Reliability of the interacting quantum atom (IQA) data computed in AIMAll from the HF, B3LYP and MP2 wavefunctions

Ignacy Cukrowski^a

^aDepartment of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002 South Africa

^a E-mail: ignacy.cukrowski@up.ac.za

Supplementary Information

TABLE OF CONTENT	Page
Scheme S1. Protocol used to assess reliability of IQA, IQF and FAMSEC descriptors.	S4
Coordinates of optimised structures.	S5
Tables S1–S11. Relative to the CCSD/BBC1 level, analysis of additive atomic energies computed for the Lin, LEC and Ecl conformers of glycol at all levels of theory.	S10
Figures S1–S3.	S16
Figure S4. Relative errors in the total self-molecular and total interaction energies obtained for the linear and eclipsed conformers.	S17
Table S12. Full set of data obtained for the <i>expected</i> and <i>computed</i> E_{self}^{Tot} and E_{int}^{Tot} values.	S18
Tables S13–S24 . Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the Lin, LEC and Ecl conformers of glycol at all levels of theory.	S19
Figure S5 . Relative errors in computed self-atomic energies obtained for the eclipsed and linear conformers of glycol.	S26
Tables S25–S30 . Full set of $E_{int}^{A,B}$ and its components, $V_{cl}^{A,B}$ and $V_{XC}^{A,B}$, in the three conformers of glycol and changes in these energies on Lin \rightarrow LEC and Lin \rightarrow Ecl computed at the CCSD/BBC1 level.	S27
Tables S31–S66 . Full analyses of relative errors $(\Delta_{int}^{A,B}, \Delta_{cl}^{A,B})$ and $\Delta_{XC}^{A,B})$ computed for covalently bonded atoms in three conformers of glycol and O4…H6 (LEC) and O3…O4 (Ecl) interactions.	S39
Figures S6–S8. Relative errors in the diatomic interaction energy and its components obtained for the LEC, Lin and Ecl conformers of glycol at all levels of theory.	S57
Table S67–S69 . Combined analysis of relative errors, $\Delta_{int}^{A,B}$, $\Delta_{cl}^{A,B}$ and $\Delta_{XC}^{A,B}$, in the computed diatomic interaction energy and its components obtained for C–C, C–O, C–H, and O–H covalent bonds in conformers of glycol.	S59
Table S70 . Comparative analysis (for all conformers) of computed/expected interaction energy and its components computed for the O4…H6 and O3…O4 intramolecular interactions at all levels of theory.	S68
Tables S71–S79 . Using the CCSD/BBC1 data as a reference, analysis of relative errors in $E_{int}^{A,B}$ and its components computed at HF for distant C,H, O,H and H,H atom-pairs in all conformers of glycol.	S69
Tables S80–S88 . Using the CCSD/BBC1 data as a reference, analysis of relative errors in $E_{int}^{A,B}$ and its components computed at B3LYP for distant C,H, O,H and H,H atom-pairs in all conformers of glycol.	S81

Tables S89–S97. Using the CCSD/BBC1 data as a reference, analysis of relative errors in
 $E_{int}^{A,B}$ and its components, computed at B3LYP-GD3 for distant C,H, O,H and H,H atom-pairs
in all conformers of glycol.S93

Tables S98–S106. Using the CCSD/BBC1 data as a reference, analysis of relative errors in
 $E_{int}^{A,B}$ and its components computed at MP2/Müller for distant C,H, O,H and H,H atom-pairs
in all conformers of glycol.S105

Figure S9. Changes in the classical term of diatomic interaction energy on $\text{Lin} \rightarrow \text{LEC}$ and S117 Lin \rightarrow Ecl structural transformations of glycol at all levels of theory.

Figure S10. Changes in the XC-term of diatomic interaction energy on $\text{Lin} \rightarrow \text{LEC}$ and $\text{Lin} \rightarrow \text{Ecl}$ structural transformations of glycol at all levels of theory.

Figures S11–12. Errors in $\Delta E_{int}^{A,B}$, $\Delta V_{cl}^{A,B}$ and $\Delta V_{XC}^{A,B}$ obtained for covalently bonded atoms S119 and the intra-molecular interactions, O4…H6 and O3…O4, on Lin \rightarrow LEC and Lin \rightarrow Ecl.

Tables S107–S112. Errors and averaged absolute errors in $\Delta E_{int}^{A,B}$, $\Delta V_{cl}^{A,B}$ and $\Delta V_{XC}^{A,B}$ obtained S120 for the Lin \rightarrow LEC and Lin \rightarrow Ecl structural changes at all levels of theory.

Figure S13–S18. Pictorial presentation of FAMSEC energy terms ΔE_{self}^{G} , ΔE_{int}^{G} , $E_{attr-loc}^{G}$, S123 $\Delta E_{int}^{G,H}$ and $E_{attr-mol}^{G}$ computed for selected and meaningful 2-, 3- and 4-atom fragments G on the Lin \rightarrow LEC and Lin \rightarrow Ecl structural change of glycol.

Table S113–118. FAMSEC descriptors computed at all levels of theory for selected and
meaningful 2-, 3- and 4-atom fragments G on the Lin \rightarrow Ecl and Lin \rightarrow Ecl structural
changes of glycol.S127

Table S119. Absolute errors in the FAMSEC energy terms computed for the indicated and meaningful molecular fragments at all levels of theory on the Lin \rightarrow LEC and Lin \rightarrow Ecl structural changes of glycol.

Scheme S1. Protocol used to assess, relative to the CCSD/BBC1/TWOe/refined settings level, reliability of IQA descriptors as well as changes (occurring on a structural change of glycol) in the IQA/IQF and FAMSEC energy terms computed from wavefunctions generated at the HF, B3LYP and MP2/Müller levels using AIMAll with default (auto) settings.

Coordinates of optimised structures

Center	r Atomic	Atomic	Coord	Coordinates (Angstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	0.553816	-0.522867	0.000000
2	6	0	-0.553816	0.522867	0.00000
3	8	0	-1.794951	-0.195586	0.00000
4	8	0	1.794951	0.195586	0.00000
5	1	0	2.515495	-0.443387	0.00000
6	1	0	-2.515495	0.443387	0.00000
7	1	0	0.457238	-1.160364	0.898339
8	1	0	-0.457238	1.160364	-0.898339
9	1	0	0.457238	-1.160364	-0.898339
10	1	0	-0.457238	1.160364	0.898339

The linear conformer of glycol (Lin) optimised at the CCSD level.

The lowest energy conformer of glycol (LEC) optimised at the CCSD level.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.684229	0.597927	-0.277310
2	6	0	-0.731587	0.569266	0.281262
3	8	0	-1.457381	-0.566444	-0.189348
4	8	0	1.334773	-0.588133	0.212492
5	1	0	2.170009	-0.700676	-0.253619
6	1	0	-0.909942	-1.338630	0.005819
7	1	0	0.648667	0.595331	-1.382320
8	1	0	-1.284734	1.461493	-0.054744
9	1	0	1.209453	1.508013	0.070908
10	1	0	-0.687386	0.578554	1.387760

The eclipsed conformer of glycol (Ecl) optimised at the CCSD level.

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.777323	0.643676
2	6	0	0.00000	-0.777323	0.643676
3	8	0	0.00000	-1.269736	-0.698118
4	8	0	0.00000	1.269736	-0.698118
5	1	0	0.00000	2.232281	-0.647206
6	1	0	0.00000	-2.232281	-0.647206
7	1	0	-0.894053	1.140748	1.185046
8	1	0	-0.894053	-1.140748	1.185046
9	1	0	0.894053	1.140748	1.185046
10	1	0	0.894053	-1.140748	1.185046

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z	
1	6	0	0.431932	0.621253	0.000000	
2	6	0	-0.431932	-0.621253	0.00000	
3	8	0	0.431932	-1.732249	0.00000	
4	8	0	-0.431932	1.732249	0.00000	
5	1	0	0.066566	2.530922	0.00000	
6	1	0	-0.066566	-2.530922	0.00000	
7	1	0	1.071225	0.618244	0.885281	
8	1	0	-1.071225	-0.618244	-0.885281	
9	1	0	1.071225	0.618244	-0.885281	
10	1	0	-1.071225	-0.618244	0.885281	

The linear conformer of glycol (Lin) optimised at the HF level.

The lowest energy conformer of glycol (LEC) optimised at the HF level.

Center	ter Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Ζ
1	6	0	0.684924	0.585216	-0.267024
2	6	0	-0.727497	0.558038	0.273948
3	8	0	-1.449579	-0.549228	-0.191731
4	8	0	1.342241	-0.570774	0.205606
5	1	0	2.185772	-0.662124	-0.202803
6	1	0	-0.968041	-1.333443	0.019024
7	1	0	0.660021	0.592239	-1.358791
8	1	0	-1.260081	1.447511	-0.058407
9	1	0	1.191965	1.488910	0.081708
10	1	0	-0.695493	0.567394	1.366729

The eclipsed conformer of glycol (Ecl) optimised at the HF level.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.772347	0.627211
2	6	0	0.00000	-0.772347	0.627211
3	8	0	0.00000	-1.274898	-0.680951
4	8	0	0.00000	1.274898	-0.680951
5	1	0	0.00000	2.216245	-0.649319
6	1	0	0.00000	-2.216245	-0.649319
7	1	0	-0.881148	1.128172	1.166831
8	1	0	-0.881148	-1.128172	1.166831
9	1	0	0.881148	1.128172	1.166831
10	1	0	0.881148	-1.128172	1.166831

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	YY	Z
1	6	0	0.553540	-0.520315	0.00000
2	6	0	-0.553540	0.520315	0.00000
3	8	0	-1.793898	-0.191688	0.00000
4	8	0	1.793898	0.191688	0.00000
5	1	0	2.518232	-0.443054	0.00000
6	1	0	-2.518232	0.443054	0.00000
7	1	0	0.457620	-1.157542	0.894533
8	1	0	-0.457620	1.157542	-0.894533
9	1	0	0.457620	-1.157542	-0.894533
10	1	0	-0.457620	1.157542	0.894533

The linear conformer of glycol (Lin) optimised at the B3LYP level.

The lowest energy conformer of glycol (LEC) optimised at the B3LYP level.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.682927	0.594582	-0.277391
2	6	0	-0.728424	0.566412	0.279837
3	8	0	-1.464236	-0.559924	-0.185335
4	8	0	1.342506	-0.584376	0.207209
5	1	0	2.184856	-0.690772	-0.247737
6	1	0	-0.931749	-1.344116	0.004378
7	1	0	0.648809	0.594188	-1.378992
8	1	0	-1.275739	1.458550	-0.052956
9	1	0	1.201923	1.505110	0.068908
10	1	0	-0.684673	0.577147	1.383179

The eclipsed conformer of glycol (Ecl) optimised at the B3LYP level.

Center Atomic Atomic			Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.775863	0.641928
2	6	0	0.00000	-0.775863	0.641928
3	8	0	0.00000	-1.274025	-0.692589
4	8	0	0.00000	1.274025	-0.692589
5	1	0	0.00000	2.236775	-0.648827
6	1	0	0.00000	-2.236775	-0.648827
7	1	0	-0.890377	1.137132	1.183966
8	1	0	-0.890377	-1.137132	1.183966
9	1	0	0.890377	1.137132	1.183966
10	1	0	0.890377	-1.137132	1.183966

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.439441	0.619663	0.000000	
2	6	0	-0.439441	-0.619663	0.00000	
3	8	0	0.439441	-1.748495	0.00000	
4	8	0	-0.439441	1.748495	0.00000	
5	1	0	0.086363	2.555370	0.00000	
6	1	0	-0.086363	-2.555370	0.00000	
7	1	0	1.084270	0.609321	0.894734	
8	1	0	-1.084270	-0.609321	-0.894734	
9	1	0	1.084270	0.609321	-0.894734	
10	1	0	-1.084270	-0.609321	0.894734	

The linear conformer of glycol (Lin) optimised at the B3LYP-GD3 level.

The lowest energy conformer of glycol (LEC) optimised at the B3LYP-GD3 level.

Center	Atomic	Atomic	Coordinates (Angstron		
Number	Number	Туре	Х	Y	Z
1	6	0	0.685310	0.598067	-0.276321
2	6	0	-0.726375	0.565952	0.281126
3	8	0	-1.460873	-0.558789	-0.192539
4	8	0	1.347720	-0.577050	0.216224
5	1	0	2.188810	-0.687388	-0.239969
6	1	0	-0.930761	-1.344730	-0.003485
7	1	0	0.647256	0.591350	-1.378194
8	1	0	-1.274439	1.460093	-0.045752
9	1	0	1.200620	1.513316	0.064273
10	1	0	-0.679868	0.569956	1.384816

The eclipsed conformer of glycol (Ecl) optimised at the B3LYP-GD3 level.

Center	Atomic	Atomic	Coor	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.000000	0.776602	0.640741
2	6	0	0.00000	-0.776602	0.640741
3	8	0	0.00000	-1.274229	-0.694928
4	8	0	0.00000	1.274229	-0.694928
5	1	0	0.00000	2.237025	-0.653057
6	1	0	0.00000	-2.237025	-0.653057
7	1	0	-0.890554	1.137282	1.184020
8	1	0	-0.890554	-1.137282	1.184020
9	1	0	0.890554	1.137282	1.184020
10	1	0	0.890554	-1.137282	1.184020

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.442789	0.616993	0.00000
2	6	0	-0.442789	-0.616993	0.00000
3	8	0	0.442789	-1.748313	0.00000
4	8	0	-0.442789	1.748313	0.00000
5	1	0	0.094801	2.550529	0.00000
6	1	0	-0.094801	-2.550529	0.00000
7	1	0	1.085147	0.607554	0.897394
8	1	0	-1.085147	-0.607554	-0.897394
9	1	0	1.085147	0.607554	-0.897394
10	1	0	-1.085147	-0.607554	0.897394

The linear conformer of glycol (Lin) optimised at the MP2 level.

The lowest energy conformer of glycol (LEC) optimised at the MP2 level.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	YY	Z
1	6	0	0.684080	0.607338	-0.275866
2	6	0	-0.727481	0.572436	0.280082
3	8	0	-1.446569	-0.569208	-0.193396
4	8	0	1.332231	-0.581571	0.219109
5	1	0	2.169067	-0.695310	-0.249601
6	1	0	-0.881671	-1.334054	-0.004482
7	1	0	0.649949	0.602254	-1.378813
8	1	0	-1.285887	1.458594	-0.056480
9	1	0	1.207157	1.515736	0.073672
10	1	0	-0.683507	0.580363	1.384698

The eclipsed conformer of glycol (Ecl) optimised at the MP2 level.

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.775481	0.646945
2	6	0	0.00000	-0.775481	0.646945
3	8	0	0.00000	-1.260277	-0.700256
4	8	0	0.00000	1.260277	-0.700256
5	1	0	0.00000	2.225616	-0.649648
6	1	0	0.00000	-2.225616	-0.649648
7	1	0	-0.892908	1.139710	1.185014
8	1	0	-0.892908	-1.139710	1.185014
9	1	0	0.892908	1.139710	1.185014
10	1	0	0.892908	-1.139710	1.185014

	CCSD/	BBC1		B3L	YP	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\rm Expect}E^{\rm A}_{\rm add}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\rm A}_{add}$
C1	-37.94313	0.16518	-38.0434	-38.0392	-62.9	-2.6
C2	-37.94389	0.16518	-38.0435	-38.0400	-62.5	-2.2
O3	-75.25949	0.32762	-75.4367	-75.4501	-111.2	8.4
O4	-75.27158	0.32768	-75.4464	-75.4622	-109.7	9.9
H5	-0.48480	0.00211	-0.4867	-0.4860	-1.2	-0.4
H6	-0.48892	0.00213	-0.4917	-0.4902	-1.7	-1.0
H7	-0.58017	0.00253	-0.5867	-0.5816	-4.1	-3.2
H8	-0.58022	0.00253	-0.5859	-0.5817	-3.5	-2.6
H9	-0.58095	0.00253	-0.5877	-0.5824	-4.2	-3.3
H10	-0.57971	0.00252	-0.5864	-0.5812	-4.2	-3.3

Table S1. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the LEC of glycol at the B3LYP level.^a

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{B3LYP} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = C_{add}^{Comput} E_{add}^{A} - E_{add}^{Expect} E_{add}^{A}$ are in kcal mol⁻¹.

Table S2. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the LEC of glycol at the B3LYP-GD3 level.^a

	CCSD/	BBC1		B3LYP	-GD3	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\rm A}_{ m add}$
C1	-37.94313	0.16518	-38.0436	-38.0400	-63.0	-2.2
C2	-37.94389	0.16518	-38.0435	-38.0408	-62.5	-1.7
03	-75.25949	0.32762	-75.4368	-75.4517	-111.3	9.3
O4	-75.27158	0.32768	-75.4463	-75.4638	-109.6	11.0
Н5	-0.48480	0.00211	-0.4868	-0.4860	-1.3	-0.5
H6	-0.48892	0.00213	-0.4917	-0.4902	-1.7	-1.0
H7	-0.58017	0.00253	-0.5866	-0.5817	-4.0	-3.1
H8	-0.58022	0.00253	-0.5859	-0.5817	-3.6	-2.6
H9	-0.58095	0.00253	-0.5877	-0.5824	-4.2	-3.3
H10	-0.57971	0.00252	-0.5863	-0.5812	-4.2	-3.2

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{B3LYP-GD3} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = {}^{Comput}E_{add}^{A} - {}^{Expect}E_{add}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1		MP2/M	lüller	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\rm Expect}E_{\rm add}^{\rm A}$	$\Delta E_{ m add}^{ m A}$	Δ^{A}_{add}
C1	-37.94313	0.16518	-37.9801	-37.9373	-23.2	-26.9
C2	-37.94389	0.16518	-37.9801	-37.9380	-22.7	-26.4
O3	-75.25949	0.32762	-75.3233	-75.2479	-40.1	-47.4
O4	-75.27158	0.32768	-75.3335	-75.2600	-38.9	-46.1
Н5	-0.48480	0.00211	-0.4868	-0.4847	-1.3	-1.3
Н6	-0.48892	0.00213	-0.4923	-0.4888	-2.1	-2.2
H7	-0.58017	0.00253	-0.5884	-0.5801	-5.1	-5.2
H8	-0.58022	0.00253	-0.5878	-0.5801	-4.8	-4.8
Н9	-0.58095	0.00253	-0.5896	-0.5809	-5.4	-5.5
H10	-0.57971	0.00252	-0.5882	-0.5796	-5.3	-5.4

Table S3. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the LEC of glycol at the MP2/Müller level.^a

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{MP2/Muller} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = {}^{Comput}E_{add}^{A} - {}^{Expect}E_{add}^{A}$ are in kcal mol⁻¹.

Table S4. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the Lin conformer of glycol at the HF level.^a

	CCSD/	BBC1		HI	7	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\rm A}_{\rm add}$
C1	-37.9415	0.16517	-37.8175	-37.8201	77.9	1.6
C2	-37.9415	0.16517	-37.8175	-37.8201	77.9	1.6
03	-75.2615	0.32764	-75.0503	-75.0206	132.6	-18.6
O4	-75.2615	0.32764	-75.0503	-75.0206	132.6	-18.6
Н5	-0.4863	0.00212	-0.4840	-0.4847	1.4	0.5
H6	-0.4863	0.00212	-0.4840	-0.4847	1.4	0.5
H7	-0.5800	0.00253	-0.5678	-0.5782	7.7	6.5
H8	-0.5800	0.00253	-0.5678	-0.5782	7.7	6.5
Н9	-0.5800	0.00253	-0.5678	-0.5782	7.7	6.5
H10	-0.5800	0.00253	-0.5678	-0.5782	7.7	6.5

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{HF} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = C_{add}^{Comput} E_{add}^{A} - E_{add}^{Expect} E_{add}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1		B3L	YP	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\!A}_{add}$
C1	-37.9415	0.16517	-38.0417	-38.0376	-62.9	-2.6
C2	-37.9415	0.16517	-38.0417	-38.0376	-62.9	-2.6
03	-75.2615	0.32764	-75.4414	-75.4521	-112.9	6.7
O4	-75.2615	0.32764	-75.4414	-75.4521	-112.9	6.7
Н5	-0.4863	0.00212	-0.4894	-0.4875	-1.9	-1.2
H6	-0.4863	0.00212	-0.4894	-0.4875	-1.9	-1.2
H7	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2
H8	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2
H9	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2
H10	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2

Table S5. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the Lin conformer of glycol at the B3LYP level.^a

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{B3LYP} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = C_{add}^{Comput} E_{add}^{A} - E_{add}^{E} E_{add}^{A}$ are in kcal mol⁻¹.

Table S6. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the Lin conformer of glycol at the B3LYP-GD3 level.^a

	CCSD/	BBC1		B3LYP	-GD3	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\!A}_{add}$
C1	-37.9415	0.16517	-38.0416	-38.0384	-62.8	-2.0
C2	-37.9415	0.16517	-38.0416	-38.0384	-62.8	-2.0
O3	-75.2615	0.32764	-75.4415	-75.4537	-112.9	7.7
O4	-75.2615	0.32764	-75.4415	-75.4537	-112.9	7.7
Н5	-0.4863	0.00212	-0.4894	-0.4875	-2.0	-1.2
H6	-0.4863	0.00212	-0.4894	-0.4875	-2.0	-1.2
H7	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2
H8	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2
H9	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2
H10	-0.5800	0.00253	-0.5866	-0.5815	-4.1	-3.2

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{BeLYP-GD3} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = {}^{Comput}E_{add}^{A} - {}^{Expect}E_{add}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1		MP2/M	lüller	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\rm Expect}E_{\rm add}^{\rm A}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\!A}_{add}$
C1	-37.9415	0.16517	-37.9781	-37.9356	-23.0	-26.7
C2	-37.9415	0.16517	-37.9781	-37.9356	-23.0	-26.7
O3	-75.2615	0.32764	-75.3279	-75.2498	-41.7	-49.0
O4	-75.2615	0.32764	-75.3279	-75.2498	-41.7	-49.0
Н5	-0.4863	0.00212	-0.4898	-0.4862	-2.2	-2.3
H6	-0.4863	0.00212	-0.4898	-0.4862	-2.2	-2.3
H7	-0.5800	0.00253	-0.5884	-0.5799	-5.3	-5.3
H8	-0.5800	0.00253	-0.5884	-0.5799	-5.3	-5.3
H9	-0.5800	0.00253	-0.5884	-0.5799	-5.3	-5.3
H10	-0.5800	0.00253	-0.5884	-0.5799	-5.3	-5.3

Table S7. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the Lin conformer of glycol at the MP2/Müller level.^a

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{MP2/Muller} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = {}^{Comput}E_{add}^{A} - {}^{Expect}E_{add}^{A}$ are in kcal mol⁻¹.

