Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

This journal is © the Owner Societies 2019

Tetrel Bond and Conformational Equilibria in the Formamide – CO₂ Complex: A Rotational Study

Shuang Gao, Daniel A. Obenchain, JunChen Lei, Gang Feng, Sven Herbers, Qian

Gou, Jens-Uwe Grabow

			A/B/CMHz	$\Delta E_0/\mathrm{cm}^{-1}$	$\Delta G/\mathrm{cm}^{-1}$
		I	6975.1/1952.8/1525.6	0	0
	6-311++G(d,p)	II	10023.8/1481.9/1291.0	271	399
Rahm DaBI		III	19862.0/778.1/753.1	819	931
Бэтур-ФэВэ		Ι	6985.0/1959.1/1527.1	0	0
	aug-cc-pVTZ	П	10065.2/1485.2/1292.5	244	381
		III	22774.0/756.1/731.9	776	896
		I	6848.7/1888.0/1482.8	0	0
	6-311++G(d,p)	II	9790.2/1448.6/1262.5	217	349
MD2		Ш	21868.5/753.0/734.6	638	734
IVIP 2		I	6923.5/1979.9/1534.6	0	0
	aug-cc-pVTZ	П	9783.4/1507.8/1306.5	250	399
		Ш	20077.6/729.3/712.1	711	883
		I	7196.8/2033.8/1585.7	0	0
	6-311++G(d,p)	II	10212.3/1557.8/1351.6	217	357
		Ш	14830.8/900.0/849.8	574	357 614
M06-2X		Ι	7113.4/2035.9/1582.9	0	0
	aug-cc-pVTZ	II	10130.2/1561.2/1352.7	216	390
		Ш	14936.9/892.7/833.4	841	822
		I	7034.4/1969.6/1531.3	0	0
	6-311++G(d,p)	II	10097.4/1490.9/1293.9	217	357
W/b07vd		Ш	15480.9/827.3/790.3	574	614
w 07/Xu		Ι	7049.3/2023.7/1526.6	0	0
	aug-cc-pVTZ	Π	10127.4/1494.4/1297.8	262	328
		ш	14167.6/762.0/734.4	725	794

Table S1. The calculated spectroscopic parameters of the three isomers of the FM- CO_2 complex at different levels of theory.

$J^{''}_{\rm \ ka'\ kc'}$	$J^{''}_{\mathrm{ka}^{''}\mathrm{kc}^{''}}$	F^{\prime}	$F^{''}$	$v_{\rm obs}/{ m MHz}$	∆v/kHz
2_{02}	1_{01}	3	2	6849.0241	0.5
02	01	2	1	6849.1260	-0.7
		1	0	6849.4266	-0.4
211	110	3	2	7293.0583	3.0
-11	- 10	2	1	7293.4990	-3.7
		1	0	7291.8110	-1.0
3.02	202	4	3	10210 9553	-0.5
503	202	3	2	10211.0833	1.0
		2	- 1	10211.0358	2.7
		3	3	10211 6788	5.4
3	2	2 4	3	9667 7522	0.0
513	Z12	3	2	9667 9498	-1.0
		2	1	9667 9162	1.0
		2	3	9669.0780	-1.3
		2	2	9666 1583	-1.5
2	C	2 1	2	10022 1767	-1.0
S_{12}	2_{11}	4	2	10923.1707	0.0
		2	ے 1	10923.3134	2.5
2	2	2 4	1	10923.0032	-1.2
3_{22}	2_{21}	4	3	10311.1944	4.8
		3	2	10311./115	0.7
	•	2	1	10310.8948	-4.2
3_{21}	2_{20}	4	3	10411.5180	4.0
		3	2	10411.9282	-1.4
	_	2	l	10411.2441	-2.9
4_{04}	3_{03}	5	4	13501.1818	1.5
		4	3	13501.3339	0.7
		3	2	13501.2009	-6.6
4_{14}	3 ₁₃	5	4	12862.8982	0.0
		4	3	12863.0153	0.1
		3	2	12862.9914	0.0
4 ₁₃	3 ₁₂	5	4	14532.1909	-1.5
		4	3	14532.2729	-2.1
		3	2	14532.1278	0.2
423	322	5	4	13728.4463	1.2
		4	3	13728.6850	1.2
		3	2	13728.3788	-4.8
423	4_{14}	5	5	17759.8174	0.7
		4	4	17758.6122	0.8
		3	3	17760.1292	2.6
422	3 ₂₁	5	4	13975.3409	0.9
		4	3	13975.4353	-2.7
		3	2	13975.2993	0.9
432	331	5	4	13795.7236	4.5
- 22	- 31	4	3	13796.1701	-0.7
		3	2	13795.5379	0.0
421	320	5	4	13801.4199	4.5
- 51	- 50				

