Cryst Eng Comm

Supporting Information

<u>4-Cyanopyridine complexes $[MX_2(4-CNpy)_x]_n$ (with X = CI, Br and x = 1, 2):</u> <u>Crystal structures, thermal properties and a comparison with $[MX_2(3-CNpy)_x]_n$ </u> <u>complexes</u>

Miriam Heine, Lothar Fink, Martin U. Schmidt*

Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany. E-Mail: heine@chemie.uni-frankfurt.de, fink@chemie.uni-frankfurt.de, m.schmidt@chemie.uni-frankfurt.de; Fax: +49 69798 29235; Tel: +49 69798 29171

Figures

Figure S1	DTA/TG curves of $[MnBr_2(4-CNpy)_2]_n$ (β-1a).
Figure S2	DTA/TG curves of [FeCl ₂ (4-CNpy) ₂] _n (2a).
Figure S3	DTA/TG curves of [FeBr ₂ (4-CNpy) ₂] _n (3a).
Figure S4	DTA/TG curves of [CoBr ₂ (4-CNpy) ₂] _n (5a).
Figure S5	DTA/TG curves of [CuBr ₂ (4-CNpy) ₂] _n (6).
Figure S6	DTA/TG curves of $[ZnBr_2(4-CNpy)_2]_n$ (α-7).
Figure S7	DTA/TG curves of $[ZnBr_2(4-CNpy)_2]_n$ (β-7).
Figure S8	IR spectrum of [MnBr ₂ (4-CNpy) ₂] _n (α-1a).
Figure S9	IR spectrum of [MnBr ₂ (4-CNpy) ₂] _n (β-1a).
Figure S10	IR spectrum of $[MnBr_2(4-CNpy)_1]_n$ (1b).
Figure S11	IR spectrum of [FeCl ₂ (4-CNpy) ₂] _n (2a).
Figure S12	IR spectrum of $[FeCl_2(4-CNpy)_1]_n$ (2b).
Figure S13	IR spectrum of [FeBr ₂ (4-CNpy) ₂] _n (3a).
Figure S14	IR spectrum of [FeBr ₂ (4-CNpy) ₁] _n (3b).
Figure S15	IR spectrum of [CoCl ₂ (4-CNpy) ₂] _n (4a).
Figure S16	IR spectrum of [CoBr ₂ (4-CNpy) ₂] _n (5a).
Figure S17	IR spectrum of [CuBr ₂ (4-CNpy) ₂] _n (6).
Figure S18	IR spectrum of α-[ZnBr ₂ (4-CNpy) ₂] (α-7).
Figure S19	IR spectrum of β -[ZnBr ₂ (4-CNpy) ₂] (β-7).
Figure S20	Rietveld Plot of β -[MnBr ₂ (4-CNpy) ₂] _n (β -1a).
Figure S21	Rietveld Plot of γ-[MnBr ₂ (4-CNpy) ₂] _n (γ-1a).
Figure S22	Rietveld Plot of [MnBr ₂ (4-CNpy) ₁] _n (1b).

Cryst Eng Comm Supporting Information Figure S23 Rietveld Plot of [FeCl₂(4-CNpy)₂]_n (2a). Figure S24 Rietveld Plot of $[FeCl_2(4-CNpy)_1]_n$ (**2b**). Figure S25 Rietveld Plot of [FeBr₂(4-CNpy)₂]_n (**3a**). Figure S26 Rietveld Plot of $[FeBr_2(4-CNpy)_1]_n$ (**3b**). Figure S27 Rietveld Plot of [CoCl₂(4-CNpy)₂]_n (4a). Figure S28 Rietveld Plot of [CoCl₂(4-CNpy)₁]_n (4b). Figure S29 Rietveld Plot of [CoBr₂(4-CNpy)₁]_n (5b). Figure S30 Rietveld Plot of $[CuBr_2(4-CNpy)_2]_n$ (6). Figure S31 Rietveld Plot of α -[ZnBr₂(4-CNpy)₂] (α -7). Rietveld Plot of β -[ZnBr₂(4-CNpy)₂] (**β-7**). Figure S32 Figure S33 Experimental powder patterns of $[MnBr_2(4-CNpy)_2]_n$ (1a): **α-1a**, **β-1a** and mixture of **α-1a** + **β-1a** Figure S34 Experimental powder patterns of (1a): **β-1a** and **γ-1a** Figure S35 Experimental and calculated powder pattern of $[CoCl_2(4-CNpy)_2]_n$ (4a). Figure S36 Experimental powder patterns of [CoBr₂(4-CNpy)₂]_n (5a). 3-D-Plot of the (high-)temperature dependent X-ray measurement of 4a. Figure S37 Temperature dependent X-ray powder pattern of 4a (60-440°C, 50°C). Figure S38 3-D-Plot of the (high-)temperature dependent X-ray measurement of 5a. Figure S39 Figure S40 Temperature dependent X-ray powder pattern of **5a** (150-440°C, 50°C). Figure S41 DSC measurement of β -[MnBr₂(4-CNpy)₂]_n (β -1a).