Table S8. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the **Ecl** conformer of glycol at the HF level.^a

	CCSD/	BBC1		HI	7	
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\rm A}_{\rm add}$
C1	-37.9412	0.16518	-37.8166	-37.8195	78.2	1.8
C2	-37.9412	0.16518	-37.8169	-37.8195	78.0	1.6
03	-75.2510	0.32761	-75.0378	-75.0096	133.8	-17.7
O4	-75.2510	0.32761	-75.0378	-75.0096	133.8	-17.7
Н5	-0.4894	0.00213	-0.4871	-0.4878	1.4	0.4
H6	-0.4894	0.00213	-0.4871	-0.4878	1.4	0.4
H7	-0.5812	0.00253	-0.5687	-0.5794	7.8	6.7
H8	-0.5812	0.00253	-0.5687	-0.5794	7.8	6.7
H9	-0.5812	0.00253	-0.5687	-0.5794	7.8	6.7
H10	-0.5812	0.00253	-0.5687	-0.5794	7.8	6.7

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{HF} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = C_{add}^{Comput} E_{add}^{A} - E_{add}^{Expect} E_{add}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1	B3LYP			
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\rm Expect}E^{\rm A}_{\rm add}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\!A}_{add}$
C1	-37.9412	0.16518	-38.0412	-38.0373	-62.8	-2.4
C2	-37.9412	0.16518	-38.0413	-38.0373	-62.9	-2.5
03	-75.2510	0.32761	-75.4290	-75.4418	-111.7	8.0
O4	-75.2510	0.32761	-75.4290	-75.4418	-111.7	8.0
Н5	-0.4894	0.00213	-0.4922	-0.4906	-1.8	-1.0
Н6	-0.4894	0.00213	-0.4922	-0.4906	-1.8	-1.0
H7	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3
H8	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3
H9	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3
H10	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3

Table S9. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the **Ecl** conformer of glycol at the B3LYP level.^a

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{B3LYP} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = C_{add}^{Comput} E_{add}^{A} - E_{add}^{E} E_{add}^{A}$ are in kcal mol⁻¹.

Table S10. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the **Ecl** conformer of glycol at the B3LYP-GD3 level.^a

	CCSD/BBC1			B3LYP-GD3			
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\!A}_{add}$	
C1	-37.9412	0.16518	-38.0413	-38.0380	-62.8	-2.0	
C2	-37.9412	0.16518	-38.0414	-38.0380	-62.9	-2.1	
O3	-75.2510	0.32761	-75.4290	-75.4431	-111.7	8.8	
O4	-75.2510	0.32761	-75.4290	-75.4431	-111.7	8.8	
Н5	-0.4894	0.00213	-0.4922	-0.4906	-1.8	-1.0	
H6	-0.4894	0.00213	-0.4922	-0.4906	-1.8	-1.0	
H7	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3	
H8	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3	
H9	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3	
H10	-0.5812	0.00253	-0.5880	-0.5827	-4.3	-3.3	

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^{A} = (E_{add}^{A})_{B3LYP-GD3} - (E_{add}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{add}^{A} = {}^{Comput}E_{add}^{A} - {}^{Expect}E_{add}^{A}$ are in kcal mol⁻¹.

	CCSD/BBC1		MP2/Müller			
Atom A	$E_{ m add}^{ m A}$	$E_{ m add}^{ m A}$ / E	$^{ m Comput}E_{ m add}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{add}}^{\mathrm{A}}$	$\Delta E_{ m add}^{ m A}$	$\Delta^{\!A}_{add}$
C1	-37.9412	0.16518	-37.9781	-37.9352	-23.2	-26.9
C2	-37.9412	0.16518	-37.9781	-37.9352	-23.2	-26.9
03	-75.2510	0.32761	-75.3154	-75.2392	-40.4	-47.8
O4	-75.2510	0.32761	-75.3153	-75.2392	-40.4	-47.8
Н5	-0.4894	0.00213	-0.4932	-0.4893	-2.4	-2.4
H6	-0.4894	0.00213	-0.4932	-0.4893	-2.4	-2.4
H7	-0.5812	0.00253	-0.5899	-0.5812	-5.4	-5.5
H8	-0.5812	0.00253	-0.5899	-0.5812	-5.4	-5.5
H9	-0.5812	0.00253	-0.5899	-0.5812	-5.4	-5.5
H10	-0.5812	0.00253	-0.5899	-0.5812	-5.4	-5.5

Table S11. Relative to the CCSD/BBC1 data, analysis of additive atomic energies computed for the **Ecl** conformer of glycol at the MP2/Müller level.^a

^a) Additive atomic energies are in au. Differences $\Delta E_{add}^A = (E_{add}^A)_{MP2/Muller} - (E_{add}^A)_{CCSD/BBC1}$ and relative errors $\Delta_{add}^A = {}^{Comput}E_{add}^A - {}^{Expect}E_{add}^A$ are in kcal mol⁻¹.

Figure S1. Using the CCSD/BBC1 data as reference, relative errors (RE) in individual additive atomic energies obtained at the indicated levels of theory for the eclipsed and linear conformers of glycol.

Figure S2. Change in E_{IQA} at the indicated levels of theory for the Lin \rightarrow Ecl structural transformation of glycol (dashed line indicates the ΔE value obtained at CCSD. B3-GD3 = B3LYP-GD3 and MP2/M = MP2/Müller.

Figure S3. Change in individual additive atomic energies computed at the indicated levels of theory for the Lin \rightarrow LEC structural transformation of glycol.

Figure S4. Using the CCSD/BBC1 data as a reference, relative errors (RE) in the total self-molecular and total interaction energies (solid and empty bars, respectively) obtained for the linear and eclipsed conformers of glycol at the indicated levels of theory.

<i>E</i> -term –	HF	B3LYP	B3LYP-GD3	MP2/Müller			
<i>E</i> -term		LEC / lowest	energy conformer				
$^{ m Comput}E_{ m self}^{ m Tot}$	-225.2208	-227.0177	-227.0209	-226.7799			
$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{Tot}}$	-225.8019	-227.1016	-227.1065	-226.4931			
$\Delta_{ ext{self}}^{ ext{Tot}}$	364.6	52.7	53.7	-180.0			
$C_{\rm int}^{\rm Comput} E_{\rm int}^{\rm Tot}$	-3.7558	-3.2786	-3.2757	-3.1702			
$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{Tot}}$	-3.1746	-3.1929	-3.1930	-3.1844			
$\Delta_{ m int}^{ m Tot}$	-364.7	-53.8	-51.9	8.9			
$\Delta_{\text{self}}^{\text{Tot}} + \Delta_{\text{int}}^{\text{Tot}}$	-0.1	-1.1	-1.2	-171.1			
	Ecl / eclipsed conformer						
$^{ m Comput}E_{ m self}^{ m Tot}$	-225.1992	-227.0133	-227.0162	-226.7841			
$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{Tot}}$	-225.8009	-227.1018	-227.1058	-226.4921			
$\Delta_{ ext{self}}^{ ext{Tot}}$	377.6	55.5	56.3	-183.3			
$^{ m Comput}E_{ m int}^{ m Tot}$	-3.7606	-3.2644	-3.2613	-3.1459			
$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{Tot}}$	-3.1504	-3.1685	-3.1686	-3.1600			
$\Delta_{ m int}^{ m Tot}$	-382.9	-60.2	-58.2	8.9			
$\Delta_{\text{self}}^{\text{Tot}} + \Delta_{\text{int}}^{\text{Tot}}$	-5.3	-4.7	-1.9	-174.4			
		Lin / line	ar conformer				
$^{ m Comput}E_{ m self}^{ m Tot}$	-225.2322	-227.0256	-227.0267	-226.7905			
$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{Tot}}$	-225.8071	-227.1060	-227.1106	-226.4969			
$\Delta^{\text{Tot}}_{\text{self}}$	360.8	50.5	52.6	-184.2			
$^{ m Comput}E_{ m int}^{ m Tot}$	-3.7415	-3.2658	-3.2646	-3.1546			
$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{Tot}}$	-3.1563	-3.1745	-3.1745	-3.1660			
$\Delta_{\mathrm{int}}^{\mathrm{Tot}}$	-367.2	-57.3	-56.5	7.1			
$\Delta_{\text{self}}^{\text{Tot}} + \Delta_{\text{int}}^{\text{Tot}}$	-6.4	-6.8	-3.8	-177.1			

Table S12. Using the CCSD/BBC1 data as a reference, relative errors in the total self-molecular energy (Δ_{self}^{Tot}) and total interaction energy (Δ_{int}^{Tot}) in three conformers of glycol optimized at the specified level of theory. Except CCSD/BBC1, all data are from AIMAll.^a

^[a] The default settings in AIMAII were used throughout. The expected and computed values $(E_{self}^{Tot}, E_{self}^{Tot}, E_{int}^{Tot}, C_{self}^{Tot}, C_{int}^{Tot})$ are in au; relative errors $(\Delta_{self}^{Tot}, \Delta_{int}^{Tot})$ are in kcal mol⁻¹.

	CCSD/	BBC1	HF			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\rm Expect}E_{\rm self}^{\rm A}$	$\Delta E_{\rm self}^{\rm A}$	Δ^{A}_{self}
C1	-37.37564	0.162706	-37.13622	-37.25584	150.2	75.1
C2	-37.36186	0.162645	-37.11562	-37.24209	154.5	79.4
O3	-74.67762	0.325090	-74.35317	-74.43824	203.6	53.4
O4	-74.68076	0.325104	-74.35866	-74.44138	202.1	51.9
Н5	-0.29952	0.001304	-0.27503	-0.29856	15.4	14.8
H6	-0.29375	0.001279	-0.27060	-0.29281	14.5	13.9
H7	-0.45915	0.001999	-0.42755	-0.45768	19.8	18.9
H8	-0.46056	0.002005	-0.42875	-0.45909	20.0	19.0
Н9	-0.45985	0.002002	-0.42757	-0.45838	20.3	19.3
H10	-0.45930	0.001999	-0.42767	-0.45783	19.8	18.9

Table S13. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the LEC of glycol at the HF level.^a

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{HF} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{comput}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

Table S14. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the LEC of glycol at the B3LYP level.^a

	CCSD		B3LYP			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{\rm self}^{\rm A}$	Δ^{A}_{self}
C1	-37.37564	0.162706	-37.44785	-37.47029	-45.3	14.1
C2	-37.36186	0.162645	-37.43598	-37.45646	-46.5	12.9
03	-74.67762	0.325090	-74.86021	-74.86671	-114.6	4.1
O4	-74.68076	0.325104	-74.86238	-74.86987	-114.0	4.7
Н5	-0.29952	0.001304	-0.29622	-0.30027	2.1	2.5
H6	-0.29375	0.001279	-0.29243	-0.29449	0.8	1.3
H7	-0.45915	0.001999	-0.45535	-0.46031	2.4	3.1
H8	-0.46056	0.002005	-0.45573	-0.46173	3.0	3.8
H9	-0.45985	0.002002	-0.45600	-0.46101	2.4	3.1
H10	-0.45930	0.001999	-0.45555	-0.46046	2.4	3.1

a) Self-atomic energies are in au. Differences $\Delta E_{\text{self}}^{\text{A}} = (E_{\text{self}}^{\text{A}})_{\text{B3LYP}} - (E_{\text{self}}^{\text{A}})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{self}}^{\text{A}} = C_{\text{comput}}^{\text{Comput}} E_{\text{self}}^{\text{A}} - E_{\text{self}}^{\text{Expect}} E_{\text{self}}^{\text{A}}$ are in kcal mol⁻¹.

	CCSD/	BBC1	B3LYP-GD3			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\rm Expect}E_{\rm self}^{\rm A}$	$\Delta E_{\rm self}^{\rm A}$	Δ^{A}_{self}
C1	-37.37564	0.162706	-37.44853	-37.47110	-45.7	14.2
C2	-37.36186	0.162645	-37.43679	-37.45727	-47.0	12.9
O3	-74.67762	0.325090	-74.86096	-74.86833	-115.0	4.6
O4	-74.68076	0.325104	-74.86332	-74.87149	-114.6	5.1
Н5	-0.29952	0.001304	-0.29626	-0.30028	2.0	2.5
Н6	-0.29375	0.001279	-0.29249	-0.29450	0.8	1.3
H7	-0.45915	0.001999	-0.45530	-0.46032	2.4	3.1
H8	-0.46056	0.002005	-0.45576	-0.46174	3.0	3.8
Н9	-0.45985	0.002002	-0.45607	-0.46102	2.4	3.1
H10	-0.45930	0.001999	-0.45555	-0.46047	2.4	3.1

Table S15. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the LEC of glycol at the B3LYP-GD3 level.^a

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{B3LYP-GD3} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{comput}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

Table S16. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the LEC of glycol at the MP2/Müller level.^a

	CCSD/BBC1			MP2/Müller			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{\rm self}^{\rm A}$	Δ^A_{self}	
C1	-37.37564	0.162706	-37.41773	-37.36988	-26.4	-30.0	
C2	-37.36186	0.162645	-37.40381	-37.35609	-26.3	-29.9	
03	-74.67762	0.325090	-74.74816	-74.66610	-44.3	-51.5	
O4	-74.68076	0.325104	-74.74964	-74.66925	-43.2	-50.4	
Н5	-0.29952	0.001304	-0.29816	-0.29947	0.9	0.8	
H6	-0.29375	0.001279	-0.29313	-0.29370	0.4	0.4	
H7	-0.45915	0.001999	-0.46683	-0.45908	-4.8	-4.9	
H8	-0.46056	0.002005	-0.46752	-0.46049	-4.4	-4.4	
H9	-0.45985	0.002002	-0.46779	-0.45978	-5.0	-5.0	
H10	-0.45930	0.001999	-0.46711	-0.45923	-4.9	-4.9	

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{MP2/Müller} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1	HF			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\rm Expect}E_{\rm self}^{\rm A}$	$\Delta E_{\rm self}^{\rm A}$	Δ^A_{self}
C1	-37.36617	0.162667	-37.12468	-37.24656	150.2	76.5
C2	-37.36617	0.162667	-37.12468	-37.24656	154.5	76.5
O3	-74.68168	0.325113	-74.36059	-74.44263	203.6	51.5
O4	-74.68168	0.325113	-74.36058	-74.44263	202.1	51.5
H5	-0.29995	0.001306	-0.27593	-0.29899	15.4	14.5
H6	-0.29995	0.001306	-0.27593	-0.29899	14.5	14.5
H7	-0.45916	0.001999	-0.42745	-0.45769	19.8	19.0
H8	-0.45916	0.001999	-0.42745	-0.45769	20.0	19.0
H9	-0.45916	0.001999	-0.42745	-0.45769	20.3	19.0
H10	-0.45916	0.001999	-0.42745	-0.45769	19.8	19.0

Table S17. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the Lin conformer of glycol at the HF level.^a

a) Self-atomic energies are in au. Differences $\Delta E_{\text{self}}^{A} = (E_{\text{self}}^{A})_{\text{HF}} - (E_{\text{self}}^{A})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{self}}^{A} = C_{\text{self}}^{Comput} E_{\text{self}}^{A} - E_{\text{self}}^{E} + E_{\text{self}}^{A}$ are in kcal mol⁻¹.

Table S18. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the Lin conformer of glycol B3LYP level.^a

	CCSD/	BBC1		B3LYP			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{ m self}^{ m A}$	$\Delta^{\rm A}_{ m self}$	
C1	-37.36617	0.162667	-37.43913	-37.46081	-45.8	13.6	
C2	-37.36617	0.162667	-37.43912	-37.46081	-45.8	13.6	
O3	-74.68168	0.325113	-74.86574	-74.87083	-115.5	3.2	
O4	-74.68168	0.325113	-74.86573	-74.87083	-115.5	3.2	
Н5	-0.29995	0.001306	-0.29720	-0.30071	1.7	2.2	
H6	-0.29995	0.001306	-0.29720	-0.30071	1.7	2.2	
H7	-0.45916	0.001999	-0.45536	-0.46032	2.4	3.1	
H8	-0.45916	0.001999	-0.45536	-0.46032	2.4	3.1	
Н9	-0.45916	0.001999	-0.45536	-0.46032	2.4	3.1	
H10	-0.45916	0.001999	-0.45536	-0.46032	2.4	3.1	

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{B3LYP} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{Expect} E_{self}^{A}$ are in kcal mol⁻¹.

	CCSD		B3LYP-GD3			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\rm Expect}E_{\rm self}^{\rm A}$	$\Delta E_{\rm self}^{\rm A}$	Δ^A_{self}
C1	-37.36617	0.162667	-37.43910	-37.46157	-45.8	14.1
C2	-37.36617	0.162667	-37.43910	-37.46157	-45.8	14.1
03	-74.68168	0.325113	-74.86644	-74.87236	-115.9	3.7
O4	-74.68168	0.325113	-74.86645	-74.87236	-115.9	3.7
H5	-0.29995	0.001306	-0.29719	-0.30072	1.7	2.2
H6	-0.29995	0.001306	-0.29719	-0.30072	1.7	2.2
H7	-0.45916	0.001999	-0.45535	-0.46033	2.4	3.1
H8	-0.45916	0.001999	-0.45535	-0.46033	2.4	3.1
H9	-0.45916	0.001999	-0.45535	-0.46033	2.4	3.1
H10	-0.45916	0.001999	-0.45535	-0.46033	2.4	3.1

Table S19. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the Lin conformer of glycol B3LYP-GD3 level.^a

a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{B3LYP-GD3} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

Table S20. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the Lin conformer of glycol MP2/Müller level.^a

	CCSD/	BBC1		MP2/Müller			
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{ m self}^{ m A}$	$\Delta^{\rm A}_{ m self}$	
C1	-37.36617	0.162667	-37.40817	-37.36035	-26.4	-30.0	
C2	-37.36617	0.162667	-37.40816	-37.36035	-26.4	-30.0	
O3	-74.68168	0.325113	-74.75378	-74.67004	-45.2	-52.5	
O4	-74.68168	0.325113	-74.75380	-74.67004	-45.3	-52.6	
Н5	-0.29995	0.001306	-0.29941	-0.29990	0.3	0.3	
Н6	-0.29995	0.001306	-0.29941	-0.29990	0.3	0.3	
H7	-0.45916	0.001999	-0.46693	-0.45909	-4.9	-4.9	
H8	-0.45916	0.001999	-0.46693	-0.45909	-4.9	-4.9	
H9	-0.45916	0.001999	-0.46693	-0.45909	-4.9	-4.9	
H10	-0.45916	0.001999	-0.46693	-0.45909	-4.9	-4.9	

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{MP2/Müller} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1		H	F	
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{\rm self}^{\rm A}$	$\Delta^{\rm A}_{\rm self}$
C1	-37.36288	0.162663	-37.11291	-37.24302	156.9	81.6
C2	-37.36288	0.162663	-37.11452	-37.24302	155.8	80.6
O3	-74.68303	0.325140	-74.35874	-74.44345	203.5	53.2
O4	-74.68303	0.325140	-74.35885	-74.44345	203.4	53.1
H5	-0.30250	0.001317	-0.27817	-0.30153	15.3	14.7
H6	-0.30250	0.001317	-0.27817	-0.30153	15.3	14.7
H7	-0.45770	0.001993	-0.42447	-0.45623	20.9	19.9
H8	-0.45770	0.001993	-0.42447	-0.45623	20.9	19.9
H9	-0.45770	0.001993	-0.42447	-0.45623	20.9	19.9
H10	-0.45770	0.001993	-0.42447	-0.45623	20.9	19.9

Table S21. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the **Ecl** conformer of glycol at the HF level.^a

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{HF} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

Table S22. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the **Ecl** conformer of glycol at the B3LYP level.^a

	CCSD/	BBC1				
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{ m self}^{ m A}$	Δ^A_{self}
C1	-37.36288	0.162663	-37.43459	-37.45758	-45.0	14.4
C2	-37.36288	0.162663	-37.43510	-37.45758	-45.3	14.1
03	-74.68303	0.325140	-74.86393	-74.87233	-113.5	5.3
O4	-74.68303	0.325140	-74.86403	-74.87233	-113.6	5.2
Н5	-0.30250	0.001317	-0.29928	-0.30326	2.0	2.5
H6	-0.30250	0.001317	-0.29928	-0.30326	2.0	2.5
H7	-0.45770	0.001993	-0.45428	-0.45886	2.1	2.9
H8	-0.45770	0.001993	-0.45428	-0.45886	2.1	2.9
H9	-0.45770	0.001993	-0.45428	-0.45886	2.1	2.9
H10	-0.45770	0.001993	-0.45428	-0.45886	2.1	2.9

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{B3LYP} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{Expect} E_{self}^{A}$ are in kcal mol⁻¹.

	CCSD/	BBC1				
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	${}^{\rm Expect}E_{\rm self}^{\rm A}$	$\Delta E_{\rm self}^{\rm A}$	Δ^{A}_{self}
C1	-37.36288	0.162663	-37.43546	-37.45825	-45.5	14.3
C2	-37.36288	0.162663	-37.43603	-37.45825	-45.9	13.9
O3	-74.68303	0.325140	-74.86451	-74.87366	-113.9	5.7
O4	-74.68303	0.325140	-74.86454	-74.87366	-113.9	5.7
Н5	-0.30250	0.001317	-0.29924	-0.30327	2.0	2.5
H6	-0.30250	0.001317	-0.29924	-0.30327	2.0	2.5
H7	-0.45770	0.001993	-0.45432	-0.45887	2.1	2.9
H8	-0.45770	0.001993	-0.45432	-0.45887	2.1	2.9
Н9	-0.45770	0.001993	-0.45432	-0.45887	2.1	2.9
H10	-0.45770	0.001993	-0.45432	-0.45887	2.1	2.9

Table S23. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the **Ecl** conformer of glycol at the B3LYP-GD3 level.^a

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{B3LYP-GD3} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

Table S24. Relative to the CCSD/BBC1 data, analysis of self-atomic energies computed for the **Ecl** conformer of glycol at the MP2/Müller level.^a

	CCSD/	BBC1		MP2/M	lüller	
Atom A	$E_{ m self}^{ m A}$	$E_{ m self}^{ m A}$ / E	$^{ m Comput}E_{ m self}^{ m A}$	$^{\mathrm{Expect}}E_{\mathrm{self}}^{\mathrm{A}}$	$\Delta E_{\rm self}^{\rm A}$	Δ^A_{self}
C1	-37.36288	0.162663	-37.40361	-37.35702	-25.6	-29.2
C2	-37.36288	0.162663	-37.40376	-37.35702	-25.7	-29.3
O3	-74.68303	0.325140	-74.75437	-74.67132	-44.8	-52.1
O4	-74.68303	0.325140	-74.75416	-74.67132	-44.6	-52.0
Н5	-0.30250	0.001317	-0.30231	-0.30245	0.1	0.1
H6	-0.30250	0.001317	-0.30230	-0.30245	0.1	0.1
H7	-0.45770	0.001993	-0.46590	-0.45763	-5.1	-5.2
H8	-0.45770	0.001993	-0.46590	-0.45763	-5.1	-5.2
Н9	-0.45770	0.001993	-0.46590	-0.45763	-5.1	-5.2
H10	-0.45770	0.001993	-0.46591	-0.45763	-5.1	-5.2

^a) Self-atomic energies are in au. Differences $\Delta E_{self}^{A} = (E_{self}^{A})_{MP2/Müller} - (E_{self}^{A})_{CCSD/BBC1}$ and relative errors $\Delta_{self}^{A} = C_{self}^{Comput} E_{self}^{A} - E_{self}^{E} - E_{self}^{A}$ are in kcal mol⁻¹.