Table S2. The measured transition frequencies v_{obs} of isomer I with quantum numbers and difference to calculated frequencies Δv in the least squares fit.

		4	3	13801.8583	-2.5
		3	2	13801.2347	-1.3
505	4_{04}	6	5	16705.7625	0.4
05	01	5	4	16705.9341	-1.1
		4	3	16705.7786	4.3
515	414	6	5	16037.1612	0.3
- 15	17	5	4	16037.2478	-1.6
		4	3	16037.2222	2.2
514	413	6	5	18110.8291	-0.1
14	15	5	4	18110.9079	3.9
		4	3	18110.7945	1.1
524	423	6	5	17128.6910	1.4
- 24	- 25	5	4	17128.8346	1.7
		4	3	17128.6671	-6.0
522	422	6	5	17607.3728	-0.2
- 25	- 22	5	4	17607.3496	-3.0
		4	3	17607.3728	0.2
522	422	6	5	17261.7744	1.2
<i>c</i> 33	• 52	5	4	17261.9971	-1.1
		4	3	17261.7152	1.1
522	421	6	5	17281.6070	0.9
032	•31	5	4	17281.8192	2.7
		4	3	17281.5489	-0.2
6.	5	7	6	19824.2470	-0.3
006	205	6	5	19824.4238	-2.0
		5	4	19824.2467	-6.7
616	515	7	6	19188.4417	0.9
016	015	6	5	19188.5162	-0.8
		5	4	19188.4807	-0.6
7.07	6.	8	7	22871.4654	-0.7
,01	000	7	6	22871.6372	0.7
717	616	8	7	22316.2818	-1.5
17	10	7	6	22316.2550	1.1
		6	5	22316.3230	-0.3
716	615	8	7	25130.2550	-0.2
10	- 15	7	6	25130.3500	-0.9
		6	5	25130.2371	1.5
1_{11}	000	2	1	8435.2010	1.5
11	- 00	1	1	8435.7589	-5.8
		0	1	8434.3510	-0.4
212	101	3	2	11453.4518	1.0
12	01	2	1	11454.0966	5.2
		1	0	11453.5537	-1.9
221	110	3	2	22287.1045	0.0
-21	- 10	2	1	22287.6307	-4.3
		1	0	22285.8154	0.4
		2	2	22286.5833	1.5
		1	1	22288.4471	-1.1
220	111	3	2	22731.4232	-2.0
20	11	2	1	22730.2679	-1.0

