Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information

Cost-effective approach to detect Cu(II) and Hg(II) by integrating smartphone with the

colorimetric response from NBD-benzimidazole based dyad

Thangaraj Anand and Suban K Sahoo*

Department of Applied Chemistry, SV National Institute of Technology (SVNIT), Surat-395007,

India. (E-mail: suban sahoo@rediffmail.com; Tel.: 91-261-2201855)

Fig. S1. ¹H NMR spectrum of the receptor N1.

Fig. S3. HRMS spectrum of the receptor N1.

Fig. S4. Fluorescence spectral changes of **N1** (50 μ L, 2.5×10⁻⁵ M) in CH₃OH:H₂O (1:1, v/v) upon addition of different metal ions (50 μ L, 1×10⁻³ M, H₂O).

Fig. S5. (a) The B-H plot of fluorescence curve of N1 in the presence of Cu^{2+} ion. (b) B-H plot of fluorescence data of N1 in the presence of Hg²⁺ ion.

Fig. S6. (a) Calibration curve to estimate the LOD of N1 for Cu^{2+} and Hg^{2+} (b) in aqueous methanol medium.

Fig. S7. HRMS spectrum of receptor N1 with Cu^{2+} ion.

Fig. S8. HRMS Spectrum of receptor N1 with Hg^{2+} ion.

Fig. S9. DFT computed 3D structure of the N1-Cu²⁺ complex and it's HOMO's and LUMO's diagrams along with the two band gaps for alpha and beta MO's. In open-shell system with unpaired electron, the band gap is also calculated from the highest singly occupied MO (SOMO) to the next LUMO, which is estimated as 0.05746 eV ($\Delta E = -0.28516 + 0.34262$) for N1-Cu²⁺.

S.No	Compound	Selectivity	Response	Sensitivity (M)	Mechanism	Reference
1	Naphthalic	Hg ²⁺	Turn-on	6.11×10 ⁻⁸	PET	1
	anhydride-	Cu ²⁺	Turn-off		Paramagnetic	
	Morpholine				effect	
	conjugate					
2	Bodipy derivative	Hg^{2+}	Colorimetric	0.07×10-6	ICT	2
		Cu^{2+}	fluorescence	0.27×10-6		
		Pb ²⁺		0.14×10-6		
3	Rhodamine 6g	Hg^{2+}	Colorimetric	2.96 ×10-6	CHEF	3
	hydrazone	Cu ²⁺	fluorescence	6.88×10-6	Hydrolysis	
4	D1 (1 : :	TT 2+	0.1.	00.10.0		4
4	Phenothiazine	Hg^{2+}	Colorimetric	80×10-9	Chemodosimeter	4
	conjugate	Cu ²⁺	And turn off	97×10-9	Paramagnetic	
					effect	-
5	Benzothiazole	Hg ²⁺	Fluorescence	7.6×10-9	Chemodosimeter	5
	system	Cu ²⁺		2.4×10-9	ESIPT and	
					Paramagntic	
					effect	
6	Ferrocenyl	Hg^{2+}	Colorimetric	7.19×10-7	PET	6
	derivative	<u>Cu²⁺</u>	Fluorescence	6.77×10-7		
8	Pyrimidin-4yl-	Hg ²⁺	Colorimetric	9.06×10-7	Chemodosimeter	7
	phenothiazine	Cu ²⁺	Fluorescence	3.78×10-7		
	derivative					
10	Triphenylamine	Hg^{2+}	Colorimetric	2.3×10 ⁻⁶	Energy transfer	8
	derivative	Cu ²⁺	Fluorescence		Cyclisation	
11	NDD	U _a 2+	Colorimotria	1 22×10-7		Our work
11	INDU-	ng- Cu ²⁺	Colorimetric	1.23×10^{-7}		
	hongimidogolo	Cu-		4./0^10 /		
	Denzimidazole					

Table S1. Comparison table of some reported works on Cu^{2+} and Hg^{2+} sensors with N1.

References:

- 1. C.-B. Huang, H.-R. Li, Y. Luo and L. Xu, *Dalton Transactions*, 2014, **43**, 8102-8108.
- Z. Gu, H. Cheng, X. Shen, T. He, K. Jiang, H. Qiu, Q. Zhang and S. Yin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 315-323.
- Z.-Q. Xu, X.-J. Mao, Y. Wang, W.-N. Wu, P.-D. Mao, X.-L. Zhao, Y.-C. Fan and H.-J. Li, *RSC Advances*, 2017, 7, 42312-42319.
- 4. M. Kaur, M. J. Cho and D. H. Choi, *Dyes and Pigments*, 2016, **125**, 1-7.

- B. Gu, L. Huang, W. Su, X. Duan, H. Li and S. Yao, *Analytica chimica acta*, 2017, 954, 97-104.
- 6. Y. Liu, Q. Teng, J. Hu, R. Sun and H. Zhang, *Sensors and Actuators B: Chemical*, 2016, **234**, 680-690.
- J. Weng, Q. Mei, B. Zhang, Y. Jiang, B. Tong, Q. Fan, Q. Ling and W. Huang, *Analyst*, 2013, 138, 6607-6616.
- 8. S. Malkondu and S. Erdemir, *Tetrahedron*, 2014, **70**, 5494-5498.

Table S2. UV-Vis spectrophotometric determination of spiked Cu^{2+} and Hg^{2+} ions concentration by using the receptor N1.

Water	[Cu ²⁺], M added	[Cu ²⁺], M found	Recovery %
	1.48×10 ⁻⁶	1.43×10 ⁻⁶	96.88
Tap Water	1.91×10 ⁻⁶	1.95×10 ⁻⁶	102
	2.34×10 ⁻⁶	2.37×10-6	101
	1.48×10 ⁻⁶	1.33×10-6	90.16
River Water	1.91×10 ⁻⁶	1.78×10-6	93.16
	2.34×10 ⁻⁶	2.31×10 ⁻⁶	98.63
Water	[Hg ²⁺], M added	[Hg ²⁺], M found	Recovery %
	1.48×10^{-6}	1.60×10^{-6}	109
	1.10 10	1.00^10 *	108
Tap Water	1.96×10 ⁻⁶	2.22×10 ⁻⁶	113
Tap Water	1.96×10 ⁻⁶ 2.44×10 ⁻⁶	2.22×10 ⁻⁶ 2.61×10 ⁻⁶	108 113 107
Tap Water	1.96×10 ⁻⁶ 2.44×10 ⁻⁶ 1.48×10 ⁻⁶	2.22×10 ⁻⁶ 2.61×10 ⁻⁶ 1.34×10 ⁻⁶	108 113 107 90.70
Tap Water River Water	1.48×10 ⁻⁶ 2.44×10 ⁻⁶ 1.48×10 ⁻⁶ 1.96×10 ⁻⁶	2.22×10 ⁻⁶ 2.61×10 ⁻⁶ 1.34×10 ⁻⁶ 1.85×10 ⁻⁶	108 113 107 90.70 94.70