From data in Tables S13-S24, several general trends are observed, namely:

(1) Considering absolute values of differences in the computed self-atomic energies, $\Delta E_{self}^{A} = (E_{self}^{A})_{oT} - (E_{self}^{A})_{CCSD/BBC1}$, we found the following trend $|\Delta E_{self}^{O}| > |\Delta E_{self}^{C}| >> |\Delta E_{self}^{H}|$. Typically, $|\Delta E_{self}^{A}| >> |\Delta_{self}^{A}|$ for O- and C-atoms, but differences and relative errors computed for H-atoms are comparable.

(2) The self-atomic energies computed at B3LYP and B3LYP/GD3 for O- and C-atoms are systematically larger (more negative) than the CCSD/BBC1 values; hence $\Delta E_{self}^A < 0$. In reality, however, B3LYP generates underestimated self-atomic energies of O- and C-atoms resulting in $\Delta_{self}^A > 0$. Self-atomic energies of H-atoms are slightly underestimated (ΔE_{self}^A and Δ_{self}^A values are small and positive).

(3) There is no change in sign at HF; all ΔE_{self}^{A} and Δ_{self}^{A} values are positive; self-atomic energies of all atoms are being under-estimated.

(4) There is no change in sign at MP2/Müller and, except H3 and H5, all $\Delta E_{\text{self}}^{\text{A}}$ and $\Delta_{\text{self}}^{\text{A}}$ values are negative hence they were overestimated.

Figure S5. Using CCSD/BBC1 data as a reference, relative errors (RE) in computed self-atomic energies of the eclipsed and linear conformers of glycol at the indicated levels of theory.

Table S25. Part (a) shows a full set of interaction energies, $E_{int}^{A,B}$, computed for all 45 unique atom-pairs in the Lin and LEC conformers of glycol and changes in these interaction energies, $\Delta E_{int}^{A,B}$, on the Lin \rightarrow LEC structural change. In addition and for convenience of interpretation, the atom pairs are also provided in the ascending order of the computed $\Delta E_{int}^{A,B}$ values (from most negative to most positive values) in Part (b). All values are in kcal mol⁻¹ and were obtained at the CCSD/BBC1 level.

Part (<u>a)</u>				Part (b)			
A	tom	LEC	Lin	$Lin \rightarrow LEC$		Atom		$Lin \rightarrow LEC$
A	В	$E_{ m in}^{ m A}$.,B t	$\Delta E_{\rm int}^{\rm A,B}$		Α	В	$\Delta E_{ m int}^{ m A,B}$
C1	C2	-91.19	-89.87	-1.32		04	H6	-40.52
C1	03	-98.68	-91.80	-6.88		03	H5	-13.10
C1	04	-363.14	-370.62	7.49		C2	O4	-10.63
C1	H5	78.29	80.84	-2.55		C2b	O3	-7.96
C1	Н6	47.76	34.65	13.11		C1	O3	-6.88
C1	H7	-137.40	-137.72	0.32		O3b	H6	-4.36
C1	H8	-3.92	-4.93	1.00		C1	H5	-2.55
C1	H9	-138.87	-137.72	-1.15		O3	H8	-2.48
C1	H10	-5.06	-4.93	-0.13		O4b	H5	-2.09
C2	03	-378.58	-370.62	-7.96		O4	H8	-2.08
C2	O4	-102.42	-91.80	-10.63		C1	C2	-1.32
C2	H5	38.67	34.65	4.02		C1	H9	-1.15
C2	H6	85.16	80.84	4.31		O3	H10	-0.75
C2	H7	-4.58	-4.93	0.34		O3	H7	-0.58
C2	H8	-135.62	-137.72	2.10		O4	H7	-0.50
C2	H9	-5.06	-4.93	-0.14		03	H9	-0.36
C2	H10	-136.84	-137.72	0.88		H5	H9	-0.36
03	04	137.08	103.17	33.90		C2	H9	-0.14
03	H5	-63.47	-50.37	-13.10		C1	H10	-0.13
O3	H6	-318.71	-314.35	-4.36		O4	H10	-0.12
03	H7	1.53	2.11	-0.58		H7	H10	-0.09
O3	H8	-6.44	-3.97	-2.48		H5	H7	-0.07
03	H9	1.74	2.11	-0.36		Н5	H10	0.03
03	H10	-4.72	-3.97	-0.75		H6	H7	0.03
04	Н5	-316.44	-314.35	-2.09		H8	H10	0.12
04	H6	-90.89	-50.37	-40.52		H8	H9	0.14
04	H7	-4.46	-3.97	-0.50		H7	H8	0.14
O4	H8	0.02	2.11	-2.08		H7	H9	0.19
O4	H9	-3.22	-3.97	0.75		Н9	H10	0.31
O4	H10	1.98	2.11	-0.12		Н6	H10	0.32

Table S25 continues

Part (a)				Part (b)	
Α	tom	LEC	Lin	$Lin \rightarrow LEC$	At	tom	$Lin \rightarrow LEC$
Α	В	$E_{ m int}^{ m A,E}$	3	$\Delta E_{\rm int}^{\rm A,B}$	Α	В	$\Delta E_{ m int}^{ m A,B}$
Н5	H6	36.97	22.72	14.24	H6	H9	0.32
Н5	H7	-1.91	-1.84	-0.07	C1	H7	0.32
Н5	H8	-0.65	-1.82	1.16	C2	H7	0.34
Н5	H9	-2.20	-1.84	-0.36	O4	H9	0.75
Н5	H10	-1.79	-1.82	0.03	C2	H10	0.88
H6	H7	-1.78	-1.82	0.03	C1	H8	1.00
Н6	H8	-0.43	-1.84	1.41	H5	H8	1.16
H6	H9	-1.50	-1.82	0.32	H6	H8	1.41
H6	H10	-1.52	-1.84	0.32	C2b	H8	2.10
H7	H8	-0.42	-0.57	0.14	C2	Н5	4.02
H7	H9	-2.32	-2.51	0.19	C2	H6	4.31
H7	H10	-0.55	-0.46	-0.09	C1b	O4	7.49
H8	H9	-0.32	-0.46	0.14	C1	H6	13.11
H8	H10	-2.38	-2.51	0.12	H5	H6	14.24
H9	H10	-0.25	-0.57	0.31	03	O4	33.90

Table S26. Part (a) shows a full set of classical component, $V_{cl}^{A,B}$, of interaction energies computed for all 45 unique atom-pairs in the **Lin** and **LEC** conformers of glycol and changes in the classical component, $\Delta V_{cl}^{A,B}$, on the **Lin** \rightarrow **LEC** structural change. In addition and for convenience of interpretation, the atom pairs are also provided in the ascending order of the computed $\Delta V_{cl}^{A,B}$ values (from most negative to most positive values) in Part (b). All values are in kcal mol⁻¹ and were obtained at the CCSD/BBC1 level.

Part (a)					I	Part (l)	
А	tom	LEC	Lin	$Lin \rightarrow LEC$		Α	tom	$Lin \rightarrow LEC$
Α	В	$V_{ m cl}^{ m A}$,В	$\Delta V_{ m cl}^{ m A,B}$		A	В	$\Delta V_{ m cl}^{ m A,B}$
C1	C2	78.34	78.42	-0.07	_	04	H6	-37.99
C1	O3	-88.27	-80.85	-7.42		03	H5	-13.25
C1	O4	-209.58	-215.79	6.21		C2	O4	-11.39
C1	Н5	79.50	82.17	-2.67		O3	H6	-8.24
C1	H6	48.29	35.15	13.14		C1	03	-7.42
C1	H7	19.68	19.26	0.43		C2	03	-5.42
C1	H8	0.12	-1.14	1.26		O4	H8	-3.18
C1	H9	18.41	19.26	-0.85		C1	H5	-2.67
C1	H10	-1.10	-1.14	0.04		O3	H8	-2.31
C2	O3	-221.21	-215.79	-5.42		O4	H5	-1.78
C2	O4	-92.24	-80.85	-11.39		O3	H9	-1.19
C2	Н5	39.11	35.15	3.96		C1	H9	-0.85
C2	H6	86.47	82.17	4.30		O3	H7	-0.54
C2	H7	-0.83	-1.14	0.30		03	H10	-0.43
C2	H8	21.87	19.26	2.61		Н5	H9	-0.37
C2	H9	-1.27	-1.14	-0.13		O4	H7	-0.32
C2	H10	19.50	19.26	0.24		H7	H10	-0.13
03	O4	146.25	108.94	37.31		C2	H9	-0.13
03	H5	-63.12	-49.87	-13.25		O4	H10	-0.10
03	H6	-204.52	-196.27	-8.24		C1	C2	-0.07
O3	H7	3.53	4.07	-0.54		H8	H10	0.00
O3	H8	-0.18	2.14	-2.31		H5	H7	0.01
O3	H9	2.88	4.07	-1.19		H7	H9	0.02
03	H10	1.70	2.14	-0.43		C1	H10	0.04
04	H5	-198.05	-196.27	-1.78		H8	H9	0.05
04	H6	-87.85	-49.87	-37.99		H5	H10	0.07
04	H7	1.81	2.14	-0.32		H6	H7	0.09
O4	H8	0.88	4.07	-3.18		H7	H8	0.12
O4	H9	3.29	2.14	1.15		H9	H10	0.22
04	H10	3.97	4.07	-0.10	_	C2	H10	0.24

Table	S26	continues.
-------	-----	------------

Part (a	a)				Part (l)	
Α	tom	LEC	Lin	$Lin \rightarrow LEC$	Α	tom	$\text{Lin} \rightarrow \text{LEC}$
Α	В	$V_{ m cl}^{ m A,E}$	}	$\Delta V_{ m cl}^{ m A,B}$	Α	В	$\Delta V_{ m cl}^{ m A,B}$
Н5	H6	37.09	22.91	14.18	C2	H7	0.30
Н5	H7	-1.73	-1.74	0.01	H6	H10	0.35
Н5	H8	-0.59	-1.78	1.19	H6	Н9	0.38
Н5	Н9	-2.11	-1.74	-0.37	C1	H7	0.43
Н5	H10	-1.71	-1.78	0.07	O4	Н9	1.15
H6	H7	-1.70	-1.78	0.09	H5	H8	1.19
H6	H8	-0.08	-1.74	1.66	C1	H8	1.26
H6	H9	-1.41	-1.78	0.38	H6	H8	1.66
H6	H10	-1.38	-1.74	0.35	C2	H8	2.61
H7	H8	0.20	0.08	0.12	C2	Н5	3.96
H7	H9	0.69	0.67	0.02	C2	Н6	4.30
H7	H10	0.08	0.21	-0.13	C1	04	6.21
H8	Н9	0.26	0.21	0.05	C1	Н6	13.14
H8	H10	0.67	0.67	0.00	Н5	Н6	14.18
H9	H10	0.30	0.08	0.22	03	04	37.31

Table S27. Part (a) shows a full set of the XC-term, $V_{XC}^{A,B}$, of interaction energies computed for all 45 unique atompairs in the **Lin** and **LEC** conformers of glycol and changes in the XC-term, $\Delta V_{XC}^{A,B}$, on the **Lin** \rightarrow **LEC** structural change. In addition and for convenience of interpretation, the atom pairs are also provided in the ascending order of the computed $\Delta V_{XC}^{A,B}$ values (from most negative to most positive values) in Part (b). All values are in kcal mol⁻¹ and were obtained at the CCSD/BBC1 level.

Part (a)				_	Part (l	o)	
A	tom	LEC	Lin	$Lin \rightarrow LEC$		A	tom	$Lin \rightarrow LEC$
A	В	$V_{ m X0}^{ m A}$.,B C	$\Delta V_{ m XC}^{ m A,B}$		A	В	$\Delta V_{ m XC}^{ m A,B}$
C1	C2	-169.54	-168.29	-1.25	-	03	04	-3.41
C1	O3	-10.41	-10.95	0.54		C2	03	-2.54
C1	04	-153.56	-154.83	1.27		O4	Н6	-2.53
C1	H5	-1.21	-1.32	0.11		C1	C2	-1.25
C1	Н6	-0.53	-0.50	-0.04		C2	H8	-0.51
C1	H7	-157.08	-156.98	-0.10		O4	Н9	-0.40
C1	H8	-4.04	-3.79	-0.26		O3	H10	-0.32
C1	H9	-157.27	-156.98	-0.29		O4	Н5	-0.32
C1	H10	-3.96	-3.79	-0.17		C1	Н9	-0.29
C2	O3	-157.37	-154.83	-2.54		C1	H8	-0.26
C2	O4	-10.19	-10.95	0.76		H6	H8	-0.24
C2	Н5	-0.44	-0.50	0.05		O4	H7	-0.17
C2	Н6	-1.31	-1.32	0.01		C1	H10	-0.17
C2	H7	-3.75	-3.79	0.04		O3	H8	-0.16
C2	H8	-157.49	-156.98	-0.51		C1	H7	-0.10
C2	H9	-3.79	-3.79	-0.01		Н5	H7	-0.07
C2	H10	-156.34	-156.98	0.64		H6	H7	-0.06
O3	O4	-9.17	-5.77	-3.41		H6	Н9	-0.06
O3	H5	-0.35	-0.50	0.15		H5	H10	-0.04
O3	H6	-114.19	-118.07	3.88		O3	H7	-0.04
O3	H7	-2.00	-1.96	-0.04		C1	Н6	-0.04
O3	H8	-6.27	-6.10	-0.16		H6	H10	-0.03
O3	H9	-1.14	-1.96	0.82		H5	H8	-0.03
O3	H10	-6.42	-6.10	-0.32		O4	H10	-0.03
O4	H5	-118.39	-118.07	-0.32		C2	Н9	-0.01
O4	H6	-3.03	-0.50	-2.53		C2	Н6	0.01
O4	H7	-6.28	-6.10	-0.17		H5	Н9	0.01
O4	H8	-0.86	-1.96	1.10		H7	H8	0.02
O4	H9	-6.50	-6.10	-0.40		C2	H7	0.04
O4	H10	-1.99	-1.96	-0.03	_	H7	H10	0.04

nues.

Part (a	a)		Part (l)			
Atom		LEC	Lin	$Lin \rightarrow LEC$	Atom		$\text{Lin} \rightarrow \text{LEC}$
Α	В	$V_{ m XC}^{ m A,E}$	3	$\Delta V_{ m XC}^{ m A,B}$	Α	В	$\Delta V_{ m XC}^{ m A,B}$
Н5	H6	-0.12	-0.19	0.07	C2	H5	0.05
Н5	H7	-0.18	-0.11	-0.07	Н5	Н6	0.07
Н5	H8	-0.06	-0.03	-0.03	H8	H9	0.09
Н5	H9	-0.09	-0.11	0.01	H9	H10	0.09
Н5	H10	-0.08	-0.03	-0.04	C1	Н5	0.11
H6	H7	-0.09	-0.03	-0.06	H8	H10	0.12
H6	H8	-0.35	-0.11	-0.24	03	Н5	0.15
H6	H9	-0.09	-0.03	-0.06	H7	H9	0.17
H6	H10	-0.14	-0.11	-0.03	C1	03	0.54
H7	H8	-0.62	-0.64	0.02	C2	H10	0.64
H7	H9	-3.01	-3.18	0.17	C2	04	0.76
H7	H10	-0.63	-0.67	0.04	03	H9	0.82
H8	H9	-0.59	-0.67	0.09	O4	H8	1.10
H8	H10	-3.05	-3.18	0.12	C1	04	1.27
H9	H10	-0.55	-0.64	0.09	03	Н6	3.88

Table S28. Part (a) shows a full set of interaction energies, $E_{int}^{A,B}$, computed for all 45 unique atom-pairs in the Lin and Ecl conformers of glycol and changes in these interaction energies, $\Delta E_{int}^{A,B}$, on the Lin \rightarrow Ecl structural change. In addition and for convenience of interpretation, the atom pairs are also provided in the ascending order of the computed $\Delta E_{int}^{A,B}$ values (from most negative to most positive values) in Part (b). All values are in kcal mol⁻¹ and were obtained at the CCSD/BBC1 level.

Part (a)						Part (b)	
Atom		Ecl	Lin	$\text{Lin} \rightarrow \text{Ecl}$	A		tom	$\text{Lin} \rightarrow \text{Ecl}$
Α	В	$E_{ m in}^{ m A}$.,B t	$\Delta E_{ m int}^{ m A,B}$		Α	В	$\Delta E_{\rm int}^{\rm A,B}$
C1	C2	-81.00	-89.87	8.88		03	H5	-9.06
C1	O3	-97.02	-91.80	-5.23		O4	H6	-9.06
C1	O4	-372.06	-370.62	-1.43		C1	03	-5.23
C1	Н5	82.40	80.84	1.56		C2	O4	-5.23
C1	Н6	37.71	34.65	3.06		C1	H7	-3.58
C1	H7	-141.30	-137.72	-3.58		C1	H9	-3.58
C1	H8	-6.60	-4.93	-1.68		C2	H8	-3.58
C1	H9	-141.30	-137.72	-3.58		C2	H10	-3.58
C1	H10	-6.60	-4.93	-1.68		C1	H8	-1.68
C2	O3	-372.06	-370.62	-1.43		C1	H10	-1.68
C2	O4	-97.02	-91.80	-5.23		C2	H7	-1.68
C2	Н5	37.71	34.65	3.06		C2	H9	-1.68
C2	H6	82.40	80.84	1.56		H5	H7	-1.53
C2	H7	-6.60	-4.93	-1.68		H5	H9	-1.53
C2	H8	-141.30	-137.72	-3.58		H6	H8	-1.53
C2	H9	-6.60	-4.93	-1.68		H6	H10	-1.53
C2	H10	-141.30	-137.72	-3.58		C1	O4	-1.43
03	O4	121.19	103.17	18.02		C2	O3	-1.43
03	Н5	-59.43	-50.37	-9.06		H5	H8	-0.41
03	Н6	-309.99	-314.35	4.36		H5	H10	-0.41
03	H7	3.69	2.11	1.59		H6	H7	-0.41
03	H8	-1.45	-3.97	2.51		H6	H9	-0.41
03	H9	3.69	2.11	1.59		H7	H8	-0.32
03	H10	-1.45	-3.97	2.51		H9	H10	-0.32
04	Н5	-309.99	-314.35	4.36		H7	H9	-0.14
04	H6	-59.43	-50.37	-9.06		H8	H10	-0.14
04	H7	-1.45	-3.97	2.51		H7	H10	0.21
04	H8	3.69	2.11	1.59		H8	H9	0.21
04	H9	-1.45	-3.97	2.51		C1	H5	1.56
04	H10	3.69	2.11	1.59		C2	H6	1.56

Table S2	8 continues.
----------	--------------

Part (a	a)		Part (l)			
Atom		Ecl	Lin	$\text{Lin} \rightarrow \text{Ecl}$	Atom		$\text{Lin} \rightarrow \text{Ecl}$
Α	B $E_{\text{int}}^{A,B}$			$\Delta E_{ m int}^{ m A,B}$	Α	В	$\Delta E_{ m int}^{ m A,B}$
Н5	H6	25.93	22.72	3.21	03	H7	1.59
Н5	H7	-3.37	-1.84	-1.53	03	H9	1.59
Н5	H8	-2.23	-1.82	-0.41	O4	H8	1.59
Н5	H9	-3.37	-1.84	-1.53	O4	H10	1.59
Н5	H10	-2.23	-1.82	-0.41	03	H8	2.51
H6	H7	-2.23	-1.82	-0.41	03	H10	2.51
H6	H8	-3.37	-1.84	-1.53	O4	H7	2.51
H6	H9	-2.23	-1.82	-0.41	O4	H9	2.51
H6	H10	-3.37	-1.84	-1.53	C1	H6	3.06
H7	H8	-0.88	-0.57	-0.32	C2	H5	3.06
H7	H9	-2.65	-2.51	-0.14	H5	H6	3.21
H7	H10	-0.25	-0.46	0.21	03	H6	4.36
H8	H9	-0.25	-0.46	0.21	04	H5	4.36
H8	H10	-2.65	-2.51	-0.14	C1	C2	8.88
H9	H10	-0.88	-0.57	-0.32	O3	O4	18.02

Table S29. Part (a) shows a full set of classical component, $V_{cl}^{A,B}$, of interaction energies computed for all 45 unique atom-pairs in the **Ecl** and **Lin** conformers of glycol and changes in the classical component, $\Delta V_{cl}^{A,B}$, on the **Lin** \rightarrow **Ecl** structural change. In addition and for convenience of interpretation, the atom pairs are also provided in the ascending order of the computed $\Delta V_{cl}^{A,B}$ values (from most negative to most positive values) in Part (b). All values are in kcal mol⁻¹ and were obtained at the CCSD/BBC1 level.

Part (a)					Part	(b)	
Atom		Ecl	Lin	$Lin \rightarrow Ecl$	I	Atom	$\text{Lin} \rightarrow \text{Ecl}$
A	В	$V_{ m cl}^{ m A}$,В	$\Delta V_{ m cl}^{ m A,B}$	Α	В	$\Delta V_{ m cl}^{ m A,B}$
C1	C2	81.66	78.42	3.24	03	H5	-8.90
C1	O3	-89.13	-80.85	-8.28	O4	H6	-8.90
C1	O4	-214.54	-215.79	1.25	C1	O3	-8.28
C1	H5	83.83	82.17	1.66	C2	O4	-8.28
C1	H6	38.20	35.15	3.05	C1	H7	-3.24
C1	H7	16.02	19.26	-3.24	C1	H9	-3.24
C1	H8	-2.54	-1.14	-1.40	C2	H8	-3.24
C1	H9	16.02	19.26	-3.24	C2	H10	-3.24
C1	H10	-2.54	-1.14	-1.40	H5	H7	-1.49
C2	O3	-214.54	-215.79	1.25	H5	H9	-1.49
C2	O4	-89.13	-80.85	-8.28	H6	H8	-1.49
C2	Н5	38.20	35.15	3.05	H6	H10	-1.49
C2	H6	83.83	82.17	1.66	C1	H8	-1.40
C2	H7	-2.54	-1.14	-1.40	C1	H10	-1.40
C2	H8	16.02	19.26	-3.24	C2	H7	-1.40
C2	H9	-2.54	-1.14	-1.40	C2	H9	-1.40
C2	H10	16.02	19.26	-3.24	H5	H8	-0.41
03	O4	136.45	108.94	27.51	H5	H10	-0.41
03	Н5	-58.77	-49.87	-8.90	H6	H7	-0.41
03	H6	-191.06	-196.27	5.21	H6	H9	-0.41
03	H7	4.39	4.07	0.32	H7	H10	0.04
03	H8	5.13	2.14	2.99	H8	H9	0.04
03	H9	4.39	4.07	0.32	H7	H9	0.13
03	H10	5.13	2.14	2.99	H8	H10	0.13
O4	Н5	-191.06	-196.27	5.21	O3	H7	0.32
O4	H6	-58.77	-49.87	-8.90	O3	H9	0.32
04	H7	5.13	2.14	2.99	O4	H8	0.32
04	H8	4.39	4.07	0.32	O4	H10	0.32
O4	H9	5.13	2.14	2.99	H7	H8	0.50
04	H10	4.39	4.07	0.32	H9	H10	0.50

Table	S29	continues.