		1	0	22732.6014	-0.3
		2	2	22730.8334	-0.8
		1	1	22731.1899	1.4
2_{20}	2_{11}	2	2	15019.3113	5.1
20	11	1	1	15019.2826	-0.5
2_{21}	2_{12}	2	2	16249.1828	1.5
21	12	1	1	16251.7553	5.3
313	2_{02}	4	3	14272.1800	0.5
10	-	3	2	14272.9153	-0.1
		2	1	14272.0423	-1.0
3_{21}	3 ₁₂	4	4	14507.6278	-0.8
		3	3	14507.9216	-1.1
		2	2	14507.5259	0.2
322	3 ₁₃	4	4	16894.2696	-0.1
		3	3	16892.9431	0.3
		2	2	16894.7358	1.5
4_{04}	3 ₁₃	5	4	9439.9570	0.4
		4	3	9439.5005	0.5
		3	2	9440.1980	0.8
4_{14}	3_{03}	5	4	16924.1224	0.5
		4	3	16924.8481	-0.2
		3	2	16924.0004	-1.2
422	4 ₁₃	5	5	13950.7767	0.5
		4	4	13951.0841	-1.6
		3	3	13950.6967	0.2
4 ₂₃	4 ₁₄	5	5	17759.8169	0.2
		4	4	17758.6115	0.1
		3	3	17760.1266	0.0
5 ₀₅	4 ₁₄	6	5	13282.8203	-1.0
		5	4	13282.4208	0.7
		4	3	13282.9821	1.9
5 ₁₅	4_{04}	6	5	19460.1027	0.2
		5	4	19460.7653	0.6
		4	3	19460.0139	-0.1
514	5 ₀₅	6	6	9009.5105	0.6
		5	5	9008.1561	1.1
		4	4	9009.7868	0.7
5 ₂₄	5 ₁₅	6	6	18851.3478	2.4
		5	5	18850.1952	0.4
		4	4	18851.5701	-9.6
5 ₂₃	5 ₁₄	6	6	13447.3198	0.0
		5	5	13447.5328	-1.6
		4	4	13447.2762	0.0
606	5 ₁₅	7	6	17069.9078	0.0
		6	5	17069.5970	0.5
		5	4	17070.0130	-0.7
616	5 ₀₅	7	6	21942.7820	1.7
		6	5	21943.3470	0.6
		5	4	21942.7210	0.0
6 ₁₅	6 ₀₆	7	7	10833.1812	-0.6

		6	6	10831.7312	0.9
		5	5	10833.4247	-2.7
624	6 ₁₅	7	7	13102.9284	3.3
		6	6	13102.9900	-0.5
		5	5	13102.9105	-3.2
707	6 ₁₆	8	7	20752.9315	-1.7
• •		7	6	20752.7167	0.8
		6	5	20753.0060	1.3
717	6 ₀₆	8	7	24434.7860	-0.7
		7	6	24435.2441	0.1
		6	5	24434.7534	2.4
817	806	9	9	15763.0609	2.4
		8	8	15761.4941	-1.4
		7	7	15763.2550	0.2

_

$J^{''}_{\rm \ ka'\ kc'}$	$J^{''}_{\mathrm{ka'' kc''}}$	$F^{'}$	$F^{''}$	$v_{\rm obs}/{\rm MHz}$	∆v/kHz
303	202	4	3	8234.0025	-1.8
- 05	-02	3	2	8234.0543	-1.7
		2	1	8234.1165	2.1
313	212	4	3	7962.1645	-2.7
- 15	12	3	2	7962.3704	-1.9
		2	1	7962.3310	0.2
312	211	4	3	8526.6786	-1.5
- 12	11	3	2	8526.8325	9.5
		2	1	8526.5217	2.7
4_{04}	303	5	4	10964.1062	-1.0
04	- 05	4	3	10964.1582	-3.2
		3	2	10964.1582	2.2
414	313	5	4	10612.6101	1.5
11	15	4	3	10612.7083	-4.0
		3	2	10612.7083	1.1
413	312	5	4	11365.0509	-3.7
15	12	4	3	11365.1193	0.0
		3	2	11365.0001	-0.9
423	322	5	4	10992.5112	1.0
		4	3	10992.7730	1.7
		3	2	10992.4492	6.1
422	3_{21}	5	4	11023.4672	-2.6
		3	2	11023.4053	-3.1
5_{05}	4_{04}	6	5	13681.8335	-1.3
		5	4	13681.8934	-1.5
		4	3	13681.8592	-2.3
5 ₁₅	4_{14}	6	5	13259.9774	-0.6
		5	4	13260.0440	-0.6
		4	3	13260.0440	1.8
5 ₁₄	4 ₁₃	6	5	14200.0126	2.4
		5	4	14200.0521	1.8
		4	3	14199.9864	2.2
5 ₂₄	4 ₂₃	6	5	13736.5624	-1.1
		4	3	13736.5432	-5.4
5 ₂₃	4 ₂₂	6	5	13798.3159	1.8
		5	4	13798.4060	0.6
		4	3	13798.3031	-1.7
6 ₀₆	5_{05}	7	6	16384.3675	-0.6
		6	5	16384.4360	0.4
		5	4	16384.3863	2.0
6 ₁₆	5 ₁₅	7	6	15903.6415	1.5
		6	5	15903.6848	-4.8
		5	4	15903.6848	0.1
615	514	7	6	17030.5815	3.5
		6	5	17030.6075	-1.9

Table S3. The measured transition frequencies v_{obs} of isomer II with quantum numbers and difference to calculated frequencies Δv in the least squares fit.

