Supplementary materials 1:

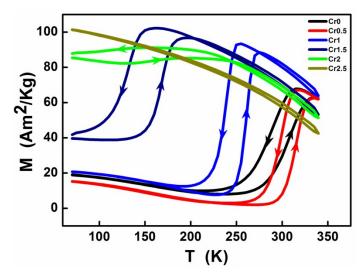


Fig. s1 Thermal magnetic curves of the $Ni_{43}Co_7Mn_{39-x}Cr_xSn_{11}$ alloys at H=1T.

Figure s1 shows the thermomagnetization curves of the Ni₄₃Co₇Mn_{39-x}Cr_xSn₁₁ alloys at applied magnetic field H=1T. With the content of Cr increased, the MT temperature of the sample moves to lower temperature. In the Heusler alloy, the MT temperature decreases with the decrease of the valence electron concentration e/a. The results in Fig. s1 is consistent with the law, as with the increase of Cr content, the e/a of the Ni₄₃Co₇Mn_{39-x}Cr_xSn₁₁ alloys decreases. When Cr 1% is doped, the martensitic transformation start temperature (Ms) of Ni₄₃Co₇Mn₃₈Cr₁Sn₁₁ alloy decreases to 250K under 1T magnetic field, which is about 60K lower than that of Ni₄₃Co₇Mn₃₉Sn₁₁. The magnetization difference (Δ M) between the parent phase and martensite reaches 80 Am²/kg in the MT at 1T magnetic field. When the ratio of Cr is up to 2%, the MT of the alloy is restrained. Then increasing further the Cr content to 2.5% and 3%, the MT disappears in the temperature range of 60K-340K for the Ni₄₃Co₇Mn_{39-x}Cr_xSn₁₁ alloy.

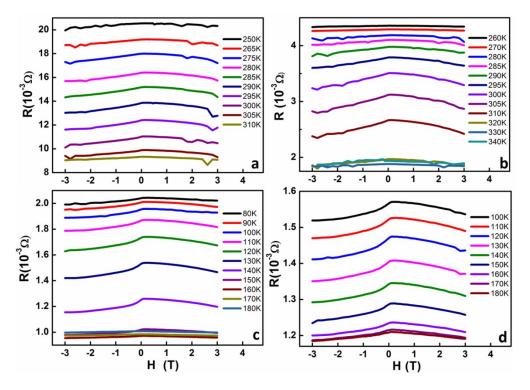


Fig. s2 Resistance in magnetic field of the $Ni_{43}Co_7Mn_{39-x}Cr_xSn_{11}$ alloys (a) x=0, (b) x=0.5, (c) x=1.5, (d) x=2 at different temperatures near the phase transition temperature.

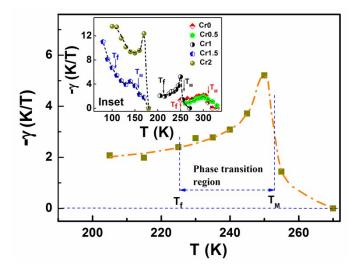


Fig. s3 Temperature dependence of γ of the Ni₄₃Co₇Mn₃₈Cr₁Sn₁₁ alloy. T_M: martensitic transformation on-set temperature, T_f: martensitic transformation finish temperature. The inset shows the Temperature dependence of γ of the Ni₄₃Co₇Mn₃₉. _xCr_xSn₁₁ alloys.