Tables

Table S1	Results of the DTA/TG measurements.
Table S2 - Part 1	Crystallographic data of [MX ₂ (4-CNpy) ₂] _n (1a-5a).
Table S2 - Part 2	Crystallographic data of $[MBr_2(4-CNpy)_2]_n$ (6, α -7, β -7).
Table S3	Crystallographic data of [MX ₂ (4-CNpy) ₁] _n (1b-5b).
Table S4	Results of the Rietveld refinements using a disorder model for $[MCl_2(4\text{-}CNpy)_1]_n(\textbf{2b}\text{ and }\textbf{4b}).$
Table S5	Results of the Rietveld refinements of [MBr ₂ (4-CNpy) ₁] _n (1b, 3b, 5b) in space group <i>Pmma</i> (with the disorder model).
Table S6	Restraints applied for the 4-CNpy fragment.

Cryst Eng Comm	Supporting Information
Table S7	Temperature protocol for the preparation of $[CoX_2(4-CNpy)_1]_n$ (4b, 5b).
Table S8	Temperature protocol for the X-ray series monitoring the phase transition of β -1a to γ -1a.

Experimental details

Text S1	Details on synthesis of $[MX_2(4-CNpy)_2]_{(n)}$ (1a-5a, 6, α -7, β -7).
Text S2	Details on preparation of [MX ₂ (4-CNpy) ₁] _n (1b-5b).
Text S3	Details on structure solution and Rietveld refinements.

Figure S1. DTA/TG curves of β -[MnBr₂(4-CNpy)₂]_n (β -1a). Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S2. DTA/TG curves of $[FeCl_2(4-CNpy)_2]_n$ (**2a**). Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S3. DTA/TG curves of [FeBr₂(4-CNpy)₂]_n (**3a**). Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S4. DTA/TG curves of $[CoBr_2(4-CNpy)_2]_n$ (**5a**). Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S5. DTA/TG curves of $[CuBr_2(4-CNpy)_2]_n$ (6). Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S6. DTA/TG curves of α -[ZnBr₂(4-CNpy)₂] (α -7). The star * marks a phase of unknown composition. Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S7. DTA/TG curves of β -[ZnBr₂(4-CNpy)₂] (β -7). The star * marks a phase of unknown composition. Heating rate: 5 K/min, Ar atmosphere, Al₂O₃ crucible.

Figure S8. IR spectrum of α -[MnBr₂(4-CNpy)₂]_n (α -1a).

Figure S9. IR spectrum of β -[MnBr₂(4-CNpy)₂]_n (β -1a).

Figure S10. IR spectrum of [MnBr₂(4-CNpy)₁]_n (1b).

Figure S11. IR spectrum of [FeCl₂(4-CNpy)₂]_n (2a).

Figure S12. IR spectrum of $[FeCl_2(4-CNpy)_1]_n$ (2b).

Figure S13. IR spectrum of [FeBr₂(4-CNpy)₂]_n (3a).

Figure S14. IR spectrum of $[FeBr_2(4-CNpy)_1]_n$ (3b).

Figure S15. IR spectrum of [CoCl₂(4-CNpy)₂]_n (4a).

Figure S16. IR spectrum of [CoBr₂(4-CNpy)₂]_n (5a).

Figure S17. IR spectrum of $[CuBr_2(4-CNpy)_2]_n$ (6).

Figure S18. IR spectrum of α -[ZnBr₂(4-CNpy)₂] (α -7).

Figure S19. IR spectrum of β -[ZnBr₂(4-CNpy)₂] (β -7).

Figure S20. Rietveld plot of (β -1a). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S21. Rietveld plot of (γ -1a). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). One appearing reflection of 1b was excluded during the refinement. Change of the scales with corresponding factor is indicated.

Figure S22. Rietveld plot of (**1b**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S23. Rietveld plot of (**2a**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S24. Rietveld plot of (**2b**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S25. Rietveld plot of (**3a**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Reflections of a foreign phase are excluded. Change of the scales with corresponding factor is indicated

Figure S26. Rietveld plot of (**3b**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S27a. Full Rietveld plot of (**4a**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S27b. Rietveld plot of (**4a**) shown until 40° in 20. Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S28. Rietveld plot of (**4b**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S29. Rietveld plot of (**5b**). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S30. Rietveld plot of (6). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S31. Rietveld plot of (α -7). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S32. Rietveld plot of (β -7). Observed powder diagram (black points), calculated powder diagram (red solid line), difference curve (blue solid line) and calculated reflection positions (green bars). Change of the scales with corresponding factor is indicated.

Figure S33. Experimental X-ray powder patterns of $[MnBr_2(4-CNpy)_2]_n$ (**1a**), collected with Cu-K_{α 1} radiation. Violet: initial room temperature measurement of **1a**: pure **β-1a**. Black: measurement of **1a** at -100°C: mixture of **α-1a + β-1a**. Blue: new room temperature measurement after several weeks of **1a**: pure **α-1a**.

