Supplemental Information for

Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes

Deep B. Shah,^{*a,b*} Hien Q. Nguyen,^{*a,b*} Lorena S. Grundy,^{*a*} Kevin R. Olson,^{*c*} Sue J. Mecham,^{*c*}

Joseph M. DeSimone,^{*c,d*} and Nitash P. Balsara^{*a,b,e,**}

^a Department of Chemical and Biomolecular Engineering, University of California, Berkeley,

CA 94720, USA

^b Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

USA

^c Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

^d Department of Chemical and Biomolecular Engineering, North Carolina State University,

Raleigh, North Carolina 27695, USA

^e Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA

¹H NMR spectra

Figure S1a shows the ¹H NMR of the precursor C8-Diol dissolved in deuterated acetone. Figure S2a is the ¹H NMR of the product, C8-DMC, after synthesis and purification dissolved in deuterated acetone.

Figure S1: (a) ¹H NMR of the precursor, C8-Diol and (b) ¹H NMR of the product, C8-DMC in deuterated acetone

¹⁹F NMR spectra

Figure S2 shows ¹⁹F NMR spectra of C8-DMC with and without LiFSI. Figure S2a is that of neat C8-DMC and Figure S2b is of an electrolyte of composition m = 0.60 mol/kg. The fluorine peak from LiFSI appears at a shift of 51.7 ppm. This peak shift was used during ¹⁹F PFG-NMR in order to determine the FSI tracer-diffusion coefficient.

Figure S2: ¹⁹F NMR spectra of C8-DMC (a) neat C8-DMC (no salt) and (b) a C8-DMC based electrolyte with m = 0.60 mol/kg

PFG-NMR data

Figure S3 displays the natural log of the PFG-NMR attenuation signal vs the constants within the exponential of equation 11 in the main manuscript. The red circles are the experimental data and the black line is a linear fit to the data. The magnitude of the slope of the line-of-best-fit is the self-diffusion coefficient of D_{Li} , which is $3.23 \times 10^{-7} \text{ cm}^2/\text{s}$ in this case.

Figure S3: ⁷Li PFG-NMR diffusion data for a C8-DMC electrolyte with m = 0.05. The red circles are experimental data and the black line is the line of best fit. The slope is the self-diffusion of lithium.

Error Propagation

Rigorously defined transference number, t_{+}^{0} :

$$\delta t^0_+ = |t^0_+| \sqrt{\left(\frac{\delta\kappa}{\kappa}\right)^2 + \left(\frac{\delta D_s}{D_s}\right)^2 + \left(\frac{\delta t_{+,id}}{t_{+,id}}\right)^2 + \left(\frac{\delta\phi_c}{\phi_c}\right)^2}$$

Thermodynamic factor, $1 + \frac{d \ln \gamma_{\pm}}{d \ln m}$:

$$\delta\left(1 + \frac{dln\gamma_{\pm}}{dlnm}\right) = |1 + \frac{dln\gamma_{\pm}}{dlnm}| \sqrt{\left(\frac{\delta\kappa}{\kappa}\right)^2 + \left(\frac{\delta D_s}{D_s}\right)^2 + \left(\frac{\delta t_{+,id}}{t_{+,id}}\right)^2 + \left(\frac{\delta\phi_c}{\phi_c}\right)^2}$$

Overall tracer-diffusion coefficient, D_{NMR} :

$$\delta D_{NMR} = \sqrt{\left(\frac{2D_{FSI}}{(D_{Li} + D_{FSI})^2} \delta D_{Li}\right)^2 + \left(\frac{2D_{Li}}{(D_{Li} + D_{FSI})^2} \delta D_{FSI}\right)^2}$$