Part (a)			Part (l)			
Atom		Ecl	Lin	$Lin \rightarrow Ecl$		Atom		$\text{Lin} \rightarrow \text{Ecl}$
Α	В	$V_{ m cl}^{ m A,E}$	3	$\Delta V_{ m cl}^{ m A,B}$		Α	В	$\Delta V_{ m cl}^{ m A,B}$
H5	H6	26.14	22.91	3.23		C1	04	1.25
H5	H7	-3.23	-1.74	-1.49		C2	O3	1.25
Н5	H8	-2.19	-1.78	-0.41		C1	H5	1.66
Н5	H9	-3.23	-1.74	-1.49		C2	H6	1.66
Н5	H10	-2.19	-1.78	-0.41		03	H8	2.99
H6	H7	-2.19	-1.78	-0.41		03	H10	2.99
H6	H8	-3.23	-1.74	-1.49		04	H7	2.99
H6	H9	-2.19	-1.78	-0.41		O4	H9	2.99
H6	H10	-3.23	-1.74	-1.49		C1	H6	3.05
H7	H8	0.58	0.08	0.50		C2	H5	3.05
H7	H9	0.80	0.67	0.13		Н5	H6	3.23
H7	H10	0.25	0.21	0.04		C1	C2	3.24
H8	H9	0.25	0.21	0.04		03	H6	5.21
H8	H10	0.80	0.67	0.13		04	H5	5.21
H9	H10	0.58	0.08	0.50		03	O4	27.51
Table S30. Part (a) shows a full set of the XC-term, $V_{\rm XC}^{A,B}$, of interaction energies computed for all unique 45 atompairs in the **Ecl** and **Lin** conformers of glycol and changes in the XC-term, $\Delta V_{\rm XC}^{A,B}$, on the **Lin** \rightarrow **Ecl** structural change. In addition and for convenience of interpretation, the atom pairs are also provided in the ascending order of the computed $\Delta V_{\rm XC}^{A,B}$ values (from most negative to most positive values) in Part (b). All values are in kcal mol⁻¹ and were obtained at the CCSD/BBC1 level.

Part (a)				Par	t (b)	
A	tom	Ecl	Lin	$Lin \rightarrow Ecl$		Atom	$Lin \rightarrow Ecl$
A	В	$V_{\rm XC}^{\rm A}$,B 2	$\Delta V_{ m XC}^{ m A,B}$	Α	В	$\Delta V_{ m XC}^{ m A,B}$
C1	C2	-162.65	-168.29	5.64	03	O4	-9.49
C1	03	-7.90	-10.95	3.05	C1	O4	-2.68
C1	O4	-157.51	-154.83	-2.68	C2	O3	-2.68
C1	Н5	-1.43	-1.32	-0.10	03	Н6	-0.86
C1	Н6	-0.48	-0.50	0.01	04	Н5	-0.86
C1	H7	-157.32	-156.98	-0.34	Η7	Н8	-0.82
C1	H8	-4.06	-3.79	-0.28	Н9	H10	-0.82
C1	H9	-157.32	-156.98	-0.34	03	H8	-0.48
C1	H10	-4.06	-3.79	-0.28	03	H10	-0.48
C2	03	-157.51	-154.83	-2.68	04	H7	-0.48
C2	O4	-7.90	-10.95	3.05	04	Н9	-0.48
C2	H5	-0.48	-0.50	0.01	C1	H7	-0.34
C2	Н6	-1.43	-1.32	-0.10	C1	Н9	-0.34
C2	H7	-4.06	-3.79	-0.28	C2	H8	-0.34
C2	H8	-157.32	-156.98	-0.34	C2	H10	-0.34
C2	H9	-4.06	-3.79	-0.28	C1	H8	-0.28
C2	H10	-157.32	-156.98	-0.34	C1	H10	-0.28
O3	O4	-15.26	-5.77	-9.49	C2	H7	-0.28
O3	H5	-0.67	-0.50	-0.16	C2	H9	-0.28
O3	H6	-118.93	-118.07	-0.86	Η7	Н9	-0.27
03	H7	-0.70	-1.96	1.26	H8	H10	-0.27
O3	H8	-6.58	-6.10	-0.48	03	Н5	-0.16
O3	H9	-0.70	-1.96	1.26	04	Н6	-0.16
O3	H10	-6.58	-6.10	-0.48	C1	Н5	-0.10
O4	Н5	-118.93	-118.07	-0.86	C2	H6	-0.10
O4	H6	-0.67	-0.50	-0.16	Н5	H7	-0.03
O4	H7	-6.58	-6.10	-0.48	Н5	Н9	-0.03
O4	H8	-0.70	-1.96	1.26	Н6	H8	-0.03
O4	Н9	-6.58	-6.10	-0.48	Н6	H10	-0.03
O4	H10	-0.70	-1.96	1.26	Н5	Н6	-0.02

Table	S30	continues.

Part (a	a)				Part (l)	
Α	tom	Ecl	Lin	$Lin \rightarrow Ecl$	Α	tom	$\text{Lin} \rightarrow \text{Ecl}$
Α	В	$V_{ m XC}^{ m A,B}$		$\Delta V_{ m XC}^{ m A,B}$	Α	В	$\Delta V_{ m XC}^{ m A,B}$
Н5	H6	-0.20	-0.19	-0.02	Н5	H8	0.00
Н5	H7	-0.14	-0.11	-0.03	H5	H10	0.00
Н5	H8	-0.04	-0.03	0.00	H6	H7	0.00
Н5	H9	-0.14	-0.11	-0.03	H6	H9	0.00
Н5	H10	-0.04	-0.03	0.00	C1	H6	0.01
H6	H7	-0.04	-0.03	0.00	C2	H5	0.01
H6	H8	-0.14	-0.11	-0.03	H7	H10	0.16
H6	H9	-0.04	-0.03	0.00	H8	H9	0.16
H6	H10	-0.14	-0.11	-0.03	O3	H7	1.26
H7	H8	-1.46	-0.64	-0.82	O3	H9	1.26
H7	H9	-3.45	-3.18	-0.27	O4	H8	1.26
H7	H10	-0.51	-0.67	0.16	O4	H10	1.26
H8	H9	-0.51	-0.67	0.16	C1	O3	3.05
H8	H10	-3.45	-3.18	-0.27	C2	O4	3.05
H9	H10	-1.46	-0.64	-0.82	C1	C2	5.64

		CCS	SD/BBC1			HF		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-91.2	6.32638E-04	-64.1	-90.9	27.1	26.8	-41.8
C1	O4	-363.1	2.51920E-03	-471.1	-362.0	-108.0	-109.1	23.2
C1	H7	-137.4	9.53175E-04	-165.4	-137.0	-28.0	-28.5	17.2
C1	H9	-138.9	9.63366E-04	-168.2	-138.4	-29.3	-29.7	17.7
C2	O3	-378.6	2.62634E-03	-492.4	-377.4	-113.8	-115.0	23.4
C2	H8	-135.6	9.40822E-04	-162.8	-135.2	-27.1	-27.6	16.9
C2	H10	-136.8	9.49285E-04	-165.2	-136.4	-28.3	-28.8	17.4
O3	H6	-318.7	2.21099E-03	-366.7	-317.7	-48.0	-49.1	13.4
O4	Н5	-316.4	2.19526E-03	-362.5	-315.4	-46.0	-47.0	13.0
O4	H6	-90.9	6.30517E-04	-103.9	-90.6	-13.0	-13.3	12.8

Table S31. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the HF level for covalently bonded atom-pairs and intramolecular interaction O4…H6 in the LEC of glycol.^a

^a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{HF} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = {}^{Comput}E_{int}^{A,B} - {}^{Expect}E_{int}^{A,B}$ are in kcal mol⁻¹.

Table S32. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs and intramolecular interaction O4…H6 in the LEC of glycol.^a

		CCS	SD/BBC1		B3	BLYP		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-91.2	6.32638E-04	-117.1	-91.4	-25.9	-25.7	22.0
C1	O4	-363.1	2.51920E-03	-352.8	-364.1	10.3	11.2	-3.2
C1	H7	-137.4	9.53175E-04	-149.5	-137.7	-12.1	-11.8	7.9
C1	H9	-138.9	9.63366E-04	-150.7	-139.2	-11.9	-11.5	7.6
C2	O3	-378.6	2.62634E-03	-368.6	-379.5	10.0	11.0	-3.0
C2	H8	-135.6	9.40822E-04	-147.2	-136.0	-11.6	-11.2	7.6
C2	H10	-136.8	9.49285E-04	-148.4	-137.2	-11.6	-11.3	7.6
O3	H6	-318.7	2.21099E-03	-322.0	-319.5	-3.2	-2.4	0.8
O4	Н5	-316.4	2.19526E-03	-319.7	-317.2	-3.3	-2.5	0.8
O4	H6	-90.9	6.30517E-04	-86.1	-91.1	4.8	5.0	-5.8

^a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{B3LYP} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = {}^{Comput}E_{int}^{A,B} - {}^{Expect}E_{int}^{A,B}$ are in kcal mol⁻¹.

		CCS	SD/BBC1		B3LY	P-GD3		
Atom A	Atom B	$E_{\rm int}^{\rm A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-91.2	6.32638E-04	-117.4	-91.4	-26.2	-26.0	22.1
C1	O4	-363.1	2.51920E-03	-351.9	-364.1	11.2	12.1	-3.4
C1	H7	-137.4	9.53175E-04	-149.4	-137.7	-12.0	-11.7	7.8
C1	H9	-138.9	9.63366E-04	-150.7	-139.2	-11.8	-11.5	7.6
C2	O3	-378.6	2.62634E-03	-367.7	-379.5	10.9	11.8	-3.2
C2	H8	-135.6	9.40822E-04	-147.2	-136.0	-11.6	-11.2	7.6
C2	H10	-136.8	9.49285E-04	-148.3	-137.2	-11.5	-11.2	7.5
O3	H6	-318.7	2.21099E-03	-321.8	-319.5	-3.1	-2.3	0.7
O4	H5	-316.4	2.19526E-03	-319.6	-317.2	-3.1	-2.3	0.7
O4	H6	-90.9	6.30517E-04	-85.8	-91.1	5.1	5.4	-6.2

Table S33. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs and intramolecular interaction O4…H6 in the LEC of glycol.^a

^a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{B3LYP-GD3} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = C_{omput} E_{int}^{A,B} - E_{int}^{Expect} E_{int}^{A,B}$ are in kcal mol⁻¹.

Table S34. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs and intramolecular interaction O4…H6 in the LEC of glycol.^a

		CCS	SD/BBC1		MP2	/Müller		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-91.2	6.32638E-04	-99.2	-91.2	-8.0	-8.0	8.1
C1	O4	-363.1	2.51920E-03	-352.4	-363.1	10.7	10.7	-3.0
C1	H7	-137.4	9.53175E-04	-139.4	-137.4	-2.0	-2.0	1.4
C1	H9	-138.9	9.63366E-04	-140.8	-138.8	-1.9	-2.0	1.4
C2	O3	-378.6	2.62634E-03	-368.6	-378.5	10.0	9.9	-2.7
C2	H8	-135.6	9.40822E-04	-137.2	-135.6	-1.6	-1.6	1.2
C2	H10	-136.8	9.49285E-04	-138.6	-136.8	-1.7	-1.8	1.3
O3	H6	-318.7	2.21099E-03	-324.9	-318.7	-6.2	-6.2	1.9
O4	Н5	-316.4	2.19526E-03	-321.7	-316.4	-5.3	-5.3	1.7
O4	H6	-90.9	6.30517E-04	-93.0	-90.9	-2.1	-2.1	2.2

a) Interaction energies, differences $\Delta E_{\text{int}}^{\text{A,B}} = (E_{\text{int}}^{\text{A,B}})_{\text{MP2/Müller}} - (E_{\text{int}}^{\text{A,B}})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{int}}^{\text{A,B}} = {}^{\text{Comput}}E_{\text{int}}^{\text{A,B}} - {}^{\text{Expect}}E_{\text{int}}^{\text{A,B}}$ are in kcal/mol.

		CCS	SD/BBC1		-	HF		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{int}^{A,B}$	%-error
C1	C2	-89.9	6.23500E-04	-62.7	-89.6	27.2	26.9	-43.0
C1	O4	-370.6	2.57119E-03	-481.6	-369.4	-111.0	-112.2	23.3
C1	H7	-137.7	9.55436E-04	-166.1	-137.3	-28.3	-28.8	17.3
C1	H9	-137.7	9.55436E-04	-166.1	-137.3	-28.3	-28.8	17.3
C2	O3	-370.6	2.57119E-03	-481.6	-369.4	-111.0	-112.2	23.3
C2	H8	-137.7	9.55436E-04	-166.1	-137.3	-28.3	-28.8	17.3
C2	H10	-137.7	9.55436E-04	-166.1	-137.3	-28.3	-28.8	17.3
O3	H6	-314.3	2.18078E-03	-361.8	-313.3	-47.4	-48.4	13.4
O4	Н5	-314.3	2.18078E-03	-361.8	-313.3	-47.4	-48.4	13.4

Table S35. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the HF levels for covalently bonded atom-pairs in the Lin conformer of glycol.^a

^a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{HF} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = {}^{Comput}E_{int}^{A,B} - {}^{Expect}E_{int}^{A,B}$ are in kcal mol⁻¹.

Table S36. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

		CCS	SD/BBC1		B3	BLYP		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-89.9	6.23500E-04	-115.5	-90.1	-25.7	-25.4	22.0
C1	O4	-370.6	2.57119E-03	-361.0	-371.6	9.6	10.5	-2.9
C1	H7	-137.7	9.55436E-04	-149.7	-138.1	-12.0	-11.6	7.8
C1	H9	-137.7	9.55436E-04	-149.7	-138.1	-12.0	-11.6	7.8
C2	O3	-370.6	2.57119E-03	-361.0	-371.6	9.6	10.5	-2.9
C2	H8	-137.7	9.55436E-04	-149.7	-138.1	-12.0	-11.6	7.8
C2	H10	-137.7	9.55436E-04	-149.7	-138.1	-12.0	-11.6	7.8
O3	H6	-314.3	2.18078E-03	-318.9	-315.1	-4.6	-3.8	1.2
O4	Н5	-314.3	2.18078E-03	-318.9	-315.1	-4.6	-3.8	1.2

a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{B3LYP} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = {}^{Comput}E_{int}^{A,B} - {}^{Expect}E_{int}^{A,B}$ are in kcal mol⁻¹.

		CCS	SD/BBC1		B3LY	P-GD3		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{int}^{A,B}$	%-error
C1	C2	-89.9	6.23500E-04	-115.6	-90.1	-25.7	-25.5	22.1
C1	O4	-370.6	2.57119E-03	-360.6	-371.6	10.0	10.9	-3.0
C1	H7	-137.7	9.55436E-04	-149.6	-138.1	-11.9	-11.6	7.7
C1	H9	-137.7	9.55436E-04	-149.6	-138.1	-11.9	-11.6	7.7
C2	O3	-370.6	2.57119E-03	-360.6	-371.6	10.0	10.9	-3.0
C2	H8	-137.7	9.55436E-04	-149.6	-138.1	-11.9	-11.6	7.7
C2	H10	-137.7	9.55436E-04	-149.6	-138.1	-11.9	-11.6	7.7
O3	H6	-314.3	2.18078E-03	-318.9	-315.2	-4.5	-3.7	1.2
04	H5	-314.3	2.18078E-03	-318.9	-315.2	-4.5	-3.7	1.2

Table S37. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs in the **Lin** conformer of glycol.^a

a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{B3LYP-GD3} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = C_{omput} E_{int}^{A,B} - E_{int}^{Expect} E_{int}^{A,B}$ are in kcal mol⁻¹.

Table S38. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

		CCS	SD/BBC1		MP2	/Müller		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-89.9	6.23500E-04	-97.3	-89.9	-7.4	-7.5	7.7
C1	O4	-370.6	2.57119E-03	-361.0	-370.6	9.6	9.6	-2.7
C1	H7	-137.7	9.55436E-04	-139.7	-137.7	-2.0	-2.0	1.5
C1	H9	-137.7	9.55436E-04	-139.7	-137.7	-2.0	-2.0	1.4
C2	O3	-370.6	2.57119E-03	-361.0	-370.6	9.6	9.6	-2.7
C2	H8	-137.7	9.55436E-04	-139.7	-137.7	-2.0	-2.0	1.5
C2	H10	-137.7	9.55436E-04	-139.7	-137.7	-2.0	-2.0	1.4
03	H6	-314.3	2.18078E-03	-320.7	-314.3	-6.4	-6.4	2.0
O4	H5	-314.3	2.18078E-03	-320.7	-314.3	-6.4	-6.4	2.0

a) Interaction energies, differences $\Delta E_{\text{int}}^{A,B} = (E_{\text{int}}^{A,B})_{\text{MP2/Muller}} - (E_{\text{int}}^{A,B})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{int}}^{A,B} = {}^{\text{Comput}}E_{\text{int}}^{A,B} - {}^{\text{Expect}}E_{\text{int}}^{A,B}$ are in kcal mol⁻¹.

		CCS	SD/BBC1			HF		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-81.0	5.61947E-04	-51.2	-80.7	29.8	29.6	-57.8
C1	O4	-372.1	2.58130E-03	-489.8	-370.9	-117.7	-118.9	24.3
C1	H7	-141.3	9.80326E-04	-171.8	-140.8	-30.5	-30.9	18.0
C1	Н9	-141.3	9.80326E-04	-171.8	-140.8	-30.5	-30.9	18.0
C2	O3	-372.1	2.58130E-03	-489.7	-370.9	-117.7	-118.8	24.3
C2	H8	-141.3	9.80326E-04	-171.8	-140.8	-30.5	-30.9	18.0
C2	H10	-141.3	9.80326E-04	-171.8	-140.8	-30.5	-30.9	18.0
O3	Н6	-310.0	2.15069E-03	-358.4	-309.0	-48.4	-49.4	13.8
O4	Н5	-310.0	2.15069E-03	-358.4	-309.0	-48.4	-49.4	13.8
O3	O4	121.2	-8.40799E-04	168.1	120.8	46.9	47.3	28.1

Table S39. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the HF level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

^a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{HF} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = {}^{Comput}E_{int}^{A,B} - {}^{Expect}E_{int}^{A,B}$ are in kcal mol⁻¹.

Table S40. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

		CC	SD/BBC1		B3	BLYP		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-81.0	5.61947E-04	-106.2	-81.2	-25.2	-25.0	23.6
C1	O4	-372.1	2.58130E-03	-364.6	-373.0	7.5	8.4	-2.3
C1	H7	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.4	7.4
C1	H9	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.4	7.4
C2	O3	-372.1	2.58130E-03	-364.6	-373.0	7.5	8.4	-2.3
C2	H8	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.4	7.4
C2	H10	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.4	7.4
03	Н6	-310.0	2.15069E-03	-315.4	-310.8	-5.4	-4.6	1.5
O4	Н5	-310.0	2.15069E-03	-315.4	-310.8	-5.4	-4.6	1.5
O3	O4	121.2	-8.40799E-04	121.4	121.5	0.3	-0.1	0.0

a) Interaction energies, differences $\Delta E_{\text{int}}^{A,B} = (E_{\text{int}}^{A,B})_{B3LYP} - (E_{\text{int}}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{\text{int}}^{A,B} = {}^{\text{Comput}}E_{\text{int}}^{A,B} - {}^{\text{Expect}}E_{\text{int}}^{A,B}$ are in kcal mol⁻¹.

		CC	SD/BBC1		B3LY	YP-GD3		
Atom A	Atom B	$E_{\rm int}^{\rm A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-81.0	5.61947E-04	-106.4	-81.2	-25.4	-25.2	23.7
C1	O4	-372.1	2.58130E-03	-363.7	-373.0	8.3	9.3	-2.6
C1	H7	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.3	7.4
C1	Н9	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.3	7.4
C2	03	-372.1	2.58130E-03	-363.7	-373.0	8.3	9.3	-2.6
C2	H8	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.3	7.4
C2	H10	-141.3	9.80326E-04	-153.0	-141.7	-11.7	-11.3	7.4
O3	Н6	-310.0	2.15069E-03	-315.2	-310.8	-5.2	-4.5	1.4
O4	Н5	-310.0	2.15069E-03	-315.2	-310.8	-5.2	-4.5	1.4
O3	O4	121.2	-8.40799E-04	121.2	121.5	0.1	-0.3	-0.2
T / /	•	1.00		3 \	(TAB)	1	1.4.	A B

Table S41. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

a) Interaction energies, differences $\Delta E_{int}^{A,B} = (E_{int}^{A,B})_{B3LYP-GD3} - (E_{int}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{int}^{A,B} = C_{omput}E_{int}^{A,B} - E_{int}^{E_{int}} = E_{int}^{A,B}$ are in kcal mol⁻¹.

Table S42. Relative to the CCSD/BBC1 data, analysis of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

		CC	SD/BBC1		MP2/Mü	ller		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta E_{\rm int}^{\rm A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-error
C1	C2	-81.0	5.61947E-04	-87.9	-81.0	-6.9	-6.9	7.8
C1	O4	-372.1	2.58130E-03	-362.9	-372.0	9.1	9.1	-2.5
C1	H7	-141.3	9.80326E-04	-143.2	-141.3	-1.9	-2.0	1.4
C1	Н9	-141.3	9.80326E-04	-143.2	-141.3	-1.9	-2.0	1.4
C2	O3	-372.1	2.58130E-03	-363.0	-372.0	9.1	9.0	-2.5
C2	H8	-141.3	9.80326E-04	-143.2	-141.3	-1.9	-1.9	1.4
C2	H10	-141.3	9.80326E-04	-143.2	-141.3	-1.9	-1.9	1.4
O3	Н6	-310.0	2.15069E-03	-316.3	-309.9	-6.3	-6.4	2.0
O4	Н5	-310.0	2.15069E-03	-316.3	-309.9	-6.3	-6.3	2.0
03	O4	121.2	-8.40799E-04	126.8	121.2	5.6	5.6	4.4

a) Interaction energies, differences $\Delta E_{\text{int}}^{\text{A,B}} = (E_{\text{int}}^{\text{A,B}})_{\text{MP2/Muller}} - (E_{\text{int}}^{\text{A,B}})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{int}}^{\text{A,B}} = {}^{\text{Comput}}E_{\text{int}}^{\text{A,B}} - {}^{\text{Expect}}E_{\text{int}}^{\text{A,B}}$ are in kcal mol⁻¹.