Figure S34. Experimental X-ray powder pattern of β -1a (blue) and γ -1a (violet), collected with Cu-K_{a1} radiation.

Figure S35. Experimental (blue) and calculated (UTIHIP, violet) X-ray powder pattern of $[CoCl_2(4-CNpy)_2]_n$ (4a) with Mo-K_{a1} radiation.

Figure S36. Experimental X-ray powder patterns of $[CoBr_2(4-CNpy)_2]_n$ (**5a**), collected with Mo-K_{a1} radiation. Blue: original data for structure determination of **5a** (LATJOI). Violet: data of a new sample of **5a**, obtained in 2019.

Figure S37. 3D-plot of the high-temperature X-ray measurement of $[CoCl_2(4-CNpy)_2]_n$ (4a), collected with Mo-K_{a1} radiation. Square root of the intensity chosen for better visibility.

Figure S38. Temperature dependent X-ray powder pattern of **4a** transforming to **4b** and **4c**, collected with Mo-K_{$\alpha1$} radiation.

Figure S39. 3D-plot of the high-temperature X-ray measurement of $[CoBr_2(4-CNpy)_2]_n$ (5a), collected with Mo-K_{$\alpha1$} radiation.

Figure S40. Temperature dependent X-ray powder pattern of **5a**, transforming to **5b** and **5c**, collected with Mo-K_{α 1} radiation.

Figure S41. DSC-curve of $[MnBr_2(4-CNpy)_2]_n$ (β -1a): (1) Cooling from room temperature to -120°C, then (2) heating back to room temperature. Instrumental artefacts are marked by stars.

Table S1 Results of DTA/TG measurements of $[MX_2(4-CNpy)_2]_n$. DTA peak temperatures, m₀: weight of starting compound, Δm_{exp} : relative experimental weight loss, experimental $\Delta m_{exp}/m_0$, calculated $\Delta m_{cal}/m_0$.

Compound	Т	m. [ma]	Δm _{exp}	Δm _{exp} /m ₀	∆m _{cal} /m₀
Compound	[°C]	ino [ing]	[mg]	[%]	[%]
β-[MnBr ₂ (4-CNpy) ₂] _n (β-1a	a)	22.328	0	0	0
[MnBr ₂ (4-CNpy) ₁] _n (1b)	260.68		5.074	23.51	24.61
[MnBr ₂ (4-CNpy) _{1/2}] _n (1c)	328.38		2.624	15.89	16.32
MnBr ₂	366.47		2.499	18.00	19.51
[FeCl ₂ (4-CNpy) ₂] _n (2a))	21.506	0	0	0
[FeCl ₂ (4-CNpy) ₁] _n (2b)	248.51		6.382	29.68	31.07
[FeCl ₂ (4-CNpy) _{1/3}]n (2c)) 347.61		4.294	28.39	30.06
FeCl ₂	418.84		1.519	14.02	21.49
[FeBr ₂ (4-CNpy) ₂] _n (3a)		22.000	0	0	0
[FeBr ₂ (4-CNpy) ₁] _n (3b)	242.24		4.652	23.14	24.56
[FeBr ₂ (4-CNpy) _{1/3}]n (30	;)		3.422	19.73	21.70
$FeBr_2 (\rightarrow FeBr_3)$	355.22		1.003	7,20	13.86
[CoCl ₂ (4-CNpy) ₂] _n (4a)		21.713	0	0	0
[CoCl ₂ (4-CNpy) ₁] _n (4b)	251.96		6.342	29.21	30.80
[CoCl ₂ (4-CNpy) _{1/3}]n (4c)	338.02		4.263	27.73	29.66
CoCl ₂	409.70		2.050	18.45	21.08
[CoBr ₂ (4-CNpy) ₂] _n (5a))	29.84	0	0	0
$[CoBr_2(4-CNpy)_1]_n$ (5b)	252.08		7.023	23.54	30.80
[CoBr ₂ (4-CNpy) _{1/3}] _n (5c)	358.48		4.614	20.22	21.49
CoBr ₂	389.72		2.231	12.25	13.69
[CuBr ₂ (4-CNpy) ₂] (6)		6.119	0	0	0
CuBr₂ (→ CuBr)	252.54		2.405	60.69	48.24
α -[ZnBr ₂ (4-CNpy) ₂] (α -	7)	31.043	0	0	0
ZnBr ₂	242.08		7.123	48.03	22.94
β-[ZnBr ₂ (4-CNpy) ₂] (β-	7)	13.56	0	0	0
ZnBr ₂	236.71		3.039	48.03	25.89

Table S2-Part 1. Crystallographic data of $[MX_2(4-CNpy)_2]_n$ (1a-5a).

