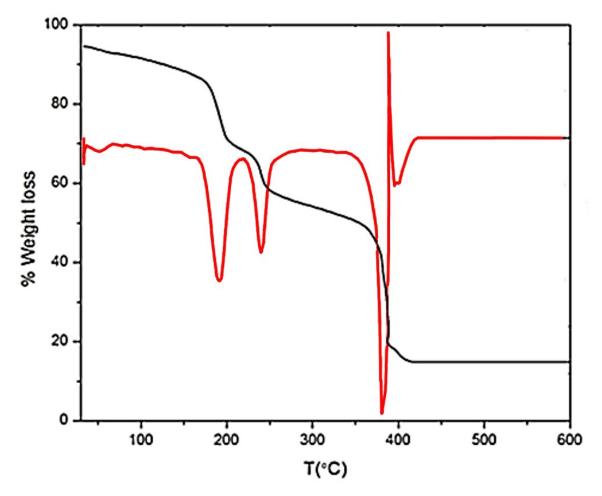


Fig. S21 The TG/DTG curves for $[Zn(PDC)(2hmpH)_2]_2 \cdot 2DMF$, [7].

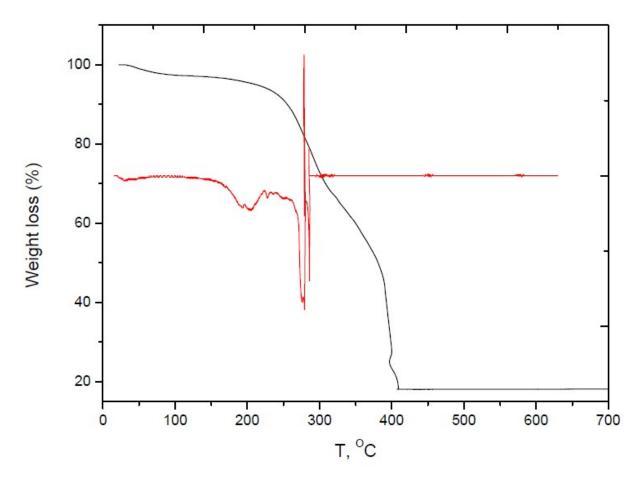


Fig. S22 The TG/DTG curves for $[Co(PDC)(3hmpH)_2]_n \cdot 0.25nDMF$, [8].

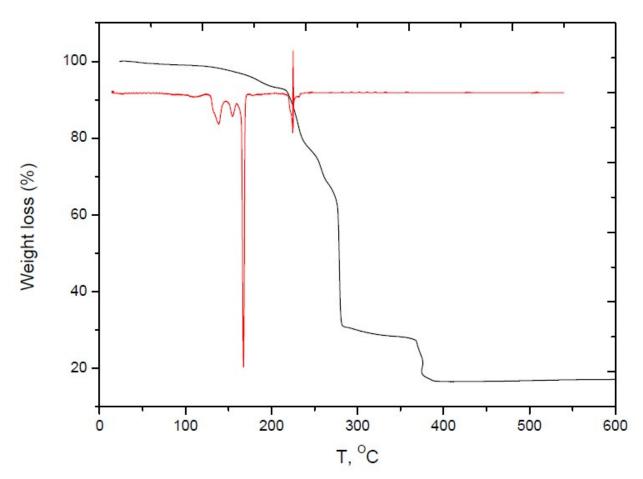


Fig. S23 The TG/DTG curves for $[Cu(PDC)(3hmpH)_2]_n \cdot 0.5nDMF$, [9].