		CC	SD/BBC1			HF		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.3	-5.43506E-04	118.5	78.1	40.1	40.4	34.1
C1	O4	-209.6	1.45392E-03	-319.3	-208.9	-109.7	-110.4	34.6
C1	H7	19.7	-1.36560E-04	9.6	19.6	-10.1	-10.0	-104.3
C1	Н9	18.4	-1.27693E-04	7.0	18.3	-11.5	-11.4	-163.8
C2	O3	-221.2	1.53461E-03	-337.6	-220.5	-116.4	-117.1	34.7
C2	H8	21.9	-1.51739E-04	12.2	21.8	-9.6	-9.6	-78.3
C2	H10	19.5	-1.35299E-04	9.1	19.4	-10.4	-10.4	-114.5
03	H6	-204.5	1.41879E-03	-250.2	-203.9	-45.7	-46.3	18.5
O4	Н5	-198.1	1.37395E-03	-242.4	-197.4	-44.3	-45.0	18.5
O4	H6	-87.9	6.09474E-04	-102.6	-87.6	-14.8	-15.0	14.7

Table S43. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the HF level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the LEC of glycol.^a

a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{HF} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

Table S44. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the **LEC** of glycol.^a

		CC	SD/BBC1		B	BLYP		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.3	-5.43506E-04	66.2	78.5	-12.1	-12.3	-18.6
C1	O4	-209.6	1.45392E-03	-188.2	-210.1	21.4	21.9	-11.7
C1	H7	19.7	-1.36560E-04	22.3	19.7	2.6	2.6	11.6
C1	Н9	18.4	-1.27693E-04	21.1	18.5	2.7	2.7	12.6
C2	O3	-221.2	1.53461E-03	-199.8	-221.8	21.4	21.9	-11.0
C2	H8	21.9	-1.51739E-04	24.7	21.9	2.9	2.8	11.3
C2	H10	19.5	-1.35299E-04	22.3	19.6	2.8	2.8	12.4
03	H6	-204.5	1.41879E-03	-200.1	-205.0	4.4	4.9	-2.5
O4	Н5	-198.1	1.37395E-03	-194.1	-198.6	3.9	4.4	-2.3
O4	H6	-87.9	6.09474E-04	-83.8	-88.1	4.0	4.3	-5.1

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{B3LYP} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

	-	CCSD/BBC1			B3LYP-GD3			
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.3	-5.43506E-04	65.9	78.5	-12.5	-12.7	-19.3
C1	O4	-209.6	1.45392E-03	-187.3	-210.1	22.2	22.8	-12.2
C1	H7	19.7	-1.36560E-04	22.4	19.7	2.7	2.6	11.7
C1	H9	18.4	-1.27693E-04	21.1	18.5	2.7	2.7	12.7
C2	03	-221.2	1.53461E-03	-199.1	-221.8	22.1	22.7	-11.4
C2	H8	21.9	-1.51739E-04	24.7	21.9	2.8	2.8	11.3
C2	H10	19.5	-1.35299E-04	22.4	19.6	2.9	2.8	12.6
03	H6	-204.5	1.41879E-03	-199.9	-205.0	4.6	5.1	-2.6

Table S45. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the LEC of glycol.^a

 $\frac{O4}{O4} + \frac{H6}{H6} + \frac{1.3}{6.09474E-04} + \frac{1.3}{6.09474E-04$

04

H5

-198.1

1.37395E-03

-193.9 -198.6

4.1

4.6

-2.4

Table S46. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the LEC of glycol.^a

		CC	SD/BBC1		MP2/Mü	ller		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.3	-5.43506E-04	71.8	78.3	-6.5	-6.5	-9.1
C1	O4	-209.6	1.45392E-03	-196.8	-209.5	12.7	12.7	-6.5
C1	H7	19.7	-1.36560E-04	22.4	19.7	2.7	2.7	12.2
C1	H9	18.4	-1.27693E-04	21.1	18.4	2.7	2.7	12.9
C2	O3	-221.2	1.53461E-03	-209.2	-221.2	12.0	12.0	-5.7
C2	H8	21.9	-1.51739E-04	24.7	21.9	2.8	2.8	11.3
C2	H10	19.5	-1.35299E-04	22.3	19.5	2.8	2.8	12.4
03	H6	-204.5	1.41879E-03	-210.7	-204.5	-6.2	-6.2	3.0
O4	Н5	-198.1	1.37395E-03	-203.9	-198.0	-5.9	-5.9	2.9
O4	H6	-87.9	6.09474E-04	-90.2	-87.8	-2.3	-2.4	2.6

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{B3LYP-GD3} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

		CC	SD/BBC1			HF		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.4	-5.44002E-04	118.5	78.2	40.1	40.4	34.1
C1	O4	-215.8	1.49705E-03	-328.6	-215.1	-112.8	-113.5	34.5
C1	H7	19.3	-1.33604E-04	8.9	19.2	-10.3	-10.3	-115.2
C1	H9	19.3	-1.33604E-04	8.9	19.2	-10.3	-10.3	-115.1
C2	O3	-215.8	1.49705E-03	-328.6	-215.1	-112.8	-113.5	34.5
C2	H8	19.3	-1.33604E-04	8.9	19.2	-10.3	-10.3	-115.2
C2	H10	19.3	-1.33604E-04	8.9	19.2	-10.3	-10.3	-115.1
O3	H6	-196.3	1.36165E-03	-241.1	-195.6	-44.8	-45.4	18.8
O4	Н5	-196.3	1.36165E-03	-241.1	-195.6	-44.8	-45.4	18.8

Table S47. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the HF level for covalently bonded atom-pairs in the **Lin** conformer of glycol.^a

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{HF} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

Table S48. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

		CC	SD/BBC1		B	BLYP		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.4	-5.44002E-04	65.9	78.6	-12.5	-12.7	-19.2
C1	O4	-215.8	1.49705E-03	-194.5	-216.3	21.3	21.8	-11.2
C1	H7	19.3	-1.33604E-04	22.1	19.3	2.8	2.8	12.5
C1	Н9	19.3	-1.33604E-04	22.1	19.3	2.8	2.8	12.5
C2	O3	-215.8	1.49705E-03	-194.5	-216.3	21.3	21.8	-11.2
C2	H8	19.3	-1.33604E-04	22.1	19.3	2.8	2.8	12.5
C2	H10	19.3	-1.33604E-04	22.1	19.3	2.8	2.8	12.5
O3	Н6	-196.3	1.36165E-03	-192.7	-196.8	3.6	4.1	-2.1
O4	Н5	-196.3	1.36165E-03	-192.7	-196.8	3.6	4.1	-2.1

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{B3LYP} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

		CC	SD/BBC1		B3LYP-C	GD3		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.4	-5.44002E-04	65.8	78.6	-12.6	-12.8	-19.5
C1	O4	-215.8	1.49705E-03	-194.1	-216.3	21.7	22.2	-11.5
C1	H7	19.3	-1.33604E-04	22.1	19.3	2.8	2.7	12.5
C1	H9	19.3	-1.33604E-04	22.1	19.3	2.8	2.7	12.5
C2	O3	-215.8	1.49705E-03	-194.1	-216.3	21.7	22.2	-11.5
C2	H8	19.3	-1.33604E-04	22.1	19.3	2.8	2.7	12.5
C2	H10	19.3	-1.33604E-04	22.1	19.3	2.8	2.7	12.5
03	Н6	-196.3	1.36165E-03	-192.6	-196.8	3.7	4.2	-2.2
O4	Н5	-196.3	1.36165E-03	-192.6	-196.8	3.7	4.2	-2.2

Table S49. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{B3LYP-GD3} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

Table S50. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

		CC	SD/BBC1		MP2	/Müller		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	78.4	-5.44002E-04	71.9	78.4	-6.6	-6.5	-9.1
C1	O4	-215.8	1.49705E-03	-203.6	-215.8	12.2	12.2	-6.0
C1	H7	19.3	-1.33604E-04	22.0	19.3	2.8	2.8	12.5
C1	H9	19.3	-1.33604E-04	22.0	19.3	2.8	2.8	12.5
C2	O3	-215.8	1.49705E-03	-203.6	-215.8	12.2	12.2	-6.0
C2	H8	19.3	-1.33604E-04	22.0	19.3	2.8	2.8	12.5
C2	H10	19.3	-1.33604E-04	22.0	19.3	2.8	2.8	12.5
O3	H6	-196.3	1.36165E-03	-202.2	-196.2	-6.0	-6.0	3.0
O4	Н5	-196.3	1.36165E-03	-202.2	-196.2	-5.9	-6.0	3.0

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{MP2/Muller} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

glycol. ^a								
		CCSD/BBC1						
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	81.7	-5.66525E-04	125.0	81.4	43.3	43.6	34.9
C1	O4	-214.5	1.48848E-03	-333.7	-213.9	-119.1	-119.8	35.9
C1	H7	16.0	-1.11135E-04	3.3	16.0	-12.7	-12.7	-383.6
C1	H9	16.0	-1.11135E-04	3.3	16.0	-12.7	-12.7	-383.9
C2	03	-214.5	1.48848E-03	-333.5	-213.9	-119.0	-119.7	35.9
C2	H8	16.0	-1.11135E-04	3.3	16.0	-12.7	-12.7	-382.3
C2	H10	16.0	-1.11135E-04	3.3	16.0	-12.7	-12.7	-382.6
03	H6	-191.1	1.32558E-03	-236.6	-190.5	-45.5	-46.2	19.5

Table S51. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the HF level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

 $\frac{O3}{O4} \frac{O4}{136.4} - 9.46659E-04} \frac{175.4}{175.4} \frac{136.0}{136.0} \frac{39.0}{39.0} \frac{39.4}{22.5}$ a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{HF} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = C_{cl}^{Comput} V_{cl}^{A,B} - E_{cl}^{Expect} V_{cl}^{A,B}$ are in kcal mol⁻¹.

-191.1 1.32558E-03

04

H5

-236.6

-190.5

-45.5

-46.2

19.5

Table S52. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

		CC	SD/BBC1		B	BLYP		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	81.7	-5.66525E-04	69.5	81.9	-12.1	-12.3	-17.7
C1	O4	-214.5	1.48848E-03	-194.7	-215.1	19.9	20.4	-10.5
C1	H7	16.0	-1.11135E-04	19.4	16.1	3.3	3.3	17.0
C1	H9	16.0	-1.11135E-04	19.4	16.1	3.3	3.3	17.0
C2	O3	-214.5	1.48848E-03	-194.6	-215.1	19.9	20.5	-10.5
C2	H8	16.0	-1.11135E-04	19.3	16.1	3.3	3.3	17.0
C2	H10	16.0	-1.11135E-04	19.3	16.1	3.3	3.3	17.0
O3	Н6	-191.1	1.32558E-03	-188.2	-191.5	2.9	3.3	-1.8
O4	Н5	-191.1	1.32558E-03	-188.2	-191.5	2.9	3.3	-1.8
03	O4	136.4	-9.46659E-04	129.9	136.8	-6.6	-6.9	-5.3

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{B3LYP} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

Table S53. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

		CC	SD/BBC1		B3L	YP-GD3		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-error
C1	C2	81.7	-5.66525E-04	69.1	81.9	-12.5	-12.8	-18.4
C1	O4	-214.5	1.48848E-03	-193.9	-215.1	20.7	21.2	-10.9
C1	H7	16.0	-1.11135E-04	19.4	16.1	3.3	3.3	17.0
C1	H9	16.0	-1.11135E-04	19.4	16.1	3.3	3.3	17.0
C2	O3	-214.5	1.48848E-03	-193.8	-215.1	20.7	21.3	-11.0
C2	H8	16.0	-1.11135E-04	19.4	16.1	3.3	3.3	17.0
C2	H10	16.0	-1.11135E-04	19.4	16.1	3.3	3.3	17.0
O3	H6	-191.1	1.32558E-03	-188.1	-191.6	3.0	3.5	-1.8
O4	Н5	-191.1	1.32558E-03	-188.1	-191.6	3.0	3.5	-1.8
O3	O4	136.4	-9.46659E-04	129.7	136.8	-6.8	-7.1	-5.5

^a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{B3LYP-GD3} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

Table S54. Relative to the CCSD/BBC1 data, analysis of a classical component of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

		CC	SD/BBC1		MP2	/Müller		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta V_{ m cl}^{ m A,B}$	$\Delta^{\rm A,B}_{\rm cl}$	%-error
C1	C2	81.7	-5.66525E-04	75.4	81.6	-6.3	-6.3	-8.3
C1	O4	-214.5	1.48848E-03	-202.8	-214.5	11.7	11.7	-5.8
C1	H7	16.0	-1.11135E-04	19.0	16.0	3.0	3.0	15.9
C1	H9	16.0	-1.11135E-04	19.0	16.0	3.0	3.0	15.9
C2	O3	-214.5	1.48848E-03	-202.8	-214.5	11.7	11.7	-5.8
C2	H8	16.0	-1.11135E-04	19.0	16.0	3.0	3.0	15.9
C2	H10	16.0	-1.11135E-04	19.0	16.0	3.0	3.0	15.9
03	H6	-191.1	1.32558E-03	-196.8	-191.0	-5.7	-5.8	2.9
O4	Н5	-191.1	1.32558E-03	-196.8	-191.0	-5.7	-5.8	2.9
O3	O4	136.4	-9.46659E-04	136.0	136.4	-0.5	-0.5	-0.3

a) Classical components of interaction energies, differences $\Delta V_{cl}^{A,B} = (V_{cl}^{A,B})_{MP2/Muller} - (V_{cl}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{cl}^{A,B} = {}^{Comput}V_{cl}^{A,B} - {}^{Expect}V_{cl}^{A,B}$ are in kcal mol⁻¹.

Table S55. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the HF level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the LEC of glycol.^a

		CCS	SD/BBC1			HF		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-169.5	1.17614E-03	-182.6	-169.0	-13.1	-13.6	7.5
C1	O4	-153.6	1.06528E-03	-151.8	-153.1	1.7	1.3	-0.8
C1	H7	-157.1	1.08973E-03	-175.0	-156.6	-18.0	-18.5	10.5
C1	H9	-157.3	1.09106E-03	-175.1	-156.8	-17.8	-18.3	10.5
C2	O3	-157.4	1.09173E-03	-154.8	-156.9	2.6	2.0	-1.3
C2	H8	-157.5	1.09256E-03	-175.0	-157.0	-17.5	-18.0	10.3
C2	H10	-156.3	1.08458E-03	-174.2	-155.8	-17.9	-18.4	10.6
O3	Н6	-114.2	7.92198E-04	-116.6	-113.8	-2.4	-2.8	2.4
O4	Н5	-118.4	8.21311E-04	-120.1	-118.0	-1.7	-2.1	1.7
O4	Н6	-3.0	2.10430E-05	-1.3	-3.0	1.8	1.8	-139.0

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{\rm XC}^{A,B} = (V_{\rm XC}^{A,B})_{\rm HF} - (V_{\rm XC}^{A,B})_{\rm CCSD/BBC1}$ and relative errors $\Delta_{\rm XC}^{A,B} = {}^{\rm Comput}V_{\rm XC}^{A,B} - {}^{\rm Expect}V_{\rm XC}^{A,B}$ are in kcal mol⁻¹.

Table S56. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the **LEC** of glycol.^a

		CCS	SD/BBC1		B	BLYP		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-169.5	1.17614E-03	-183.3	-170.0	-13.8	-13.4	7.3
C1	O4	-153.6	1.06528E-03	-164.7	-153.9	-11.1	-10.7	6.5
C1	H7	-157.1	1.08973E-03	-171.8	-157.5	-14.8	-14.4	8.4
C1	H9	-157.3	1.09106E-03	-171.9	-157.7	-14.6	-14.2	8.3
C2	03	-157.4	1.09173E-03	-168.7	-157.8	-11.4	-11.0	6.5
C2	H8	-157.5	1.09256E-03	-171.9	-157.9	-14.4	-14.0	8.2
C2	H10	-156.3	1.08458E-03	-170.8	-156.7	-14.4	-14.0	8.2
03	H6	-114.2	7.92198E-04	-121.8	-114.5	-7.6	-7.3	6.0
O4	Н5	-118.4	8.21311E-04	-125.6	-118.7	-7.2	-6.9	5.5
O4	H6	-3.0	2.10430E-05	-2.3	-3.0	0.8	0.8	-34.3

a) Exchange-correlation components of interaction energies, differences $\Delta V_{\text{XC}}^{\text{A,B}} = (V_{\text{XC}}^{\text{A,B}})_{\text{B3LYP}} - (V_{\text{XC}}^{\text{A,B}})_{\text{CSD/BBC1}}$ and relative errors $\Delta_{\text{XC}}^{\text{A,B}} = {}^{\text{Comput}}V_{\text{XC}}^{\text{A,B}} - {}^{\text{Expect}}V_{\text{XC}}^{\text{A,B}}$ are in kcal mol⁻¹.

Table S57. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the **LEC** of glycol.^a

		CCS	SD/BBC1		B3L	YP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-169.5	1.17614E-03	-183.3	-170.0	-13.7	-13.3	7.2
C1	O4	-153.6	1.06528E-03	-164.6	-153.9	-11.0	-10.6	6.5
C1	H7	-157.1	1.08973E-03	-171.8	-157.5	-14.7	-14.3	8.3
C1	H9	-157.3	1.09106E-03	-171.8	-157.7	-14.6	-14.2	8.2
C2	O3	-157.4	1.09173E-03	-168.6	-157.8	-11.3	-10.9	6.4
C2	H8	-157.5	1.09256E-03	-171.9	-157.9	-14.4	-14.0	8.2
C2	H10	-156.3	1.08458E-03	-170.7	-156.7	-14.4	-14.0	8.2
O3	Н6	-114.2	7.92198E-04	-121.9	-114.5	-7.7	-7.4	6.1
O4	Н5	-118.4	8.21311E-04	-125.6	-118.7	-7.2	-6.9	5.5
O4	H6	-3.0	2.10430E-05	-2.2	-3.0	0.8	0.8	-37.2

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{XC}^{A,B} = (V_{XC}^{A,B})_{B3LYP-GD3} - (V_{XC}^{A,B})_{CCSD/BBC1}$ and relative errors $\Delta_{XC}^{A,B} = {}^{Comput}V_{XC}^{A,B} - {}^{Expect}V_{XC}^{A,B}$ are in kcal mol⁻¹.

Table S58. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs and the intramolecular O4…H6 interaction in the LEC of glycol.^a

		CCS	SD/BBC1		MP2	/Müller		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-169.5	1.17614E-03	-171.0	-169.5	-1.5	-1.5	0.9
C1	O4	-153.6	1.06528E-03	-155.6	-153.5	-2.0	-2.0	1.3
C1	H7	-157.1	1.08973E-03	-161.8	-157.1	-4.7	-4.8	2.9
C1	H9	-157.3	1.09106E-03	-161.9	-157.2	-4.7	-4.7	2.9
C2	O3	-157.4	1.09173E-03	-159.4	-157.3	-2.0	-2.1	1.3
C2	H8	-157.5	1.09256E-03	-161.9	-157.5	-4.4	-4.4	2.7
C2	H10	-156.3	1.08458E-03	-160.8	-156.3	-4.5	-4.5	2.8
O3	H6	-114.2	7.92198E-04	-114.2	-114.2	0.0	0.0	0.0
O4	Н5	-118.4	8.21311E-04	-117.8	-118.4	0.6	0.5	-0.5
O4	H6	-3.0	2.10430E-05	-2.7	-3.0	0.3	0.3	-10.3

a) Exchange-correlation components of interaction energies, differences $\Delta V_{\text{XC}}^{\text{A,B}} = (V_{\text{XC}}^{\text{A,B}})_{\text{MP2/Müller}} - (V_{\text{XC}}^{\text{A,B}})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{XC}}^{\text{A,B}} = {}^{\text{Comput}}V_{\text{XC}}^{\text{A,B}} - {}^{\text{Expect}}V_{\text{XC}}^{\text{A,B}}$ are in kcal mol⁻¹.

		CCS	SD/BBC1			HF		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-168.3	1.16750E-03	-181.2	-167.8	-12.9	-13.5	7.4
C1	O4	-154.8	1.07414E-03	-153.0	-154.3	1.8	1.3	-0.9
C1	H7	-157.0	1.08904E-03	-175.0	-156.5	-18.0	-18.5	10.6
C1	H9	-157.0	1.08904E-03	-175.0	-156.5	-18.0	-18.5	10.6
C2	O3	-154.8	1.07414E-03	-153.0	-154.3	1.8	1.3	-0.9
C2	H8	-157.0	1.08904E-03	-175.0	-156.5	-18.0	-18.5	10.6
C2	H10	-157.0	1.08904E-03	-175.0	-156.5	-18.0	-18.5	10.6
03	H6	-118.1	8.19130E-04	-120.7	-117.7	-2.6	-3.0	2.5
O4	Н5	-118.1	8.19130E-04	-120.7	-117.7	-2.6	-3.0	2.5

Table S59. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the HF level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

a) Exchange-correlation components of interaction energies, differences $\Delta V_{\text{XC}}^{\text{A,B}} = (V_{\text{XC}}^{\text{A,B}})_{\text{HF}} - (V_{\text{XC}}^{\text{A,B}})_{\text{CSD/BBC1}}$ and relative errors $\Delta_{\text{XC}}^{\text{A,B}} = {}^{\text{Comput}}V_{\text{XC}}^{\text{A,B}} - {}^{\text{Expect}}V_{\text{XC}}^{\text{A,B}}$ are in kcal mol⁻¹.

Table S60. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

		CCS	SD/BBC1		B	BLYP		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-168.3	1.16750E-03	-181.5	-168.7	-13.2	-12.8	7.0
C1	O4	-154.8	1.07414E-03	-166.5	-155.2	-11.7	-11.3	6.8
C1	H7	-157.0	1.08904E-03	-171.8	-157.4	-14.8	-14.4	8.4
C1	Н9	-157.0	1.08904E-03	-171.7	-157.4	-14.8	-14.4	8.4
C2	O3	-154.8	1.07414E-03	-166.5	-155.2	-11.7	-11.3	6.8
C2	H8	-157.0	1.08904E-03	-171.8	-157.4	-14.8	-14.4	8.4
C2	H10	-157.0	1.08904E-03	-171.7	-157.4	-14.8	-14.4	8.4
O3	H6	-118.1	8.19130E-04	-126.3	-118.4	-8.2	-7.9	6.3
O4	Н5	-118.1	8.19130E-04	-126.3	-118.4	-8.2	-7.9	6.3

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{\rm XC}^{A,B} = (V_{\rm XC}^{A,B})_{\rm B3LYP} - (V_{\rm XC}^{A,B})_{\rm CCSD/BBC1}$ and relative errors $\Delta_{\rm XC}^{A,B} = {}^{\rm Comput}V_{\rm XC}^{A,B} - {}^{\rm Expect}V_{\rm XC}^{A,B}$ are in kcal mol⁻¹.

		CCS	SD/BBC1		B3L	YP-GD3		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-168.3	1.16750E-03	-181.4	-168.7	-13.1	-12.7	7.0
C1	O4	-154.8	1.07414E-03	-166.5	-155.2	-11.7	-11.3	6.8
C1	H7	-157.0	1.08904E-03	-171.7	-157.4	-14.7	-14.3	8.3
C1	Н9	-157.0	1.08904E-03	-171.7	-157.4	-14.7	-14.3	8.3
C2	O3	-154.8	1.07414E-03	-166.5	-155.2	-11.7	-11.3	6.8
C2	H8	-157.0	1.08904E-03	-171.7	-157.4	-14.7	-14.3	8.3
C2	H10	-157.0	1.08904E-03	-171.7	-157.4	-14.7	-14.3	8.3
03	H6	-118.1	8.19130E-04	-126.3	-118.4	-8.2	-7.9	6.3
O4	Н5	-118.1	8.19130E-04	-126.3	-118.4	-8.2	-7.9	6.3

Table S61. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{\text{XC}}^{\text{A,B}} = (V_{\text{XC}}^{\text{A,B}})_{\text{B3LYP-GD3}} - (V_{\text{XC}}^{\text{A,B}})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{XC}}^{\text{A,B}} = {}^{\text{Comput}}V_{\text{XC}}^{\text{A,B}} - {}^{\text{Expect}}V_{\text{XC}}^{\text{A,B}}$ are in kcal mol⁻¹.