	β -1a	γ-1a	2a	3a	4a-PD	4a-SC	5a
Compound	β-[MnBr ₂ (4-CNpy) ₂] _n	γ-[MnBr ₂ (4-CNpy) ₂] _n	[FeCl ₂ (4-CNpy) ₂] _n	[FeBr ₂ (4-CNpy) ₂] _n	[CoCl ₂ (4-CNpy) ₂] _n	[CoCl ₂ (4-CNpy) ₂] _n	[CoBr ₂ (4-CNpy) ₂] _n
CCDC number/ CSD code	1956119	1956120	1956117	1956115	1956112	UTIHIP	LATJOI
Structure determined from	Powder data	Powder data	Powder data	Powder data	Powder data	Single crystal data	Powder data
Formula	$C_{12}H_8Br_2MnN_4$	$C_{12}H_8Br_2MnN_4$	$C_{12}H_8CI_2FeN_4$	$C_{12}H_8Br_2FeN_4$	$C_{12}H_8CI_2CoN_4$	$C_{12}H_8CI_2CoN_4$	$C_{12}H_8Br_2CoN_4$
MW /g·mol⁻¹	422.96	422.96	334.97	423.87	338.06	338.06	426.96
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic
Space group (No.)	P 21/n (14)	P nnm (58)	P 21/n (14)	P nnm (58)	P 21/c (14)	P 21/c (14)	P nnm (58)
a/Å	27.0744(7)	27.1046(6)	26.5605(10)	26.9168(11)	3.628870(42)	3.608(2)	26.8461(15)
b/Å	7.38192(18)	7.4288(3)	7.1868(2)	7.3429(2)	7.15642(12)	7.065(5)	7.31908(32)
c/Å	3.83783(11)	3.86070(12)	3.66280(7)	3.79547(10)	26.46185(42)	26.342(4)	3.77080(11)
α /°	90	90	90	90	90	90	90
ß/°	91.182(3)	90	95.365(3)	90	93.3930(16)	92.093(6)	90
γ /°	90	90	90	90	90	90	90
V/Å ³	766.87(4)	777.37(4)	696.11(4)	750.17(4)	686.002(18)	671.0(6)	740.920
Z, Z'	2, 1⁄2	2, ¼	2, 1⁄2	2, ¼	2, 1⁄2	2, 1⁄2	2, ¼
Site symmetry of M	Ī	Ī	Ī	Ī	ī	ī	Ī
т /к	298	478	298	298	298	293	298
Radiation type	Cu <i>Κ</i> α ₁	Cu <i>Κ</i> α ₁	Cu <i>K</i> α₁	Cu <i>K</i> α₁	Mo <i>Κα</i> 1	Μο <i>Κα</i>	Mo <i>Κα</i> 1
Wavelength /Å	1.54056	1.54056	1.54056	1.54056	0.70930	0.71073	0.70930
2⊖ _{min} /°	3	3	3	3	1.6150	-	1
2⊖ _{max} /°	100	100	90	80	89.9046	-	60
psd step in 2⊖ /°	0.09	0.09	0.09	0.09	0.125	-	0.09
time/step /sec	120	80	160	130	30	-	180
number of scans	2	2	1	1	2	-	3
R _p /%	2.044	2.304	1.118	1.801	3.634	-	1.389
R _{wp} /%	2.915	2.914	1.465	2.374	4.834	-	1.891
Rexp /%	1.976	2.820	1.123	1.632	3.562	-	1.783
GOF	1.476	1.033	1.305	1.455	1.357	1.172	1.060
<i>Rp'/</i> % ^a	18.774	11.862	24.007	20.053	9.249	-	17.81
<i>R_{wp}' /</i> % ^a	15.827	28.219	17.657	15.685	10.106	-	13.06
R exp' /% ^a	10.726	18.035	13.535	10.782	7.446	-	12.32
a) P' P' and		a alkaraund aarra	atad according to	the reference [20	51		

a) R_p , R_{wp} and R_{exp} values are background corrected according to the reference [38].

Table S2-Part 2. Crystallographic data of $[MBr_2(4-CNpy)_2]_{(n)}$ (6, α -7, β -7).

	6	α-7	β-7
Compound	[CuBr ₂ (4-CNpy) ₂] _n	α-[ZnBr ₂ (4-CNpy) ₂]	β-[ZnBr ₂ (4-CNpy) ₂]
CCDC number/ CSD code	1956113	1956121	1956122
Structure determined from	Powder data	Powder data	Powder data
Formula	$C_{12}H_8Br_2CuN_4$	$C_{12}H_8Br_2ZnN_4$	$C_{12}H_8CI_2ZnN_4$
MW /g·mol⁻¹	431.57	433.41	433.41
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group (No.)	P 21/n (14)	C 2/c (15)	P 21/c (14)
a/Å	7.30106(14)	28.4031(3)	16.0185(4)
b/Å	25.8712(6)	7.73326(8)	12.09069(19)
c/Å	3.98420(7)	17.2427(2)	7.89902(13)
α /°	90	90	90
ß/°	97.3176(13)	126.9230(6)	94.8775(12)
γ /°	90	90	90
V/Å ³	746.44(3)	3027.76(6)	1524.30(5)
Z, Z'	2, 1/2	8, 1	4, 1
Site symmetry of M	1	1	1
т /к	298	298	298
Radiation type	Cu <i>Kα</i> 1	Cu <i>Κα</i> 1	Cu <i>Κα</i> 1
Wavelength /Å	1.54056	1.54056	1.54056
2⊖ _{min} /°	3	3	3
2⊖ _{max} /°	80	80	80
psd step in 2 0 /°	0.09	0.09	0.09
time/step / sec	150	150	120
number of scans	1	1	1
R _p /%	2.681	3.380	3.239
Rwp 1%	3.699	4.356	4.213
Rexp /%	2.904	3.642	3.452
GOF	1.274	1.196	1.220
R p' /% ^a	5.762	7.676	6.397
R wp'/% ^a	7.355	8.016	7.149
R _{exp} '/% ^a	5.775	6.703	5.858

