SUPPORTING INFORMATION

Tannic Acid Capped Gold Nanoparticles: Capping Agent Chemistry Controls the Redox Activity

Alex L. Suherman¹, Giorgia Zampardi¹, Hatem M. A. Amin¹, Neil P. Young², Richard G. Compton^{1,*}

¹Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK.

²Department of Materials, Oxford University, Parks Road, OX1 3PH, UK.

1. Calculation Details

Concentration of AuNPs@TA suspension = 2.2×10^{10} particles ml⁻¹ Surface area of glassy carbon electrode (πr_e^2), $r_e 1.48 \pm 0.02$ mm, = ca. 6.9 x 10⁻⁶ m² Radius of core AuNP, r_o , is 31.1 nm

1.1. Ensembles Particle Level

(a) **Number of AuNPs@TA particles** onto GCE surface for one-monolayer surface coverage, *N*, considering closest packing of equal sphere of 91%, calculated as follow:

N = 0.91* Surface area of AuNPs@TA = 0.91
$$\frac{\pi r_e^2}{\pi r_p^2}$$
 = ca. 2.0 x 10⁹ particles

(b) Total surface area of AuNPs@TA drop-cast onto GCE surface, A, calculated as follow:

A = N*
$$(4\pi r_p^2)$$
 = 2.0 x 10⁹ particles *(1.2 x 10⁻¹⁴ m²) = 2.4 x 10⁻⁵ m²

1.2. Individual Particles Level (Nanoimpacts)

2

From the oxidative nanoimpacts experiment with the absence of the metal cations (oxidation of TA capping agent), the average spikes charge, *Q*, was found to be ca. 0.3 pC.

The number of moles, n, of TA involved in the reaction is calculated using Faraday's first law:

$$n = \frac{Q}{zF}$$

where, z is the number of electron transfer during oxidation of TA (assuming fully oxidised, z = 20) and F is the Faraday's constant (96485.33 C mol⁻¹). The number of moles TA was found to be ca. 1.6 x 10^{-19} or equal to **ca. 1.0 x 10⁵ molecules**.

Meanwhile, the apparent number of TA molecules incorporated in a single AuNP core was calculated by dividing volume of AuNP core with known volume of a single TA molecule $(8.6 \times 10^{-28} \text{ m}^3)^{23}$

 $N_{\text{TA}} = \frac{1.07 \ x \ 10^{-22} \ m^3}{8.6 \ x \ 10^{-28} \ m^3} = \text{ca. 1.2 x 10^5 molecules.}$

1.3. Underpotential Deposition (UPD) of Zinc onto Ensembles of AuNPs@TA

- From CV experiments, reductive charge of the Zn (UPD), Q, is ca. 17.2 μ C.
- Surface coverage of 0.2 mM Zn²⁺ UPD (z = 2, F is Faraday constant 96485.33 C mol⁻¹ and A = 2.4 x 10⁻⁵ m² is total surface area of one-monolayer of AuNPs@TA drop casted onto GCE surface) calculated as follow:

$$=\frac{Q}{zFA}$$

 $\frac{17.2 \ x \ 10^{-6} \ C}{= (2).(96485.33 \ C \ mol^{-1}).(0.24 \ cm^2)}$ = ca. 3.7 x 10⁻¹⁰ mol cm⁻² = ca. 2.2 x 10¹⁴ atoms cm⁻²

2. Supporting Figures

2.1. Characterisation of AuNPs@TA

Figure SI.1. Characterization of the AuNPs@TA using (a) NTA and (b) DLS analysis

Figure SI.2. UV-vis analysis of AuNPs@TA. (a) UV-vis spectra of ca. 10 pM AuNPs@TA in a solution of 10 mM KCl + 10 mM HCl, (b) Plot of peak absorbance of AuNPs@TA in various electrolyte concentrations during 15 mins.

2.2. Electrochemical Analysis of AuNPs@TA

Figure SI.3. Oxidative particle impacts analysis. Representative chronoamperograms of microdisc electrode immersed in solution containing of 10 mM KCl + 10 mM HCl at potential of 0.4, 0.5, 0.6, 0.7 V vs SCE.

Figure SI.4. Reductive particle impacts analysis. Representative chronoamperograms of microdisc electrode immersed in solution containing of (a) blank and (b) AuNPs@TA + blank at potential of -0.3, -0.4, -0.5 V vs SCE.

Figure SI.5 (a) Cyclic voltammograms of one-monolayer surface coverage of AuNPs@TA-GCE at various scan rates, (b) Linearity of peak current of the "peak 2" at various scan rates shown in (a).

Figure SI.6. (a) Cyclic voltammograms of one-monolayer surface coverage of AuNPs@TA-GCE at various concentrations of Zn²⁺. (b) Plot of peak current of the "peak 2" at various concentrations of Zn²⁺

Figure SI.7. Underpotential deposition of Zn²⁺ at the ensembles of AuNPs@TA, at a scan rate of 0.02 V s⁻¹

2.4. Particle Impacts Analysis of Individual AuNPs@TA with Metal Cations

Figure SI.8. Linear relationship between average spikes: (a) charge, (b) current, (c) duration and (d) frequency with different potentials at various Zn²⁺ concentrations, resulting from oxidative and reductive particle impacts

Figure SI.9. Reductive particle impacts. Linear relationship between average spikes: (a) charge, (b) current, (c) duration and (d) frequency with potentials at various Zn²⁺ concentrations (potential of -0.2, -0.3 and -0.5 V).

Figure SI.10. Linear relationship between average spikes: (a) charge, (b) current, (c) duration, (d) frequency at various Hg²⁺ concentrations, resulting from oxidative and reductive particle impacts (potential of -0.2 to -0.6 V)

Figure SI.11. Langmuir plot of Zn^{2+} on ensembles AuNPs@TA (before saturation) with $K = ca. 0.11 \text{ mM}^{-1}$