Table S62. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs in the Lin conformer of glycol.^a

		CCS	SD/BBC1		MP2	/Müller		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-168.3	1.16750E-03	-168.3	-169.2	-168.3	-0.9	0.5
C1	O4	-154.8	1.07414E-03	-154.8	-157.4	-154.8	-2.6	1.7
C1	H7	-157.0	1.08904E-03	-157.0	-161.7	-157.0	-4.8	3.0
C1	Н9	-157.0	1.08904E-03	-157.0	-161.7	-157.0	-4.7	3.0
C2	O3	-154.8	1.07414E-03	-154.8	-157.4	-154.8	-2.6	1.7
C2	H8	-157.0	1.08904E-03	-157.0	-161.7	-157.0	-4.8	3.0
C2	H10	-157.0	1.08904E-03	-157.0	-161.7	-157.0	-4.7	3.0
O3	H6	-118.1	8.19130E-04	-118.1	-118.5	-118.1	-0.4	0.4
O4	Н5	-118.1	8.19130E-04	-118.1	-118.5	-118.1	-0.4	0.4

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{\text{XC}}^{A,B} = (V_{\text{XC}}^{A,B})_{\text{MP2/Muller}} - (V_{\text{XC}}^{A,B})_{\text{CCSD/BBC1}}$ and relative errors $\Delta_{\text{XC}}^{A,B} = {}^{\text{Comput}}V_{\text{XC}}^{A,B} - {}^{\text{Expect}}V_{\text{XC}}^{A,B}$ are in kcal mol⁻¹.

		CCS	SD/BBC1			HF		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-162.7	1.12847E-03	-176.1	-162.1	-13.5	-14.0	8.0
C1	O4	-157.5	1.09282E-03	-156.1	-157.0	1.4	0.9	-0.6
C1	H7	-157.3	1.09146E-03	-175.1	-156.8	-17.7	-18.2	10.4
C1	Н9	-157.3	1.09146E-03	-175.1	-156.8	-17.7	-18.2	10.4
C2	O3	-157.5	1.09282E-03	-156.2	-157.0	1.3	0.8	-0.5
C2	H8	-157.3	1.09146E-03	-175.1	-156.8	-17.8	-18.3	10.4
C2	H10	-157.3	1.09146E-03	-175.1	-156.8	-17.7	-18.2	10.4
O3	H6	-118.9	8.25117E-04	-121.8	-118.5	-2.9	-3.3	2.7
O4	Н5	-118.9	8.25117E-04	-121.8	-118.5	-2.9	-3.3	2.7
03	O4	-15.3	1.05859E-04	-7.3	-15.2	7.9	7.9	-107.7

Table S63. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the HF level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

a) Exchange-correlation components of interaction energies, differences $\Delta V_{\text{XC}}^{\text{A,B}} = (V_{\text{XC}}^{\text{A,B}})_{\text{HF}} - (V_{\text{XC}}^{\text{A,B}})_{\text{CSD/BBC1}}$ and relative errors $\Delta_{\text{XC}}^{\text{A,B}} = {}^{\text{Comput}}V_{\text{XC}}^{\text{A,B}} - {}^{\text{Expect}}V_{\text{XC}}^{\text{A,B}}$ are in kcal mol⁻¹.

Table S64. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the B3LYP level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer of glycol.^a

		CCS	SD/BBC1		B	BLYP		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-162.7	1.12847E-03	-175.8	-163.1	-13.1	-12.7	7.2
C1	O4	-157.5	1.09282E-03	-169.9	-157.9	-12.4	-12.0	7.0
C1	H7	-157.3	1.09146E-03	-172.4	-157.7	-15.1	-14.7	8.5
C1	Н9	-157.3	1.09146E-03	-172.4	-157.7	-15.1	-14.7	8.5
C2	03	-157.5	1.09282E-03	-169.9	-157.9	-12.4	-12.0	7.1
C2	H8	-157.3	1.09146E-03	-172.4	-157.7	-15.1	-14.7	8.5
C2	H10	-157.3	1.09146E-03	-172.4	-157.7	-15.1	-14.7	8.5
03	H6	-118.9	8.25117E-04	-127.2	-119.2	-8.2	-7.9	6.2
O4	Н5	-118.9	8.25117E-04	-127.2	-119.2	-8.2	-7.9	6.2
O3	O4	-15.3	1.05859E-04	-8.4	-15.3	6.8	6.9	-81.4

a) Exchange-correlation components of interaction energies, differences $\Delta V_{\rm XC}^{A,B} = (V_{\rm XC}^{A,B})_{\rm B3LYP} - (V_{\rm XC}^{A,B})_{\rm CCSD/BBC1}$ and relative errors $\Delta_{\rm XC}^{A,B} = {}^{\rm Comput}V_{\rm XC}^{A,B} - {}^{\rm Expect}V_{\rm XC}^{A,B}$ are in kcal mol⁻¹.

Table S65. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the B3LYP-GD3 level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer.^a

		CCS	SD/BBC1		B3L	YP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-162.7	1.12847E-03	-175.5	-163.1	-12.9	-12.5	7.1
C1	O4	-157.5	1.09282E-03	-169.8	-157.9	-12.3	-11.9	7.0
C1	H7	-157.3	1.09146E-03	-172.3	-157.7	-15.0	-14.6	8.5
C1	Н9	-157.3	1.09146E-03	-172.3	-157.7	-15.0	-14.6	8.5
C2	O3	-157.5	1.09282E-03	-169.9	-157.9	-12.4	-12.0	7.0
C2	H8	-157.3	1.09146E-03	-172.3	-157.7	-15.0	-14.6	8.5
C2	H10	-157.3	1.09146E-03	-172.3	-157.7	-15.0	-14.6	8.5
O3	Н6	-118.9	8.25117E-04	-127.1	-119.2	-8.2	-7.9	6.2
O4	Н5	-118.9	8.25117E-04	-127.1	-119.2	-8.2	-7.9	6.2
O3	O4	-15.3	1.05859E-04	-8.4	-15.3	6.8	6.9	-81.4

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{\rm XC}^{A,B} = (V_{\rm XC}^{A,B})_{\rm B3LYP-GD3} - (V_{\rm XC}^{A,B})_{\rm CCSD/BBC1}$ and relative errors $\Delta_{\rm XC}^{A,B} = {}^{\rm Comput}V_{\rm XC}^{A,B} - {}^{\rm Expect}V_{\rm XC}^{A,B}$ are in kcal mol⁻¹.

Table S66. Relative to the CCSD/BBC1 data, analysis of an exchange-correlation component of interaction energies obtained at the MP2/Müller level for covalently bonded atom-pairs and the intramolecular O3…O4 interaction in the **Ecl** conformer.^a

		CCS	SD/BBC1		MP2			
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-error
C1	C2	-162.7	1.12847E-03	-163.3	-162.6	-0.6	-0.6	0.4
C1	O4	-157.5	1.09282E-03	-160.1	-157.5	-2.6	-2.6	1.6
C1	H7	-157.3	1.09146E-03	-162.3	-157.3	-5.0	-5.0	3.1
C1	H9	-157.3	1.09146E-03	-162.3	-157.3	-5.0	-5.0	3.1
C2	O3	-157.5	1.09282E-03	-160.1	-157.5	-2.6	-2.7	1.7
C2	H8	-157.3	1.09146E-03	-162.3	-157.3	-4.9	-5.0	3.1
C2	H10	-157.3	1.09146E-03	-162.3	-157.3	-5.0	-5.0	3.1
O3	H6	-118.9	8.25117E-04	-119.5	-118.9	-0.6	-0.6	0.5
O4	Н5	-118.9	8.25117E-04	-119.5	-118.9	-0.6	-0.6	0.5
O3	O4	-15.3	1.05859E-04	-9.2	-15.3	6.1	6.1	-66.1

^a) Exchange-correlation components of interaction energies, differences $\Delta V_{\rm XC}^{A,B} = (V_{\rm XC}^{A,B})_{\rm MP2/Müller} - (V_{\rm XC}^{A,B})_{\rm CCSD/BBC1}$ and relative errors $\Delta_{\rm XC}^{A,B} = {}^{\rm Comput}V_{\rm XC}^{A,B} - {}^{\rm Expect}V_{\rm XC}^{A,B}$ are in kcal/mol.

Figure S6. Using CCSD/BBC1 data as a reference, relative errors (RE) obtained at the indicated levels of theory in the interaction energy (Part (a)) as well as its components (classical in Part (b) and XC-term in Part (c)) computed for covalently bonded atoms and the intramolecular O4…H6 interaction in the lowest energy conformer (LEC) of glycol.

Figure S7. Using CCSD/BBC1 data as a reference, relative errors (RE) obtained at the indicated levels of theory in the interaction energy (Part (a)) as well as its components (classical in Part (b) and XC-term in Part (c)) computed for covalently bonded atoms and the intramolecular O3…O4 interaction in the eclipsed conformer of glycol.

Figure S8. Using CCSD/BBC1 data as a reference, relative errors (RE) obtained at the indicated levels of theory in the interaction energy (Part (a)) as well as its components (classical in Part (b) and XC-term in Part (c)) computed for covalently bonded atoms in the linear conformer of glycol.

Table S67. Combined analysis of relative errors, $\Delta_{int}^{A,B}$, in the <u>computed</u> diatomic interaction energies, ^{Comput} $E_{int}^{A,B}$, of covalently bonded atoms for each conformer of glycol at the indicated levels of theory. Data for C–C bonds is shown in Part A; for C–O bonds in Part B; for C–H bonds in Part C; for O–H bonds in Part D. All values are in kcal mol⁻¹. Part A

			HF			3LYP	
Conformer	Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta^{A,B}_{int}$	%-err
LEC	C1–C2	-64.1	26.8	-41.8	-117.1	-25.7	22.0
Lin	C1–C2	-62.7	26.9	-43.0	-115.5	-25.4	22.0
Ecl	C1–C2	-51.2	29.6	-57.8	-106.2	-25.0	23.6
	Average:	-59.3	27.8	-47.5	-113.0	-25.4	22.5
Standa	ard deviation:	7.1	1.6	8.9	5.9	0.3	0.9

		B3LYP-GD3			MP2/Müller			
Conformer	Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{int}^{A,B}$	%-err	
LEC	C1–C2	-117.4	-26.0	22.1	-99.2	-8.0	8.1	
Lin	C1–C2	-115.6	-25.5	22.1	-97.3	-7.5	7.7	
Ecl	C1–C2	-106.4	-25.2	23.7	-87.9	-6.9	7.8	
	Average:	-113.1	-25.6	22.6	-94.8	-7.4	7.9	
Standa	rd deviation:	5.9	0.4	0.9	6.1	0.5	0.2	

Part B							
	_		HF		В	3LYP	
Confor	mer Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{int}^{A,B}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err
LEC	C1–O4	-471.1	-109.1	23.2	-352.8	11.2	-3.2
	C2–O3	-492.4	-115.0	23.4	-368.6	11.0	-3.0
Lin	C1–O4	-481.6	-112.2	23.3	-361.0	10.5	-2.9
	C2–O3	-481.6	-112.2	23.3	-361.0	10.5	-2.9
Ecl	C1–O4	-489.8	-118.9	24.3	-364.6	8.4	-2.3
	C2–O3	-489.7	-118.8	24.3	-364.6	8.4	-2.3
	Average:	-484.4	-114.4	23.6	-362.1	10.0	-2.8
S	tandard deviation:	7.9	4.0	0.5	5.3	1.3	0.4

		B3LYP-GD3			MP	2/Müller	
Conform	ner Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta^{\rm A,B}_{\rm int}$	%-err
LEC	C1–O4	-351.9	12.1	-3.4	-352.4	10.7	-3.0
	С2–О3	-367.7	11.8	-3.2	-368.6	9.9	-2.7
Lin	C1–O4	-360.6	10.9	-3.0	-361.0	9.6	-2.7
	С2–О3	-360.6	10.9	-3.0	-361.0	9.6	-2.7
Ecl	C1–O4	-363.7	9.3	-2.6	-362.9	9.1	-2.5
	C2–O3	-363.7	9.3	-2.6	-363.0	9.0	-2.5
	Average:	-361.4	10.7	-3.0	-361.5	9.6	-2.7
St	andard deviation:	5.3	1.2	0.4	5.3	0.6	0.2

Part C

			HF		В	3LYP	
Conformer	Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{int}^{A,B}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err
LEC	C1–H7	-165.4	-28.5	17.2	-149.5	-11.8	7.9
	C1–H9	-168.2	-29.7	17.7	-150.7	-11.5	7.6
	С2-Н8	-162.8	-27.6	16.9	-147.2	-11.2	7.6
	C2-H10	-165.2	-28.8	17.4	-148.4	-11.3	7.6
Lin	C1–H7	-166.1	-28.8	17.3	-149.7	-11.6	7.8
	С1-Н9	-166.1	-28.8	17.3	-149.7	-11.6	7.8
	С2-Н8	-166.1	-28.8	17.3	-149.7	-11.6	7.8
	C2-H10	-166.1	-28.8	17.3	-149.7	-11.6	7.8
Ecl	C1–H7	-171.8	-30.9	18.0	-153.0	-11.4	7.4
	C1–H9	-171.8	-30.9	18.0	-153.0	-11.4	7.4
	С2-Н8	-171.8	-30.9	18.0	-153.0	-11.4	7.4
	C2-H10	-171.8	-30.9	18.0	-153.0	-11.4	7.4
 	Average:	-167.7	-29.4	17.5	-150.6	-11.5	7.6
Standar	d deviation:	3.2	1.2	0.4	2.0	0.2	0.2

		B3L	YP-GD3		MP	2/Müller	
Conforme	r Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err
LEC	C1–H7	-149.4	-11.7	7.8	-139.4	-2.0	1.4
	C1–H9	-150.7	-11.5	7.6	-140.8	-2.0	1.4
	C2–H8	-147.2	-11.2	7.6	-137.2	-1.6	1.2
	C2-H10	-148.3	-11.2	7.5	-138.6	-1.8	1.3
Lin	C1–H7	-149.6	-11.6	7.7	-139.7	-2.0	1.5
	C1–H9	-149.6	-11.6	7.7	-139.7	-2.0	1.4
	C2–H8	-149.6	-11.6	7.7	-139.7	-2.0	1.5
	C2-H10	-149.6	-11.6	7.7	-139.7	-2.0	1.4
Ecl	C1–H7	-153.0	-11.3	7.4	-143.2	-2.0	1.4
	C1–H9	-153.0	-11.3	7.4	-143.2	-2.0	1.4
	C2–H8	-153.0	-11.3	7.4	-143.2	-1.9	1.4
	C2-H10	-153.0	-11.3	7.4	-143.2	-1.9	1.4
 	Average:	-150.5	-11.4	7.6	-140.7	-1.9	1.4
Stan	dard deviation:	2.0	0.2	0.2	2.1	0.1	0.1

Part	D
------	---

			HF		B	3LYP	
Conform	ner Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{int}^{A,B}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{int}^{A,B}$	%-err
LEC	O3–H6	-366.7	-49.1	13.4	-322.0	-2.4	0.8
	O4–H5	-362.5	-47.0	13.0	-319.7	-2.5	0.8
Lin	O3–H6	-361.8	-48.4	13.4	-318.9	-3.8	1.2
	O4–H5	-361.8	-48.4	13.4	-318.9	-3.8	1.2
Ecl	O3–H6	-358.4	-49.4	13.8	-315.4	-4.6	1.5
	O4–H5	-358.4	-49.4	13.8	-315.4	-4.6	1.5
	Average:	-361.6	-48.6	13.5	-318.4	-3.6	1.1
St	andard deviation:	3.1	0.9	0.3	2.6	1.0	0.3

		B3L	YP-GD3	i	MP	2/Müller	
Conform	er Bond	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{\text{int}}^{\text{A,B}}$	%-err	$^{ m Comput}E_{ m int}^{ m A,B}$	$\Delta_{int}^{A,B}$	%-err
LEC	O3–H6	-321.8	-2.3	0.7	-324.9	-6.2	1.9
	O4–H5	-319.6	-2.3	0.7	-321.7	-5.3	1.7
Lin	O3–H6	-318.9	-3.7	1.2	-320.7	-6.4	2.0
	O4–H5	-318.9	-3.7	1.2	-320.7	-6.4	2.0
Ecl	O3–H6	-315.2	-4.5	1.4	-316.3	-6.4	2.0
	O4–H5	-315.2	-4.5	1.4	-316.3	-6.3	2.0
	Average:	-318.3	-3.5	1.1	-320.1	-6.2	1.9
Sta	ndard deviation:	2.6	1.0	0.3	3.3	0.4	0.1

Table S68. Combined analysis of relative errors, $\Delta_{cl}^{A,B}$, in the <u>computed</u> classical term of diatomic interaction energies, $C_{cl}^{A,B}$, of covalently bonded atoms for each conformer of glycol at the indicated levels of theory. Data for C–C bonds is shown in Part A; for C–O bonds in Part B; for C–H bonds in Part C; for O–H bonds in Part D. All values are in kcal mol⁻¹.

			HF		B	3LYP	
Conformer	Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	C1–C2	118.5	40.4	34.1	66.2	-12.3	-18.6
Lin	C1–C2	118.5	40.4	34.1	65.9	-12.7	-19.2
Ecl	C1–C2	125.0	43.6	34.9	69.5	-12.3	-17.7
	Average:	120.7	41.5	34.3	67.2	-12.5	-18.5
Standar	d deviation:	3.7	1.8	0.5	2.0	0.2	0.8
		B3I	LYP-GD3	i	MP	2/Müller	
Conformer	Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{\rm A,B}_{\rm cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	C1–C2	65.9	-12.7	-19.3	71.8	-6.5	-9.1
Lin	C1–C2	65.8	-12.8	-19.5	71.9	-6.5	-9.1
Ecl	C1–C2	69.1	-12.8	-18.4	75.4	-6.3	-8.3
	Average:	66.9	-12.7	-19.1	73.0	-6.4	-8.8
Standar	d deviation:	1.9	0.1	0.5	2.0	0.2	0.4
Part B							
			HF		B3LYP		
Conformer	Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{ m A,B}_{ m cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	C104	-319.3	-110.4	34.6	-188.2	21.9	-11.7
	C2–O3	-337.6	-117.1	34.7	-199.8	21.9	-11.0
Lin	C104	-328.6	-113.5	34.5	-194.5	21.8	-11.2
	C2–O3	-328.6	-113.5	34.5	-194.5	21.8	-11.2
Ecl	C104	-333.7	-119.8	35.9	-194.7	20.4	-10.5
	C2–O3	-333.5	-119.7	35.9	-194.6	20.5	-10.5
	Average:	-330.2	-115.7	35.0	-194.4	21.4	-11.0
Standar	d deviation:	6.4	3.8	0.7	3.7	0.8	0.5
		B3LYP-GD3			MP	2/Müller	

		B3LYP-GD3			MP2/Müller		
Confor	mer Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	C1–O4	-187.3	22.8	-12.2	-196.8	12.7	-6.5
	C2–O3	-199.1	22.7	-11.4	-209.2	12.0	-5.7
Lin	C1–O4	-194.1	22.2	-11.5	-203.6	12.2	-6.0
	C2–O3	-194.1	22.2	-11.5	-203.6	12.2	-6.0
Ecl	C1–O4	-193.9	21.2	-10.9	-202.8	11.7	-5.8
	C2–O3	-193.8	21.3	-11.0	-202.8	11.7	-5.8
	Average:	-193.7	22.1	-11.4	-203.1	12.1	-5.9
St	andard deviation:	3.7	0.7	0.4	3.9	0.4	0.3

Part A

Part C

	-	HF			B3LYP		
Conformer	Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{\rm A,B}_{\rm cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	C1–H7	9.6	-10.0	-104.3	22.3	2.6	11.6
	C1–H9	7.0	-11.4	-163.8	21.1	2.7	12.6
	С2-Н8	12.2	-9.6	-78.3	24.7	2.8	11.3
	C2-H10	9.1	-10.4	-114.5	22.3	2.8	12.4
Lin	C1–H7	8.9	-10.3	-115.2	22.1	2.8	12.5
	C1–H9	8.9	-10.3	-115.1	22.1	2.8	12.5
	С2-Н8	8.9	-10.3	-115.2	22.1	2.8	12.5
	C2-H10	8.9	-10.3	-115.1	22.1	2.8	12.5
Ecl	C1–H7	3.3	-12.7	-383.6	19.4	3.3	17.0
	C1–H9	3.3	-12.7	-383.9	19.4	3.3	17.0
	С2-Н8	3.3	-12.7	-382.3	19.3	3.3	17.0
	C2-H10	3.3	-12.7	-382.6	19.3	3.3	17.0
 	Average:	7.2	-11.1	-204.5	21.3	2.9	13.8
Standar	rd deviation:	3.1	1.2	133.2	1.7	0.3	2.4

		B3LYP-GD3			MP2/Müller		
Conformer	Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	C1–H7	22.4	2.6	11.7	22.4	2.7	12.2
	С1-Н9	21.1	2.7	12.7	21.1	2.7	12.9
	С2-Н8	24.7	2.8	11.3	24.7	2.8	11.3
	С2-Н10	22.4	2.8	12.6	22.3	2.8	12.4
Lin	C1–H7	22.1	2.7	12.5	22.0	2.8	12.5
	С1-Н9	22.1	2.7	12.5	22.0	2.8	12.5
	С2-Н8	22.1	2.7	12.5	22.0	2.8	12.5
	C2-H10	22.1	2.7	12.5	22.0	2.8	12.5
Ecl	C1–H7	19.4	3.3	17.0	19.0	3.0	15.9
	C1–H9	19.4	3.3	17.0	19.0	3.0	15.9
	С2-Н8	19.4	3.3	17.0	19.0	3.0	15.9
	C2-H10	19.4	3.3	17.0	19.0	3.0	15.9
	Average:	21.4	2.9	13.8	21.2	2.8	13.5
Standar	rd deviation:	1.7	0.3	2.4	1.8	0.1	1.8

Part	D
------	---

		HF			B3LYP		
Confor	mer Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	O3–H6	-250.2	-46.3	18.5	-200.1	4.9	-2.5
	O4–H5	-242.4	-45.0	18.5	-194.1	4.4	-2.3
Lin	O3–H6	-241.1	-45.4	18.8	-192.7	4.1	-2.1
	O4–H5	-241.1	-45.4	18.8	-192.7	4.1	-2.1
Ecl	O3–H6	-236.6	-46.2	19.5	-188.2	3.3	-1.8
	O4–H5	-236.6	-46.2	19.5	-188.2	3.3	-1.8
	Average:	-241.3	-45.7	19.0	-192.7	4.0	-2.1
S	tandard deviation:	5.0	0.5	0.4	4.4	0.6	0.3

		B3LYP-GD3			MP2/Müller		
Conforme	r Bond	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err	$^{ m Comput}V_{ m cl}^{ m A,B}$	$\Delta^{A,B}_{cl}$	%-err
LEC	O3–H6	-199.9	5.1	-2.6	-210.7	-6.2	3.0
	O4–H5	-193.9	4.6	-2.4	-203.9	-5.9	2.9
Lin	O3–H6	-192.6	4.2	-2.2	-202.2	-6.0	3.0
	O4–H5	-192.6	4.2	-2.2	-202.2	-6.0	3.0
Ecl	O3–H6	-188.1	3.5	-1.8	-196.8	-5.8	2.9
	O4–H5	-188.1	3.5	-1.8	-196.8	-5.8	2.9
	Average:	-192.5	4.2	-2.2	-202.1	-5.9	2.9
Stan	dard deviation:	4.4	0.6	0.3	5.2	0.2	0.0

Table S69. Combined analysis of relative errors, $\Delta_{XC}^{A,B}$, in the <u>computed</u> XC-term, ^{Comput} $V_{XC}^{A,B}$, of the diatomic interaction energies of covalently bonded atoms for each conformer of glycol at the indicated levels of theory. Data for C–C bonds is shown in Part A; for C–O bonds in Part B; for C–H bonds in Part C; and for O–H bonds in Part D. All values are in kcal mol⁻¹.