Table S3. Crystallographic data of $[MX_2(4-CNpy)_1]_n$ (1b-5b).

	1b	2b	3b	4b	5b
Compound	[MnBr ₂ (4-CNpy) ₁] _n	[FeCl ₂ (4-CNpy) ₁] _n	[FeBr ₂ (4-CNpy) ₁] _n	[CoCl ₂ (4-CNpy) ₁] _n	[CoBr ₂ (4-CNpy) ₁] _n
CCDC number/ CSD code	1956118	1956116	1956114	1956126	1956111
Structure determined from	Powder data				
Formula	$C_6H_4Br_2MnN_2$	$C_6H_4Cl_2FeN_2$	$C_6H_4Br_2FeN_2$	$C_6H_4Cl_2CoN_2$	$C_6H_4Br_2CoN_2$
MW /g·mol⁻¹	318.85	230.86	319.76	233.95	322.85
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group (No.)	P 2/m (10)	<i>P m</i> (6)	<i>P 2/m</i> (10)	P m (6)	P 2/m (10)
a /Å	12.4448(6)	7.6656(8)	12.4397(9)	7.7426(4)	12.4692(10)
b/Å	3.82332(12)	3.57945(15)	3.75800(17)	3.57685(7)	3.76053(17)
c /Å	9.8744(5)	7.7986(10)	9.6919(7)	7.6901(4)	9.6232(7)
α /°	90	90	90	90	90
ß /°	90.569(8)	102.157	90.459(8)	102.664(2)	89.870(15)
γ /°	90	90	90	90	90
V/Å ³	469.81(4)	209.18(4)	453.07(5)	207.790(16)	451.24(5)
Z, Z'	2, 1/2	1, ½	2, 1⁄2	1, ½	2, 1⁄2
Site symmetry of M	т	т	т	т	т
т /К	298	298	298	523	523
Radiation type	Cu <i>K</i> α ₁	Cu <i>Κα</i> 1	Cu <i>Κα</i> 1	Mo <i>Κα</i> 1	Mo <i>Κα</i> 1
Wavelength /Å	1.54056	1.54056	1.54056	0.70930	0.70930
2⊖ _{min} /°	3	3	3	1	1
2⊖ _{max} /°	90	90	80	50.26	50.26
psd step in 2 O /°	0.09	0.09	0.09	0.125	0.125
time/step /sec	160	60	130	120	120
number of scans	1	1	1	2	2
R _p /%	1.757	1.304	1.524	3.882	1.480
Rwp /%	2.331	1.681	1.974	5.477	1.984
Rexp /%	1.442	1.575	1.664	2.995	1.404
GOF	1.616	1.067	1.186	1.829	1.413
R p' /% ^a	18.116	40.719	27.077	10.365	19.766
R _{wp} '/% ^a	14.684	23.746	18.263	11.476	14.496
R _{exp} '/% ^a	9.087	22.252	15.403	6.274	10.260

Table S4. R-Values of the Rietveld refinements of $[MCl_2(4-CNpy)_1]_n$ (**2b**, **4b**) in P 2/m using models with and without disorder.

	[FeCl₂(4-CN	lpy)₁] _n (2b)	[CoCl ₂ (4-CNpy) ₁] _n (4b)		
	without disorder model	with disorder model	without disorder model	with disorder model	
R _{bragg}	0.7160	0.5962	2.2730	3.2948	
R _P /%	1.304	1.298	3.882	4.323	
R _{wp} /%	1.681	1.673	5.477	5.749	
Rexp /%	1.575	1.575	2.995	2.995	
GOF	1.067	1.062	1.829	1.920	
R p'/% ^a	40.719	40.641	10.365	11.591	
R wp' /% ^a	23.746	23.665	5.477	12.063	
R exp' /% ^a	22.252	22.278	6.274	6.283	

Table S5. Results of the Rietveld refinements of $[MBr_2(4-CNpy)_1]_n$ (**1b**, **3b**, **5b**) in space group *Pmma* without using the disorder-model.

