Electronic Supplementary Information

Thermoelectric properties of the tetrahedrite-tennantite solid solutions Cu$_{12}$Sb$_{4-x}$As$_x$S$_{13}$ and Cu$_{10}$Co$_2$Sb$_{4-y}$As$_y$S$_{13}$ (0 ≤ x, y ≤ 4)

Petr Levinsky1,2,3, Christophe Candolfi1, Anne Dauscher1, Janusz Tobola4, Jiří Hejtmánek2, Bertrand Lenoir1,*

1Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, 54011 Nancy, France

2Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

3Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czech Republic

4Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland

*Contact author: bertrand.lenoir@univ-lorraine.fr

Content

Figure S1. Temperature dependence of the Lorenz number L for the Cu$_{12}$Sb$_{4-x}$As$_x$S$_{13}$ and Cu$_{10}$Co$_2$Sb$_{4-y}$As$_y$S$_{13}$ solid solutions.
Figure S1. Temperature dependence of the Lorenz number for the series a) Cu$_{12}$Sb$_{4-x}$As$_x$S$_{13}$ and b) Cu$_{10}$Co$_2$Sb$_{4-x}$As$_x$S$_{13}$ calculated by a single-parabolic band model with acoustic phonon scattering.