Part A							
			HF		B	3LYP	
Conformer	r Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	C1–C2	-182.6	-13.6	7.5	-183.3	-13.4	7.3
Lin	C1–C2	-181.2	-13.5	7.4	-181.5	-12.8	7.0
Ecl	C1–C2	-176.1	-14.0	8.0	-175.8	-12.7	7.2
	Average:	-180.0	-13.7	7.6	-180.2	-12.9	7.2
Stand	dard deviation:	3.4	0.3	0.3	3.9	0.4	0.1

		B3LYP-GD3			MP2/Müller			
Conform	ner Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\mathrm{XC}}^{\mathrm{A,B}}$	%-err	
LEC	C1–C2	-183.3	-13.3	7.2	-171.0	-1.5	0.9	
Lin	C1–C2	-181.4	-12.7	7.0	-169.2	-0.9	0.5	
Ecl	C1–C2	-175.5	-12.5	7.1	-163.3	-0.6	0.4	
	Average:	-180.1	-12.8	7.1	-167.8	-1.0	0.6	
St	andard deviation:	4.0	0.4	0.1	4.0	0.4	0.2	

Part B							
			HF		B3LYP		
Conformer	Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	C104	-151.8	1.3	-0.8	-164.7	-10.7	6.5
	C2–O3	-154.8	2.0	-1.3	-168.7	-11.0	6.5
Lin	C104	-153.0	1.3	-0.9	-166.5	-11.3	6.8
	C2–O3	-153.0	1.3	-0.9	-166.5	-11.3	6.8
Ecl	C104	-156.1	0.9	-0.6	-169.9	-12.0	7.0
	C2–O3	-156.2	0.8	-0.5	-169.9	-12.0	7.1
	Average:	-154.2	1.3	-0.8	-167.7	-11.4	6.8
Standar	d deviation:	1.8	0.4	0.3	2.1	0.5	0.2

		B3LYP-GD3			MP2/Müller		
Conform	ner Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	C1–O4	-164.6	-10.6	6.5	-155.6	-2.0	1.3
	C2–O3	-168.6	-10.9	6.4	-159.4	-2.1	1.3
Lin	C1–O4	-166.5	-11.3	6.8	-157.4	-2.6	1.7
	C2–O3	-166.5	-11.3	6.8	-157.4	-2.6	1.7
Ecl	C1–O4	-169.8	-11.9	7.0	-160.1	-2.6	1.6
	C2–O3	-169.9	-12.0	7.0	-160.1	-2.7	1.7
	Average:	-167.7	-11.3	6.8	-158.3	-2.4	1.5
St	andard deviation:	2.1	0.5	0.3	1.8	0.3	0.2

D	art	C
I	an	U

			HF		В	3LYP	
Conformer	Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	С1–Н7	-175.0	-18.5	10.5	-171.8	-14.4	8.4
	С1-Н9	-175.1	-18.3	10.5	-171.9	-14.2	8.3
	С2-Н8	-175.0	-18.0	10.3	-171.9	-14.0	8.2
	С2-Н10	-174.2	-18.4	10.6	-170.8	-14.0	8.2
Lin	С1–Н7	-175.0	-18.5	10.6	-171.8	-14.4	8.4
	С1-Н9	-175.0	-18.5	10.6	-171.7	-14.4	8.4
	С2-Н8	-175.0	-18.5	10.6	-171.8	-14.4	8.4
	C2-H10	-175.0	-18.5	10.6	-171.7	-14.4	8.4
Ecl	С1–Н7	-175.1	-18.2	10.4	-172.4	-14.7	8.5
	С1-Н9	-175.1	-18.2	10.4	-172.4	-14.7	8.5
	С2-Н8	-175.1	-18.3	10.4	-172.4	-14.7	8.5
	С2-Н10	-175.1	-18.2	10.4	-172.4	-14.7	8.5
	Average:	-175.0	-18.4	10.5	-171.9	-14.4	8.4
Standa	ard deviation:	0.2	0.2	0.1	0.5	0.2	0.1

		B3L	YP-GD3		MP	2/Müller	
Conformer	Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	C1–H7	-171.8	-14.3	8.3	-161.8	-4.8	2.9
	C1–H9	-171.8	-14.2	8.2	-161.9	-4.7	2.9
	С2-Н8	-171.9	-14.0	8.2	-161.9	-4.4	2.7
	C2-H10	-170.7	-14.0	8.2	-160.8	-4.5	2.8
Lin	C1–H7	-171.7	-14.3	8.3	-161.7	-4.8	3.0
	C1–H9	-171.7	-14.3	8.3	-161.7	-4.8	3.0
	С2-Н8	-171.7	-14.3	8.3	-161.7	-4.8	3.0
	C2-H10	-171.7	-14.3	8.3	-161.7	-4.8	3.0
Ecl	C1–H7	-172.3	-14.6	8.5	-162.3	-5.0	3.1
	C1–H9	-172.3	-14.6	8.5	-162.3	-5.0	3.1
	С2-Н8	-172.3	-14.6	8.5	-162.3	-5.0	3.1
	C2-H10	-172.3	-14.6	8.5	-162.3	-5.0	3.1
	Average:	-171.9	-14.3	8.3	-161.9	-4.8	3.0
Standa	rd deviation:	0.5	0.2	0.1	0.4	0.2	0.1

Part	D
------	---

			HF		B	B3LYP	
Conforme	r Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	O3–H6	-116.6	-2.8	2.4	-121.8	-7.3	6.0
	O4–H5	-120.1	-2.1	1.7	-125.6	-6.9	5.5
Lin	O3–H6	-120.7	-3.0	2.5	-126.3	-7.9	6.3
	O4–H5	-120.7	-3.0	2.5	-126.3	-7.9	6.3
Ecl	O3–H6	-121.8	-3.3	2.7	-127.2	-7.9	6.2
	O4–H5	-121.8	-3.3	2.7	-127.2	-7.9	6.2
	Average:	-120.3	-2.9	2.4	-125.7	-7.7	6.1
Stan	dard deviation:	1.9	0.4	0.3	2.0	0.4	0.3

		B3LYP-GD3			MP	2/Müller	
Conformer	Bond	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err	$^{ m Comput}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$	%-err
LEC	O3–H6	-121.9	-7.4	6.1	-114.2	0.0	0.0
	O4–H5	-125.6	-6.9	5.5	-117.8	0.5	-0.5
Lin	O3–H6	-126.3	-7.9	6.3	-118.5	-0.5	0.4
	O4–H5	-126.3	-7.9	6.3	-118.5	-0.5	0.4
Ecl	O3–H6	-127.1	-7.9	6.2	-119.5	-0.6	0.5
	O4–H5	-127.1	-7.9	6.2	-119.5	-0.6	0.5
	Average:	-125.7	-7.7	6.1	-118.0	-0.3	0.2
Standa	ard deviation:	2.0	0.4	0.3	2.0	0.4	0.4

Table S70. Comparative analysis of computed/expected (for all conformers) interaction energy (part a) and its components (a classical term in part b and an XC-term in part c) for the O4…H6 and O3…O4 intramolecular interactions at the indicated levels of theory. Energies are in kcal mol^{-1} .

Part a	CCSD/BBC1	HF	B3LYP	B3LYP-GD3	MP2/Müller
Conform	her Computed		Computed/Ex	pected $E_{\rm int}^{\rm O4,H6}$	
Lin	-50.4	-60.6/-50.2	-48.4/-50.5	-48.4/-50.5	-50.8/-50.4
LEC	-90.9	-103.9/-90.6	-86.1/-91.1	-85.8/-91.1	-93.0/-90.9
Ecl	-59.4	-71.3/-59.2	-57.2/-59.6	-57.2/-59.6	-60.0/-59.4
	Averaged error	-11.9±1.5	3.2±1.6	3.3±1.8	-1.0±0.9
	Averaged %-error	17.8	-4.8	-4.9	1.5
Conform	her Computed		Computed/Ex	pected $E_{\rm int}^{\rm O3,O4}$	
Lin	103.2	140.1/102.8	102.4/103.4	102.4/103.4	107.8/103.2
LEC	137.1	181.0/136.6	133.9/137.4	133.6/137.4	142.3137.1
Ecl	121.2	168.1/120.8	121.4/121.5	121.2/121.5	126.8/121.2
	Averaged error	43.0±5.2	-1.5±1.8	-1.7±1.9	5.2±0.5
	Averaged %-error	35.7	-1.3	-1.4	4.3
Part b	CCSD/BBC1	HF	B3LYP	B3LYP-GD3	MP2/Müller
Conform	her Computed		Computed/Ex	pected $V_{\rm cl}^{\rm O4,H6}$	
Lin	-49.9	-60.5/-49.7	-48.3/-50.0	-48.3/-50.0	-50.7/-49.9
LEC	-87.9	-102.6/-87.6	-83.8/-88.1	-83.5/-88.1	-90.2/-87.8
Ecl	-58.8	-71.2/-58.6	-57.1/-58.9	-57.0/-58.9	-59.9/-58.8
	Averaged error	-12.8±2.1	2.6±1.4	2.7±1.6	-1.4 ± 0.8
	Averaged %-error	19.6	-4.0	-4.1	2.2
Conform	her Computed		Computed/Ex	pected $V_{\rm cl}^{\rm O3,O4}$	
Lin	108.9	140.9/108.6	103.4/109.2	103.4/109.2	108.5/108.9
LEC	146.3	184.9/145.8	138.2/146.6	137.9/146.6	146.8/146.2
Ecl	136.4	175.4/136.0	129.9/136.8	129.7/136.8	136.0/136.4
	Averaged error	37.0±4.0	-7.0 ± 1.3	-7.2 ± 1.5	-0.1 ± 0.6
	Averaged %-error	28.3	-5.4	-5.5	-0.1
Part c	CCSD/BBC1	HF	B3LYP	B3LYP-GD3	MP2/Müller
Conform	her Computed		Computed/Ex	pected $V_{\rm XC}^{\rm O4,H6}$	
Lin	-0.50	-0.05/-0.50	-0.07/-0.50	-0.07/-0.50	-0.05/-0.50
LEC	-3.03	-1.26/-3.02	-2.26/-3.04	-2.22/-3.04	-2.75/-3.03
Ecl	-0.67	-0.11/-0.66	-0.15/-0.67	-0.15/-0.67	-0.14/-0.67
	Averaged error	0.92±0.72	0.58±0.18	0.59±0.20	0.42±0.13
	Averaged %-error	-65.9	-41.3	-42.4	-30.1
Conform	her Computed		Computed/Ex	pected $V_{\rm XC}^{\rm O3,O4}$	
Lin	-5.8	-0.8/-5.7	-1.0/-5.8	-1.0/-5.8	-0.7/-5.8
LEC	-9.2	-3.8/-9.1	-4.3/-9.2	-4.3/-9.2	-4.6/-9.2
Ecl	-15.3	-7.3/-15.2	-8.4/-15.3	-8.4/-15.3	-9.2/-15.3
	Averaged error	6.1±1.6	5.5±1.2	5.5±1.2	5.2±0.8
	Averaged %-error	-60.1	-54.8	-54.9	-52.1

C···H in	LEC	CCS	SD/BBC1		HF	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{\rm int}$
C1	Н5	78.29	-5.43115E-04	105.18	78.04	27.14
C1	H6	47.76	-3.31314E-04	64.01	47.61	16.40
C1	H8	-3.92	2.72198E-05	-8.73	-3.91	-4.82
C1	H10	-5.06	3.50861E-05	-10.64	-5.04	-5.59
C2	H5	38.67	-2.68255E-04	52.84	38.54	14.30
C2	H6	85.16	-5.90764E-04	113.38	84.88	28.49
C2	H7	-4.58	3.17769E-05	-10.39	-4.57	-5.82
C2	H9	-5.06	3.51173E-05	-11.38	-5.05	-6.34
				Avera	$pe for _{A^{A,B}}$	12 (

Table S71. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at HF for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Average for $\left|\Delta_{int}^{A,B}\right|$: 13.6

Standard deviation for $\left|\Delta_{int}^{A,B}\right|$: 9.8

C···H in	Linear	CC	SD/BBC1		HF	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
C1	Н5	80.84	-5.60847E-04	108.39	80.58	27.80
C1	H6	34.65	-2.40395E-04	47.95	34.54	13.41
C1	H8	-4.93	3.41684E-05	-10.56	-4.91	-5.65
C1	H10	-4.93	3.41684E-05	-10.56	-4.91	-5.65
C2	Н5	34.65	-2.40395E-04	47.95	34.54	13.41
C2	H6	80.84	-5.60847E-04	108.39	80.58	27.80
C2	H7	-4.93	3.41684E-05	-10.56	-4.91	-5.65
C2	H9	-4.93	3.41684E-05	-10.56	-4.91	-5.65
					0 1 1	

Average for $\left|\Delta_{int}^{A,B}\right|$: 13.1

Standard deviation for $\left|\Delta_{int}^{A,B}\right|$: 9.7

C···H in	Eclipsed	CC	SD/BBC1		HF		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E^{\mathrm{A,B}}_{\mathrm{int}}$	$\Delta^{\rm A,B}_{\rm int}$	
C1	Н5	82.40	-5.71696E-04	111.63	82.14	29.49	
C1	H6	37.71	-2.61656E-04	51.89	37.59	14.30	
C1	H8	-6.60	4.58093E-05	-12.88	-6.58	-6.30	
C1	H10	-6.60	4.58093E-05	-12.88	-6.58	-6.29	
C2	Н5	37.71	-2.61656E-04	51.84	37.59	14.24	
C2	H6	82.40	-5.71696E-04	111.57	82.14	29.43	
C2	H7	-6.60	4.58093E-05	-12.87	-6.58	-6.29	
C2	H9	-6.60	4.58093E-05	-12.87	-6.58	-6.29	
				Averag	se for $\left \Delta_{\text{int}}^{\text{A},\text{B}}\right $:	14.1	
		Standard deviation for $\left \Delta_{int}^{A,B}\right $:					

C···H in	LEC	CC	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta_{ m cl}^{ m A,B}$
C1	Н5	79.50	-5.51515E-04	106.02	79.24	26.77
C1	Н6	48.29	-3.35024E-04	64.12	48.14	15.99
C1	H8	0.12	-8.38500E-07	-4.55	0.12	-4.67
C1	H10	-1.10	7.61256E-06	-6.66	-1.09	-5.57
C2	Н5	39.11	-2.71330E-04	53.14	38.99	14.15
C2	Н6	86.47	-5.99872E-04	114.17	86.19	27.98
C2	H7	-0.83	5.78789E-06	-6.85	-0.83	-6.02
C2	H9	-1.27	8.79525E-06	-7.48	-1.26	-6.21
				Averag	ge for $\left \Delta_{cl}^{A,B}\right $:	13.4
			Sta	ndard deviation	on for $\left \Delta_{cl}^{A,B}\right $:	9.6
C···H in	Linear	CC	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{\rm cl}^{\rm A,B}$ / E	$^{\text{Comput}}V_{\text{cl}}^{\text{A,B}}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta_{\rm cl}^{\rm A,B}$
C1	H5	82.17	-5.70019E-04	109.23	81.90	27.33
C1	Н6	35.15	-2.43847E-04	48.26	35.04	13.22
C1	H8	-1.14	7.88614E-06	-6.95	-1.13	-5.81
C1	H10	-1.14	7.88614E-06	-6.95	-1.13	-5.82
C2	Н5	35.15	-2.43847E-04	48.26	35.04	13.22
C2	Н6	82.17	-5.70019E-04	109.23	81.90	27.33
C2	H7	-1.14	7.88614E-06	-6.95	-1.13	-5.81
C2	H9	-1.14	7.88614E-06	-6.95	-1.13	-5.82
				Averag	ge for $\left \Delta_{cl}^{A,B}\right $:	13.0
			Sta	ndard deviation	on for $\left \Delta_{cl}^{A,B}\right $:	9.4
C···H in	Eclipsed	CC	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{\rm cl}^{\rm A,B}$ / E	$^{\text{Comput}}V_{\text{cl}}^{\text{A,B}}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta_{\rm cl}^{\rm A,B}$
C1	Н5	83.83	-5.81584E-04	112.51	83.56	28.96
C1	Н6	38.20	-2.65018E-04	52.18	38.08	14.10
C1	H8	-2.54	1.76089E-05	-8.93	-2.53	-6.40
C1	H10	-2.54	1.76089E-05	-8.94	-2.53	-6.41
C2	Н5	38.20	-2.65018E-04	52.12	38.08	14.05
C2	H6	83.83	-5.81584E-04	112.46	83.56	28.90
C2	H7	-2.54	1.76089E-05	-8.93	-2.53	-6.40
C2	H9	-2.54	1.76089E-05	-8.93	-2.53	-6.40
				Averag	ge for $\left \Delta_{cl}^{A,B}\right $:	14.0
			Sta	ndard deviation	on for $\left \Delta_{cl}^{A,B}\right $:	9.8

Table S72. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in classical term $V_{cl}^{A,B}$ of interaction energies computed at HF for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

C···H in	LEC	CCS	SD/BBC1		HF	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.21	8.40036E-06	-0.84	-1.21	0.37
C1	H6	-0.53	3.70975E-06	-0.12	-0.53	0.42
C1	H8	-4.04	2.80583E-05	-4.18	-4.03	-0.15
C1	H10	-3.96	2.74736E-05	-3.97	-3.95	-0.03
C2	Н5	-0.44	3.07551E-06	-0.30	-0.44	0.14
C2	H6	-1.31	9.10774E-06	-0.80	-1.31	0.51
C2	H7	-3.75	2.59890E-05	-3.54	-3.73	0.19
C2	H9	-3.79	2.63220E-05	-3.91	-3.78	-0.13
				Avera	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.2

Table S73. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies computed at HF for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

C···H in	Linear	CCS	D/BBC1	HF		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{ m Expect}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	H5	-1.32	9.17191E-06	-0.85	-1.32	0.47
C1	H6	-0.50	3.45234E-06	-0.31	-0.50	0.19
C1	H8	-3.79	2.62822E-05	-3.61	-3.78	0.17
C1	H10	-3.79	2.62822E-05	-3.61	-3.78	0.17
C2	H5	-0.50	3.45234E-06	-0.31	-0.50	0.19
C2	H6	-1.32	9.17191E-06	-0.85	-1.32	0.47
C2	H7	-3.79	2.62822E-05	-3.61	-3.78	0.17
C2	H9	-3.79	2.62822E-05	-3.61	-3.78	0.17

Average for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.2$

0.2

Standard deviation for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.1$

Standard deviation for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$

C…H in Eclipsed		CCSD/BBC1		HF		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{ m Expect}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.43	9.88825E-06	-0.89	-1.42	0.53
C1	H6	-0.48	3.36254E-06	-0.29	-0.48	0.20
C1	H8	-4.06	2.82004E-05	-3.94	-4.05	0.11
C1	H10	-4.06	2.82004E-05	-3.94	-4.05	0.11
C2	Н5	-0.48	3.36254E-06	-0.29	-0.48	0.20
C2	Н6	-1.43	9.88825E-06	-0.89	-1.42	0.53
C2	H7	-4.06	2.82004E-05	-3.95	-4.05	0.11
C2	H9	-4.06	2.82004E-05	-3.94	-4.05	0.11
				Averaş	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.2
			Standard deviation for $\left \Delta_{\mathrm{XC}}^{\mathrm{A,B}}\right $			

O…H in LEC		CCSD/BBC1		HF		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$
03	Н5	-63.47	4.40340E-04	-75.22	-63.27	-11.95
O3	H7	1.53	-1.05919E-05	9.69	1.52	8.17
O3	H8	-6.44	4.46864E-05	0.42	-6.42	6.84
03	H9	1.74	-1.20837E-05	8.66	1.74	6.92
O3	H10	-4.72	3.27422E-05	3.02	-4.70	7.73
O4	H6	-90.89	6.30517E-04	-103.88	-90.60	-13.28
O4	H7	-4.46	3.09496E-05	3.38	-4.45	7.83
O4	H8	0.02	-1.51058E-07	5.79	0.02	5.77
O4	H9	-3.22	2.23074E-05	5.50	-3.21	8.71
O4	H10	1.98	-1.37476E-05	9.77	1.98	7.80
	Average for $\Delta_{\rm int}^{\rm A,B}$					8.5
				Std. deviatio	n for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	2.3

Table S74. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at HF for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in Linear		CCSD/BBC1		HF		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta^{A,B}_{int}$
03	Н5	-50.37	3.49449E-04	-60.55	-50.21	-10.34
O3	H7	2.11	-1.46101E-05	9.91	2.10	7.81
O3	H8	-3.97	2.75121E-05	3.68	-3.95	7.63
O3	H9	2.11	-1.46101E-05	9.91	2.10	7.81
O3	H10	-3.97	2.75121E-05	3.68	-3.95	7.63
O4	H6	-50.37	3.49449E-04	-60.55	-50.21	-10.34
O4	H7	-3.97	2.75121E-05	3.68	-3.95	7.63
O4	H8	2.11	-1.46101E-05	9.91	2.10	7.81
O4	H9	-3.97	2.75121E-05	3.68	-3.95	7.63
O4	H10	2.11	-1.46101E-05	9.91	2.10	7.81
				Average for $\left \Delta_{int}^{A,B}\right $		
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.1
O····H in	···H in Eclipsed		SD/BBC1		HF	
-----------	------------------	-----------------------	-----------------------------	-----------------------------------	--	----------------------
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
03	Н5	-59.43	4.12334E-04	-71.32	-59.24	-12.08
03	H7	3.69	-2.56299E-05	10.84	3.68	7.16
03	H8	-1.45	1.00861E-05	7.17	-1.45	8.62
03	H9	3.69	-2.56299E-05	10.84	3.68	7.16
O3	H10	-1.45	1.00861E-05	7.17	-1.45	8.62
O4	H6	-59.43	4.12334E-04	-71.32	-59.24	-12.08
O4	H7	-1.45	1.00861E-05	7.17	-1.45	8.62
O4	H8	3.69	-2.56299E-05	10.84	3.68	7.16
O4	H9	-1.45	1.00861E-05	7.17	-1.45	8.62
04	H10	3.69	-2.56299E-05	10.84	3.68	7.16
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	8.7
				Std. deviatio	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.9

Table S75. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ of classical term $V_{cl}^{A,B}$ of interaction energies computed at HF for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O···H in	LEC	CC	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
03	Н5	79.50	-5.51515E-04	106.02	79.24	26.77
03	H7	48.29	-3.35024E-04	64.12	48.14	15.99
03	H8	0.12	-8.38500E-07	-4.55	0.12	-4.67
03	H9	-1.10	7.61256E-06	-6.66	-1.09	-5.57
03	H10	39.11	-2.71330E-04	53.14	38.99	14.15
O4	H6	86.47	-5.99872E-04	114.17	86.19	27.98
O4	H7	-0.83	5.78789E-06	-6.85	-0.83	-6.02
O4	H8	-1.27	8.79525E-06	-7.48	-1.26	-6.21
O4	H9	79.50	-5.51515E-04	106.02	79.24	26.77
O4	H10	48.29	-3.35024E-04	64.12	48.14	15.99
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	13.4
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	9.6