	[MnBr ₂ (4-CNpy) ₁] _n (1b)	[FeBr ₂ (4-CNpy) ₁] _n (3b)	[CoBr ₂ (4-CNpy) ₁] _n (5b)
R _{bragg}	1.649	1.853	2.473
R _P /%	2.108	3.882	1.727
Rwp /%	2.951	3.023	2.484
R _{exp} /%	1.443	1.665	1.407
GOF	2.044	1.815	1.765
R p' /% ^a	22.087	39.659	24.165
R wp '/% ^a	18.629	28.939	18.214
<i>R_{exp}' /</i> % ^a	9.112	15.943	10.318

Table S6. Restraints applied for the 4-CNpy fragment in the Rietveld refinements.

Type of bond angle	Angle [°]	Type of bond length	Length [Å]
C=C-H	120	N=C	1.34
C=C=C	120	C=C	1.38
C-C≡N	180	C≡N	1.14
N=C=C	120	C-H	0.99
N=C-H	120	C-C	1.44

Table S7. Measurement protocol of the high temperature series to prepare $[CoCl_2(4-CNpy)_1]_n$ (**4b**) and $[CoBr_2(4-CNpy)_1]_n$ (**5b**) on the X-ray powder diffractometer.

Elapsed time [min]	Step No.	Mode	Target temperature [°C]	Holding time before next step or measurement [min]	Measurement No.
00:00	1	Ramp	40.0	0	
00:01	2	Ramp	90.0	0	
00:12	3	Hold	90.0	10	
00:13	4	Ramp	140.0	0	
00:23	5	Hold	140.0	10	
00:24	6	Ramp	190.0	0	
00:35	7	Hold	190.0	10	
00:36	8	Ramp	240.0	0	
00:47	9	Hold	240.0	10	
00:47	10	Ramp	250.0	0	
02:58	11	Hold	250.0	10	1
05:09	12	Hold	250.0	10	2

Table S8. Measurement protocol of the temperature series to monitor the phase transition of β -1a to γ -1a on the powder diffractometer.

Elapsed time [min]	Step No.	Mode	Target temperature [°C]	Holding time before next step or measurement	Measurement No.
				[min]	
00:00	1	Ramp	20.0	0	
01:38	2	Hold	20.0	0	1
01:36	3	Ramp	22.0	0	
03:12	4	Hold	22.0	0	2
03:09	5	Ramp	24.0	0	
04:45	6	Hold	24.0	0	3
04:43	7	Ramp	26.0	0	
06:19	8	Hold	26.0	0	4
06:16	9	Ramp	28.0	0	
07:53	10	Hold	28.0	0	5
07:50	11	Ramp	30.0	0	
09:26	12	Hold	30.0	0	6
09:24	13	Ramp	32.0	0	
11:00	14	Hold	32.0	0	7
10:57	15	Ramp	30.0	0	
12:34	16	Hold	30.0	0	8
12:31	17	Ramp	28.0	0	
14:08	18	Hold	28.0	0	9
14:05	19	Ramp	26.0	0	
15:42	20	Hold	26.0	0	10
15:39	21	Ramp	24.0	0	
17:16	22	Hold	24.0	0	11
17:13	23	Ramp	22.0	0	
18:50	24	Hold	22.0	0	12
18:47	25	Ramp	20.0	0	
20:23	26	Hold	20.0	0	13

Text S1

Details on syntheses of [MX₂(4-CNpy)₂]_(n) (1a-5a, 6, 7)

Synthesis of $[MnBr_2(4-CNpy)_2]_n$ (1a). $MnBr_2$ (1.0 g, 4.66 mmol) was dissolved in 15mL ethanol, 4-CNpy (0.97 g, 9.32 mmol) was dissolved in 35 mL ethanol. No precipitate formed after having mixed the solutions. The mixture was place in a fridge (8°C), where a light pink powder formed within three days. IR -C=N: 2242 cm⁻¹.

Synthesis of $[FeCl_2(4-CNpy)_2]_n$ (2a). $FeCl_2 \cdot 6 H_2O$ (0.5 g, 3.944 mmol) was dissolved in 70mL ethanol, 4-CNpy (1.64 g, 15.77 mmol) was dissolved in 80 mL ethanol. By mixing both solutions, an orange precipitate formed. IR -C=N: 2243 cm⁻¹.

Synthesis of [FeBr₂(4-CNpy)₂]_n (3a). FeBr₂ · x H₂O (0.45g, 4,2 mmol) was dissolved in 70 mL ethanol, 4-CNpy (0.91 g, 8.72 mmol) was dissolved in 80 mL methanol. No precipitate formed after having mixed the solutions. The mixture was place in a fridge (8°C), where a dark orange powder formed within two days. IR -C=N: 2243 cm⁻¹.

Synthesis of [CoCl₂(4-CNpy)₂]_n (4a). CoCl₂ · 6 H₂O (1,0 g, 4,21 mmol) was dissolved in 10 mL methanol, 4-CNpy (0.44 g, 4.4 mmol) was dissolved in 10 mL methanol. By mixing both solutions, a lilac precipitate formed. IR -C=N: 2241 cm⁻¹.

