Supporting Information

One key issue in characterization of organic solar cells with solution

processed interfacial layer

Jinhua Gao, Qiaoshi An, Miao Zhang, Jianli Miao, Xiaoling Ma, Zhenghao Hu, Jianxiao Wang, Fujun Zhang*

Key Laboratory of Luminescence and Optical Information, Ministry of Education,

Beijing Jiaotong University, Beijing, 100044, P. R. China

E-mail: <u>fjzhang@bjtu.edu.cn</u>

Device Fabrication: OSCs were fabricated with a structure ITO/PEDOT:PSS/active layers/PDIN/Al. The patterned indium tin oxide (ITO) glass coated substrates (sheet resistance 15 Ω/\Box) were pre-cleaned by sequential ultrasonic treatment in detergent, deionized water and ethanol, respectively. The cleaned ITO substrates were blowdried by high pure nitrogen gas and then treated by oxygen plasma for 1 min to function improve its work and clearance. Subsequently, poly(3.4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS, clevios PVP Al 4083, purchased from H.C. Starck Co., Ltd.) solution was spin-coated on the ITO substrates at 5000 round per minute (RPM) for 30 s and then annealed at 150° C for 15 min in air. After annealing treatment, the ITO substrates coated PEDOT:PSS films were transferred to a high-purity nitrogen-filled glove box to fabricate active layers. The polymer donor J71 (purchased from Solarmer Materials Inc), nonfullerene acceptors IT-2Cl (synthesized by Yang's group of Wuhan University) with 1:1 weight ratio were dissolved in chloroform to prepare 17 mg/ml blend solutions. After heated and stirred at 40°C about 3 h, the blend solutions were spin-coated on PEDOT:PSS films at 2500 RPM for 30 s and then the active layer on the substrate were placed in a small petri dish to perform solvent vapor annealed (SVA) treatment by carbon disulphide for 30 s and then annealed at 80°C for 5 min. After that, PDIN solution (2 mg/ml in methanol with 0.25 vol% acetic acid) was spin-coated on the top of active layers at 5000 RPM for 30 s to prepare cathode interlayer. Finally, the cathode of Al was

deposited by thermal evaporation with a shadow mask under 10⁻⁴ Pa and the thickness of 100 nm was monitored by a quartz crystal microbalance. The active area is approximately 3.65 mm², which is defined by the overlapping area of ITO anode and Al cathode.

Device Measurement: The shadow mask with well-defined aperture (2.89 mm²) is utilized to define the active area in OSCs measured with mask. The current density-voltage (J-V) curves of all the organic solar cells were measured by a Keithley 2400 unit in high-purity nitrogen-filled glove box. The AM 1.5G irradiation was provided by an XES-40S2 (SAN-EI ELECTRIC Co., Ltd) solar simulator (AAA grade, 70×70 mm² photobeam size) with light intensity of 100 mW/cm², which was calibrated by standard silicon solar cells (purchased from Zolix INSTRUMENTS CO. LTD). The external quantum efficiency (EQE) spectra of organic solar cells were measured in air conditions by a Zolix Solar Cell Scan 100. The ultraviolet-visible (UV-Vis) absorption spectra of neat and blend films were obtained using a Shimadzu UV-3101 PC spectrometer. The morphology of the PEDOT:PSS films was investigated by atomic force microscopy (AFM, Dimension Icon). Transmission electron microscopy (TEM) images of active layers were obtained by a JEOL JEM-1400 transmission electron microscope operated at 80 kV.

Fig. S1 absorption spectra of neat J71, IT-2Cl and J71:IT-2Cl blend films.

Fig. S2 The *J*-*V* curves of OSCs under different measurement condition, a) without mask, b) with mask.

SVA	Spin-coating PDIN	Without mask				With mask			
		J_{SC}	Voc	FF	РСЕ	J _{SC}	Voc	FF	РСЕ
		(mA cm ⁻²)	(V)	(%)	(%)	(mA cm ⁻²)	(V)	(%)	(%)
DCM	S-PDIN	27.48	0.84	56.30	13.00 (12.91±0.12)	18.74	0.82	72.74	11.17 (11.05±0.14)
	D-PDIN	19.09	0.84	70.82	11.36 (11.24±0.13)	18.79	0.82	74.39	11.46 (11.32±0.15)
CF	S-PDIN	26.33	0.85	56.36	12.61 (12.53±0.11)	18.45	0.83	72.38	11.08 (10.94±0.15)
	D-PDIN	18.76	0.85	68.14	10.86 (10.70±0.17)	18.37	0.83	72.90	11.11 (11.03±0.13)
	S-PDIN	25.23	0.86	53.50	11.61(11.49±0.14)	18.12	0.84	67.42	10.26 (10.16±0.14)
	D-PDIN	18.68	0.86	64.95	10.43 (10.31±0.15)	18.35	0.84	67.25	10.36 (10.22±0.16)

Table S1 Photovoltaic parameters of the OSCs measured with or without mask.

Remarks: The average PCEs and standard deviations were calculated with 10 cells prepared from different batches.

Fig. S3 TEM images of a) pristine blend films; SSC method.

b) blend films post-treated with methanol by