		5	4	17030.5587	-3.7
7 ₀₇	6_{06}	8	7	19069.2333	-1.5
		7	6	19069.3120	2.4
		6	5	19069.2457	0.4
7 ₁₆	6 ₁₅	8	7	19855.7072	2.4
		7	6	19855.7332	-0.4
		6	5	19855.6925	-1.6
1_{11}	000	2	1	11216.8201	2.5
		1	1	11217.3150	-6.3
		0	1	11216.0592	-2.3
2_{12}	1_{01}	3	2	13777.3821	0.5
		1	1	13776.1824	1.2
3 ₁₃	2_{02}	4	3	16245.0212	4.0
		3	2	16245.7429	-0.9
		2	1	16244.8857	-5.2
4_{14}	3_{03}	5	4	18623.6288	7.4
		4	3	18624.4028	2.5
		3	2	18623.4802	-3.5

Table S4. Partial r_0 and B3LYP-G3DBJ /6-311++G(d, p) calculated geometries of isomer I.

Bond lengths (Å)		Valence and	l dihedral angles/°
C2N1	1.356		
O3C2	1.216	O3C2N1	125.0
H4N1	1.011	H4N1C2	119.3
H5N1	1.006	H5N1C2	121.0
H6C2	1.105	H6C2N1	112.9
C7O3	2.8363(4) ^a	C7O3C2	121.3
O8C7	1.165	O8C7O3	90.22(1)
O9C7	1.157	09C708	176.9

^aError in parentheses in units of the last digit. The parameters in bold have been adjusted to reproduce the experimental values of rotational constants. Their ab initio values are r(C7O3) = 2.809 Å, $\alpha(O8C7O3) = 89.880$ ° respectively.

Bond lengths (Å)		Valence an	d dihedral angles/°
C2N1	1.357		
O3C2	1.215	O3C2N1	124.6
H4N1	1.009	H4N1C2	119.5
H5N1	1.104	H5N1C2	121.3
H6C2	1.215	H6C2N1	113.1
C7O3	2.7886(5) ^a	C7O3C2	111.1
O8C7	1.164	O8C7O3	88.785(6)
O9C7	1.159	09C708	176.8

Table S5. Partial r_0 and B3LYP-G3DBJ /6-311++G(d, p) calculated geometries of isomer II.

^aError in parentheses in units of the last digit. The parameters in bold have been adjusted to reproduce the experimental values of rotational constants. Their ab initio values are r(O3C7) = 2.767 Å, $\alpha(O8C7O3) = 88.146$ ° respectively.

Tranistions	$F' \leftarrow F''$	conformer	Frequencies	intensities
1 4 3	5-1	Ι	13501.1818	2.600
4 ₀₄ - J ₀₃	5.4	II	10964.1062	0.132
4 4 2		I	12862.8982	1.057
$4_{14} \leftarrow 3_{13}$	3~4	II	10612.6101	0.050
		<u>-</u>	14532.3909	0.800
$4_{13} \leftarrow 3_{12}$	3←4	II	11365.0509	0.031
5 ₀₅ ←4 ₀₄		<u>I</u>	16705.7625	0.390
	6←5	II	13681.8335	0.068
 5		<u>I</u>	16037.1612	0.951
S ₁₅ ←4 ₁₄	6←5	II	13259.9774	0.024
		I	18110.8291	0.668
S ₁₄ ←4 ₁₃	6←5	II	14200.0126	0.069

Table S6. Intensities (in arbitrary units) of the two isomers for several μ_a -type selected transitions.