Synthesis of $[CoBr_2(4-CNpy)_2]_n$ (5a). $CoBr_2$ (0,53 g, 2,4 mmol) was dissolved in 8 mL ethanol, 4-CNpy (0.55 g, 5.3 mmol) was dissolved in 5 mL ethanol. No precipitate formed after having mixed the solutions. The mixture was heated to 70°C and a violet powder was obtained within one minute. IR -C=N: 2247 cm⁻¹.

Synthesis of [CuBr₂(4-CNpy)₂]ⁿ (6). CuBr₂ (0,5 g, 2,23 mmol) was dissolved in 40 mL methanol, 4-CNpy (0.93 g, 8.92 mmol) was dissolved in 20 mL methanol. By mixing both solutions, an neon green precipitate formed. IR -C≡N: 2243 cm⁻¹.

Synthesis of $[ZnBr_2(4-CNpy)_2]$ (α -7/ β -7). $ZnBr_2$ (0,46 g, 2,22 mmol) was dissolved in 40 mL ethanol, 4-CNpy (0.49 g, 4.66 mmol) was dissolved in 20 mL ethanol. The solutions were mixed and colorless precipitate formed with two minutes. IR -C=N: 2243 cm⁻¹.

Text S2

Details on preparation of [MX₂(4-CNpy)₁]_n

Preparation of [MnBr₂(4-CNpy)₁]_n (1b). 1b was prepared by thermal decomposition of [MnBr₂(4-CNpy)₂]_n (**1a**) at 230°C in the DTA-TG device. A greyish powder was obtained. IR $-C\equiv N$: 2242 cm⁻¹ but should be around 2280 cm⁻¹. [MnBr₂(4-CNpy)₁]_n easily reacts with water and oxygen and, unfortunately, IR data may be incorrect.

Preparation of [FeCl₂(4-CNpy)₁]_n (2b). 2b was prepared by thermal decomposition of [FeCl₂(4-CNpy)₂]_n (2a) at 220°C in the DTA-TG device. A yellow powder was obtained. IR -C=N: 2276 cm⁻¹.

Preparation of [FeBr₂(4-CNpy)₁]_n **(3b). 3b** was prepared by thermal decomposition of [FeBr₂(4-CNpy)₂]_n **(3a)** at 260°C in the DTA-TG device. A dark red powder was obtained. IR -C=N: 2284 cm⁻¹.

Preparation of [CoCl₂(4-CNpy)₁]_n (4b). 4b was prepared by thermal decomposition of [CoCl₂(4-CNpy)₂]_n (**4a**) at 250°C on the x-ray powder diffractometer. No IR spectrum was measured, because the sample always was obtained *in-situ*.

Preparation of [CoBr₂(4-CNpy)₁]_n (5b). 5b was prepared by thermal decomposition of [CoCl₂(4-CNpy)₁]_n (5a) at 250°C on the x-ray powder diffractometer. No IR spectrum was measured, because the sample was obtained *in-situ*.

Text S3

Further details on structure solution and Rietveld refinements.

[MnBr₂(4-CNpy)₂]_n (β -1a). The first 20 peaks were selected for indexing in DASH which resulted in a monoclinic unit cell with Z = 2. Structure solution was then carried out using simulated annealing with DASH. A starting molecular model was derived from the known crystal structure of [MnBr₂(4-CNpy)₂]_n. The molecular fragment was restricted to rotate around the Mn atom. The Mn atom was placed on the origin, the bromine atom was fixed on (x,z,1/2), 4-CNpy was fixed on (x,y,0).

[MnBr₂(4-CNpy)₂]_n (γ -1a). The first 20 peaks were selected for indexing in DASH which resulted in an orthorhombic unit cell with Z = 2. Structure solution was then carried out using simulated annealing with DASH. A starting molecular model was

derived from the known crystal structure of β -[MnBr₂(4-CNpy)₂]_n. The molecular fragment was restricted to rotate around the Mn-atom, Mn-atom and 4-cyanopyridine were fixed on a special position (0,0,0) during the simulated annealing.

[MnBr₂(4-CNpy)₁]_n (1b). The structure is isotypic to $[NiBr_2(4-CNpy)_1]_n$. A Pawley fit was performed in TOPAS using the lattice parameters of $[NiBr_2(4-CNpy)_1]_n$ as starting values. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out with the simulated annealing algorithm of DASH using a starting molecular model derived from $[NiBr_2(4-CNpy)_1]_n$. The molecular fragment was restricted to rotate around the Mn atom, Mn atom and 4-cyanopyridine were fixed on a special position (0,0,0) during the simulated annealing. The Rietveld refinement was carried out with TOPAS. The Mn atom was placed on the origin, the bromine atom was fixed on (x,-1/2,z), the 4-cyanopyridine was fixed on (x,0,z).

[FeCl₂(4-CNpy)₂]_n (2a). The first 20 peaks were selected for indexing in CONOGRAPH which resulted in a monoclinic unit cell with Z = 2. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out using simulated annealing in DASH. The molecular fragment (FeCl₂(4cypy)₁) was restricted to rotate around the Fe atom on special position (0,0,0). Rietveld refinement was carried out with TOPAS.

[FeCl₂(4-CNpy)₁]_n (2b). [FeCl₂(4-CNpy)₁]_n is isotypic to [NiCl₂(4-CNpy)₁]_n. At first, a Pawley fit was performed in TOPAS refining background and instrumental parameters (zero point, axial divergence). Next, size and strain parameters were refined. The crystal structure of [NiCl₂(4-CNpy)₁]_n was used as starting point for the subsequent structure refinement. The Rietveld refinement was carried out with TOPAS.

[FeBr₂(4-CNpy)₂]_n (3a). The first 20 peaks were selected for indexing in CONOGRAPH and DASH, which both resulted in a orthorhombic unit cell with Z = 2. Structure solution was then carried out using simulated annealing with DASH. A starting molecular model was derived from the known crystal structure of [NiBr₂(4-CNpy)₂]_n. The Fe atom was placed on the origin, the bromine atom was fixed on (x,z,1/2), the 4-cyanopyridine was restrained flat in the mirror plane. The Rietveld refinement was carried out with TOPAS.

[FeBr₂(4-CNpy)₁]_n (3b). The structure is isotypic to [NiBr₂(4-CNpy)₁]_n and [MnBr₂(4-CNpy)₁]_n. A Pawley fit was performed in TOPAS (Coelho, 2018) using the lattice paramters of [MnBr₂(4-CNpy)₁]_n as starting values. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out with the simulated annealing algorithm of DASH using a starting molecular model derived from [NiBr₂(4-CNpy)₁]_n. The molecular fragment was restricted to rotate around the Fe-atom. The Fe atom was placed on the origin, the bromine atom was fixed on (x,-1/2,z), the 4-cyanopyridine was fixed on (x,0,z). The Rietveld refinement was carried out with TOPAS.

[CoCl₂(4-CNpy)₂]_n (4a). The structure of [CoCl₂(4-CNpy)₂]_n was determined from single crystal data (UTIHIP) by Chen et. al in 2011. A Pawley fit was performed in TOPAS using these lattice parameters as starting values. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out with the simulated annealing algorithm of DASH using one Co and one Cl atom, and one 4cypy ring as fragments. The Co atom was placed on special position (0,0,0). Rietveld refinement was carried out with TOPAS (Coelho, 2018).

[CoCl₂(4-CNpy)₁]_n **(4b).** The compound is isotypic to [NiCl₂(4cypy)1]n and [FeCl₂(4cypy)1]n. A Pawley fit was performed in TOPAS (Coelho, 2018) using the lattice parameters of the isotypic Ni-compound. First background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out with the simulated annealing algorithm of DASH using one Co atom, two Cl atoms and one 4cypy ring as fragments. The Co atom was placed on special position (0,0,0), the pyridine ring was placed on (x,0,z) and the Cl atoms were placed on (x,1/2,z). Rietveld refinement was carried out with TOPAS.

[CoBr₂(4-CNpy)₁]_n (5b). The structure is isotypic to [MnBr₂(4-CNpy)₁]_n, [FeBr₂(4-CNpy)₁]_n and [NiBr₂(4-CNpy)₁]_n. A Pawley fit was performed in TOPAS (Coelho, 2018) using the lattice parameters of [NiBr₂(4-CNpy)₁]_n as starting values. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out with the simulated annealing algorithm of DASH using one Co atom, two Br atoms and one 4-cypy as fragments. The Co atom was placed on the origin, the bromine atom was fixed on (x,-1/2,z), the 4-cyanopyridine was fixed on (x,0,z).

[CuBr₂(4-CNpy)₂]_n (6). At first, a Pawley fit was performed in TOPAS to refine background and instrumental parameters (zero point, axial divergence). Next, size and strain parameters were refined. The crystal structure of [CuCl₂(4-CNpy)₂]_n was used as starting point for the subsequent structure refinement. Rietveld refinement was carried out with TOPAS.

[ZnBr₂(4-CNpy)₂]_n (α -7). The first 20 peaks were selected for indexing in CONOGRAPH and DASH which resulted unanimously in a monoclinic unit cell with Z = 8. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out using simulated annealing with DASH. A starting molecular model was derived from the crystal structure of [ZnBr₂(4-CNpy)₂]. The molecular fragment was restricted to rotate around the Zn atom during the simulated annealing procedure. Rietveld refinement was carried out with TOPAS.

[ZnBr₂(4-CNpy)₂]_n (β-7). The first 20 peaks were selected for indexing in CONOGRAPH which resulted in a monoclinic unit cell with Z = 4. First, background and instrumental parameters (zero point, axial divergence) were refined. Next, size and strain parameters were refined. Structure solution was then carried out using simulated annealing with DASH. The starting molecular model for the β-phase was derived from the crystal structure of α -[ZnBr₂(4-CNpy)₂]. The molecular fragment was restricted to rotate around the Zn atom during simulated annealing. Rietveld refinement was carried out with TOPAS.