O…H in	D …H in Linear		SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
03	Н5	-49.87	3.45955E-04	-60.51	-49.71	-10.80
O3	H7	4.07	-2.82240E-05	11.27	4.06	7.21
03	H8	2.14	-1.48185E-05	11.48	2.13	9.35
O3	H9	4.07	-2.82240E-05	11.27	4.06	7.21
O3	H10	2.14	-1.48185E-05	11.48	2.13	9.35
O4	H6	-49.87	3.45955E-04	-60.51	-49.71	-10.80
O4	H7	2.14	-1.48185E-05	11.48	2.13	9.35
O4	H8	4.07	-2.82240E-05	11.27	4.06	7.21
O4	H9	2.14	-1.48185E-05	11.48	2.13	9.35
04	H10	4.07	-2.82240E-05	11.27	4.06	7.21
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	8.8
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	1.5

O…H in	···H in Eclipsed		SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
03	Н5	83.83	-5.81584E-04	112.51	83.56	28.96
O3	H7	38.20	-2.65018E-04	52.18	38.08	14.10
O3	H8	-2.54	1.76089E-05	-8.93	-2.53	-6.40
O3	H9	-2.54	1.76089E-05	-8.94	-2.53	-6.41
O3	H10	38.20	-2.65018E-04	52.12	38.08	14.05
O4	H6	83.83	-5.81584E-04	112.46	83.56	28.90
O4	H7	-2.54	1.76089E-05	-8.93	-2.53	-6.40
O4	H8	-2.54	1.76089E-05	-8.93	-2.53	-6.40
O4	H9	83.83	-5.81584E-04	112.51	83.56	28.96
O4	H10	38.20	-2.65018E-04	52.18	38.08	14.10
				Averag	ge for $\left \Delta_{cl}^{A,B} \right $	14.0
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	9.8

O…H in	LEC	CCS	SD/BBC1	HF		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.35	2.44852E-06	-0.04	-0.35	0.31
03	H7	-2.00	1.38900E-05	-1.27	-2.00	0.72
03	H8	-6.27	4.34686E-05	-7.73	-6.25	-1.48
O3	H9	-1.14	7.90820E-06	-0.66	-1.14	0.48
03	H10	-6.42	4.45528E-05	-7.91	-6.40	-1.51
O4	H6	-3.03	2.10430E-05	-1.26	-3.02	1.76
O4	H7	-6.28	4.35390E-05	-7.92	-6.26	-1.66
O4	H8	-0.86	5.98068E-06	-0.58	-0.86	0.28
O4	H9	-6.50	4.51269E-05	-7.89	-6.48	-1.40
O4	H10	-1.99	1.38080E-05	-1.30	-1.98	0.69
				Average	e for $\left \Delta_{\rm XC}^{\rm A,B} \right $	1.0
				Std. deviation	n for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.6

Table S76. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ of the XC-term $V_{XC}^{A,B}$ of interaction energies computed at HF for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in	Linear	CCSD/BBC1			HF	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.50	3.49384E-06	-0.05	-0.50	0.46
O3	H7	-1.96	1.36138E-05	-1.36	-1.96	0.60
O3	H8	-6.10	4.23306E-05	-7.80	-6.08	-1.72
O3	H9	-1.96	1.36138E-05	-1.36	-1.96	0.60
O3	H10	-6.10	4.23306E-05	-7.80	-6.08	-1.72
O4	H6	-0.50	3.49384E-06	-0.05	-0.50	0.46
O4	H7	-6.10	4.23306E-05	-7.80	-6.08	-1.72
O4	H8	-1.96	1.36138E-05	-1.36	-1.96	0.60
O4	H9	-6.10	4.23306E-05	-7.80	-6.08	-1.72
04	H10	-1.96	1.36138E-05	-1.36	-1.96	0.60
				Averag	ge for $\left \Delta_{\mathrm{XC}}^{\mathrm{A,B}} \right $	1.0
				Std. deviatio	on for $\left \Delta_{\mathrm{XC}}^{\mathrm{A,B}} \right $	0.6

O…H in	Eclipsed	CCS	SD/BBC1		HF	
Atom A	Atom B	$V_{\mathrm{XC}}^{\mathrm{A,B}}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.67	4.62679E-06	-0.11	-0.66	0.56
O3	H7	-0.70	4.84171E-06	-0.26	-0.70	0.44
O3	H8	-6.58	4.56687E-05	-8.41	-6.56	-1.85
O3	H9	-0.70	4.84171E-06	-0.26	-0.70	0.44
O3	H10	-6.58	4.56687E-05	-8.41	-6.56	-1.85
O4	H6	-0.67	4.62679E-06	-0.11	-0.66	0.56
O4	H7	-6.58	4.56687E-05	-8.41	-6.56	-1.85
O4	H8	-0.70	4.84171E-06	-0.26	-0.70	0.44
O4	H9	-6.58	4.56687E-05	-8.41	-6.56	-1.85
04	H10	-0.70	4.84171E-06	-0.26	-0.70	0.44
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	1.0
				Std. deviatio	on for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.7

Table S77. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at HF for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCS	SD/BBC1		HF	
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{ m Expect}E^{ m A,B}_{ m int}$	$\Delta^{A,B}_{int}$
H5	H6	36.97	-2.56444E-04	41.19	36.85	4.34
H5	H7	-1.91	1.32190E-05	-6.20	-1.90	-4.30
H5	H8	-0.65	4.54108E-06	-2.95	-0.65	-2.29
H5	H9	-2.20	1.52426E-05	-6.74	-2.19	-4.54
H5	H10	-1.79	1.23902E-05	-4.51	-1.78	-2.73
H6	H7	-1.78	1.23769E-05	-5.13	-1.78	-3.36
H6	H8	-0.43	2.95773E-06	-3.85	-0.42	-3.42
H6	Н9	-1.50	1.03754E-05	-4.44	-1.49	-2.94
H6	H10	-1.52	1.05510E-05	-5.76	-1.52	-4.24
H7	H8	-0.42	2.91928E-06	0.31	-0.42	0.73
H7	Н9	-2.32	1.60696E-05	-2.64	-2.31	-0.33
H7	H10	-0.55	3.79630E-06	-0.06	-0.55	0.48
H8	H9	-0.32	2.23740E-06	0.41	-0.32	0.74
H8	H10	-2.38	1.65337E-05	-2.84	-2.38	-0.47
H9	H10	-0.25	1.74888E-06	0.53	-0.25	0.78
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	2.4
				Std. deviatio	n for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.6

H···H in	Linear	CCS	SD/BBC1		HF	
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$
Н5	H6	22.72	-1.57635E-04	26.23	22.65	3.58
Н5	H7	-1.84	1.27666E-05	-6.09	-1.83	-4.26
H5	H8	-1.82	1.25965E-05	-4.59	-1.81	-2.78
Н5	H9	-1.84	1.27666E-05	-6.09	-1.83	-4.26
H5	H10	-1.82	1.25965E-05	-4.59	-1.81	-2.78
H6	H7	-1.82	1.25965E-05	-4.59	-1.81	-2.78
H6	H8	-1.84	1.27666E-05	-6.09	-1.83	-4.26
H6	H9	-1.82	1.25965E-05	-4.59	-1.81	-2.78
H6	H10	-1.84	1.27666E-05	-6.09	-1.83	-4.26
H7	H8	-0.57	3.92163E-06	-0.03	-0.56	0.54
H7	H9	-2.51	1.73979E-05	-2.75	-2.50	-0.25
H7	H10	-0.46	3.19134E-06	0.38	-0.46	0.84
H8	H9	-0.46	3.19134E-06	0.38	-0.46	0.84
H8	H10	-2.51	1.73979E-05	-2.75	-2.50	-0.25
H9	H10	-0.57	3.92163E-06	-0.03	-0.56	0.54

Average for $\left| \Delta_{\text{int}}^{\text{A,B}} \right|$ 2.3

Std. deviation for $\left| \Delta_{ir}^{A} \right|$

ion for	$\Delta_{\rm int}^{\rm A,B}$	1.6

H···H in	Eclipsed	CCS	SD/BBC1		HF	
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$
Н5	H6	25.93	-1.79929E-04	29.92	25.85	4.07
Н5	H7	-3.37	2.33517E-05	-8.03	-3.36	-4.68
Н5	H8	-2.23	1.54635E-05	-4.92	-2.22	-2.69
Н5	H9	-3.37	2.33517E-05	-8.03	-3.36	-4.68
Н5	H10	-2.23	1.54635E-05	-4.92	-2.22	-2.69
H6	H7	-2.23	1.54635E-05	-4.92	-2.22	-2.69
H6	H8	-3.37	2.33517E-05	-8.03	-3.36	-4.68
H6	H9	-2.23	1.54635E-05	-4.92	-2.22	-2.69
H6	H10	-3.37	2.33517E-05	-8.03	-3.36	-4.68
H7	H8	-0.88	6.13093E-06	0.43	-0.88	1.31
H7	H9	-2.65	1.83821E-05	-2.56	-2.64	0.08
H7	H10	-0.25	1.76286E-06	0.70	-0.25	0.95
H8	H9	-0.25	1.76286E-06	0.70	-0.25	0.95
H8	H10	-2.65	1.83821E-05	-2.56	-2.64	0.08
H9	H10	-0.88	6.13093E-06	0.43	-0.88	1.31
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	2.5
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.7

H···H in	LEC	CCS	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{\rm cl}$
H5	H6	37.09	-2.57280E-04	41.21	36.97	4.24
H5	H7	-1.73	1.19752E-05	-6.10	-1.72	-4.38
H5	H8	-0.59	4.11552E-06	-2.90	-0.59	-2.31
H5	H9	-2.11	1.46141E-05	-6.68	-2.10	-4.58
H5	H10	-1.71	1.18685E-05	-4.49	-1.71	-2.79
H6	H7	-1.70	1.17605E-05	-5.13	-1.69	-3.44
H6	H8	-0.08	5.40273E-07	-3.51	-0.08	-3.43
H6	Н9	-1.41	9.76436E-06	-4.42	-1.40	-3.02
H6	H10	-1.38	9.58579E-06	-5.70	-1.38	-4.32
H7	H8	0.20	-1.38967E-06	0.66	0.20	0.46
H7	H9	0.69	-4.78518E-06	1.16	0.69	0.48
H7	H10	0.08	-5.50299E-07	0.44	0.08	0.36
H8	Н9	0.26	-1.82468E-06	0.83	0.26	0.56
H8	H10	0.67	-4.65740E-06	0.93	0.67	0.26
H9	H10	0.30	-2.06546E-06	0.91	0.30	0.61
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B} \right $	2.4

Table S78. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ of classical term $V_{cl}^{A,B}$ of interaction energies computed at HF for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$

1.7

H…H in	H…H in Linear		SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
H5	H6	22.91	-1.58934E-04	26.24	22.84	3.40
Н5	H7	-1.74	1.20370E-05	-6.02	-1.73	-4.29
Н5	H8	-1.78	1.23721E-05	-4.57	-1.78	-2.79
Н5	H9	-1.74	1.20370E-05	-6.02	-1.73	-4.29
Н5	H10	-1.78	1.23721E-05	-4.57	-1.78	-2.79
H6	H7	-1.78	1.23721E-05	-4.57	-1.78	-2.79
H6	H8	-1.74	1.20370E-05	-6.02	-1.73	-4.29
H6	H9	-1.78	1.23721E-05	-4.57	-1.78	-2.79
H6	H10	-1.74	1.20370E-05	-6.02	-1.73	-4.29
H7	H8	0.08	-5.35901E-07	0.45	0.08	0.37
H7	H9	0.67	-4.65362E-06	1.06	0.67	0.39
H7	H10	0.21	-1.46599E-06	0.74	0.21	0.53
H8	H9	0.21	-1.46599E-06	0.74	0.21	0.53
H8	H10	0.67	-4.65362E-06	1.06	0.67	0.39
H9	H10	0.08	-5.35901E-07	0.45	0.08	0.37
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	2.3
				Std. deviatio	on for $\left \Delta_{cl}^{A,B}\right $	1.7

H···H in	Eclipsed	CC	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
Н5	H6	26.14	-1.81338E-04	29.92	26.05	3.87
Н5	H7	-3.23	2.23898E-05	-7.94	-3.22	-4.73
Н5	H8	-2.19	1.52172E-05	-4.90	-2.19	-2.71
Н5	H9	-3.23	2.23898E-05	-7.94	-3.22	-4.73
Н5	H10	-2.19	1.52172E-05	-4.90	-2.19	-2.71
H6	H7	-2.19	1.52172E-05	-4.90	-2.19	-2.71
H6	H8	-3.23	2.23898E-05	-7.94	-3.22	-4.73
H6	H9	-2.19	1.52172E-05	-4.90	-2.19	-2.71
H6	H10	-3.23	2.23898E-05	-7.94	-3.22	-4.72
H7	H8	0.58	-3.99386E-06	1.54	0.57	0.97
H7	H9	0.80	-5.52134E-06	1.62	0.79	0.82
H7	H10	0.25	-1.76849E-06	0.95	0.25	0.70
H8	H9	0.25	-1.76849E-06	0.95	0.25	0.70
H8	H10	0.80	-5.52134E-06	1.62	0.79	0.82
H9	H10	0.58	-3.99386E-06	1.54	0.57	0.97
				Averag	the for $\left \Delta_{\rm cl}^{\rm A,B}\right $	2.6
				Std. deviatio	n for $\left \Delta_{\rm cl}^{\rm A,B}\right $	1.7

Table S79.. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies computed at HF for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCS	D/BBC1		HF	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.12	8.35982E-07	-0.02	-0.12	0.10
H5	H7	-0.18	1.24377E-06	-0.10	-0.18	0.08
H5	H8	-0.06	4.25557E-07	-0.04	-0.06	0.02
H5	H9	-0.09	6.28456E-07	-0.05	-0.09	0.04
H5	H10	-0.08	5.21707E-07	-0.02	-0.07	0.06
H6	H7	-0.09	6.16356E-07	-0.01	-0.09	0.08
H6	H8	-0.35	2.41746E-06	-0.33	-0.35	0.01
H6	H9	-0.09	6.11051E-07	-0.01	-0.09	0.08
H6	H10	-0.14	9.65231E-07	-0.06	-0.14	0.08
H7	H8	-0.62	4.30895E-06	-0.35	-0.62	0.27
H7	H9	-3.01	2.08548E-05	-3.81	-3.00	-0.81
H7	H10	-0.63	4.34660E-06	-0.50	-0.62	0.12
H8	H9	-0.59	4.06207E-06	-0.41	-0.58	0.17
H8	H10	-3.05	2.11911E-05	-3.77	-3.04	-0.73
H9	H10	-0.55	3.81434E-06	-0.38	-0.55	0.16
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.2
				Std. deviatio	n for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.2

H…H in	Linear	CCS	SD/BBC1		HF	
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.19	1.29892E-06	0.00	-0.19	0.18
H5	H7	-0.11	7.29610E-07	-0.08	-0.10	0.03
Н5	H8	-0.03	2.24489E-07	-0.02	-0.03	0.02
H5	H9	-0.11	7.29610E-07	-0.08	-0.10	0.03
H5	H10	-0.03	2.24489E-07	-0.02	-0.03	0.02
H6	H7	-0.03	2.24489E-07	-0.02	-0.03	0.02
H6	H8	-0.11	7.29610E-07	-0.08	-0.10	0.03
H6	H9	-0.03	2.24489E-07	-0.02	-0.03	0.02
H6	H10	-0.11	7.29610E-07	-0.08	-0.10	0.03
H7	H8	-0.64	4.45753E-06	-0.47	-0.64	0.17
H7	Н9	-3.18	2.20515E-05	-3.81	-3.17	-0.65
H7	H10	-0.67	4.65732E-06	-0.35	-0.67	0.32
H8	H9	-0.67	4.65732E-06	-0.35	-0.67	0.32
H8	H10	-3.18	2.20515E-05	-3.81	-3.17	-0.65
H9	H10	-0.64	4.45753E-06	-0.47	-0.64	0.17
				Averag	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.2

Average for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$

0.2

Std. deviation for $\left| \Delta_{\rm XC}^{\rm A,B} \right|$

H···H in	Eclipsed	CCS	D/BBC1		HF	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.20	1.40935E-06	0.00	-0.20	0.20
Н5	H7	-0.14	9.61846E-07	-0.09	-0.14	0.05
Н5	H8	-0.04	2.46282E-07	-0.02	-0.04	0.02
Н5	H9	-0.14	9.61846E-07	-0.09	-0.14	0.05
Н5	H10	-0.04	2.46282E-07	-0.02	-0.04	0.02
H6	H7	-0.04	2.46282E-07	-0.02	-0.04	0.02
H6	H8	-0.14	9.61846E-07	-0.09	-0.14	0.05
H6	H9	-0.04	2.46282E-07	-0.02	-0.04	0.02
H6	H10	-0.14	9.61846E-07	-0.09	-0.14	0.05
H7	H8	-1.46	1.01248E-05	-1.11	-1.45	0.34
H7	H9	-3.45	2.39035E-05	-4.18	-3.43	-0.74
H7	H10	-0.51	3.53135E-06	-0.25	-0.51	0.25
H8	H9	-0.51	3.53135E-06	-0.25	-0.51	0.25
H8	H10	-3.45	2.39035E-05	-4.18	-3.43	-0.74
H9	H10	-1.46	1.01248E-05	-1.11	-1.45	0.34
				Average	e for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.2
				Std. deviation	n for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.2

C···H in	LEC	CC	SD/BBC1		B3LYP	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$
C1	Н5	78.29	-5.43115E-04	71.36	78.49	-7.13
C1	H6	47.76	-3.31314E-04	42.96	47.88	-4.92
C1	H8	-3.92	2.72198E-05	-2.34	-3.93	1.59
C1	H10	-5.06	3.50861E-05	-3.17	-5.07	1.90
C2	Н5	38.67	-2.68255E-04	34.76	38.77	-4.00
C2	H6	85.16	-5.90764E-04	78.19	85.37	-7.18
C2	H7	-4.58	3.17769E-05	-2.45	-4.59	2.14
C2	H9	-5.06	3.51173E-05	-3.34	-5.07	1.73
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}}\right $:	3.8
			Sta	ndard deviatio	n for $\left \Delta_{int}^{A,B}\right $:	2.4

Table S80. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at B3LYP for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

C···H in Linear **CCSD/BBC1 B3LYP** $E_{\rm int}^{\rm A,B}$ $E_{\mathrm{int}}^{\,\mathrm{A,B}}$ / E $^{\rm Comput}E_{\rm int}^{\rm A,B}$ $^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$ $\Delta^{\rm A,B}_{\rm int}$ Atom A Atom B C1 H5 -5.60847E-04 80.84 74.01 81.05 -7.04 C1 -2.40395E-04 34.74 -3.69 H6 34.65 31.05 C1 H8 -4.93 3.41684E-05 -2.72 -4.94 2.22 C1 -4.93 3.41684E-05 -2.72 -4.94 2.22 H10 C2 34.65 -2.40395E-04 31.05 34.74 -3.69 H5 C2 H6 80.84 -5.60847E-04 74.01 81.05 -7.04C2 -4.93 3.41684E-05 -2.72 -4.94 2.22 H7 C2 H9 -4.93 3.41684E-05 -2.72 -4.94 2.22 Average for $|\Delta_{int}^{A,B}|$: 3.8

Standard deviation for $\left|\Delta_{int}^{A,B}\right|$: 2.1

CCSD/BBC1 C···H in Eclipsed **B3LYP** $\Delta^{A,B}_{int}$ $E_{\rm int}^{\rm A,B}$ $E_{\mathrm{int}}^{\,\mathrm{A,B}}$ / E $^{\rm Comput}E_{\rm int}^{\rm A,B}$ $^{\rm Expect}E_{\rm int}^{\rm A,B}$ Atom A Atom B -5.71696E-04 C1 H5 82.40 75.84 82.61 -6.77 C1 H6 37.71 -2.61656E-04 34.34 37.81 -3.47 C1 4.58093E-05 2.21 H8 -6.60 -4.41 -6.62 C1 H10 -6.60 4.58093E-05 -4.41 -6.62 2.21 C2 H5 37.71 -2.61656E-04 34.31 37.81 -3.49 C2 82.40 -5.71696E-04 75.84 82.61 -6.77 H6 C2 H7 -6.60 4.58093E-05 -4.41 -6.62 2.21 C2 H9 -6.60 4.58093E-05 -4.41 -6.62 2.21 Average for $\left|\Delta_{int}^{A,B}\right|$: 3.7 Standard deviation for $\left|\Delta_{int}^{A,B}\right|$: 2.0

Table S81. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term
$V_{\rm cl}^{\rm A,B}$ of interaction energies computed at B3LYP for distant C,H atom-pairs in all conformers of glycol (values in
kcal mol ⁻¹).

C···H in	LEC	CC	SD/BBC1		B3LYP	
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{\rm cl}$
C1	Н5	79.50	-5.51515E-04	72.50	79.70	-7.20
C1	H6	48.29	-3.35024E-04	43.15	48.42	-5.27
C1	H8	0.12	-8.38500E-07	1.72	0.12	1.60
C1	H10	-1.10	7.61256E-06	0.70	-1.10	1.80
C2	H5	39.11	-2.71330E-04	35.15	39.21	-4.06
C2	H6	86.47	-5.99872E-04	79.29	86.69	-7.40
C2	H7	-0.83	5.78789E-06	1.07	-0.84	1.90
C2	H9	-1.27	8.79525E-06	0.50	-1.27	1.77
				Avera	age for $\left \Delta_{\rm cl}^{\rm A,B}\right $	3.9

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 2.5

C···H in	C…H in Linear		SD/BBC1		B3LYP	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
C1	H5	82.17	-5.70019E-04	75.18	82.37	-7.19
C1	H6	35.15	-2.43847E-04	31.44	35.24	-3.80
C1	H8	-1.14	7.88614E-06	0.79	-1.14	1.93
C1	H10	-1.14	7.88614E-06	0.79	-1.14	1.93
C2	H5	35.15	-2.43847E-04	31.44	35.24	-3.80
C2	H6	82.17	-5.70019E-04	75.18	82.37	-7.19
C2	H7	-1.14	7.88614E-06	0.79	-1.14	1.93
C2	H9	-1.14	7.88614E-06	0.79	-1.14	1.93
				Avera	age for $\left \Delta_{cl}^{A,B}\right $	3.7

Std. deviation for $\left| \Delta_{cl}^{A,B} \right|$ 2.3

C···H in	Eclipsed	CC	SD/BBC1		B3LYP	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
C1	H5	83.83	-5.81584E-04	77.09	84.04	-6.95
C1	H6	38.20	-2.65018E-04	34.71	38.30	-3.58
C1	H8	-2.54	1.76089E-05	-0.60	-2.54	1.94
C1	H10	-2.54	1.76089E-05	-0.60	-2.54	1.94
C2	Н5	38.20	-2.65018E-04	34.69	38.30	-3.61
C2	H6	83.83	-5.81584E-04	77.09	84.04	-6.95
C2	H7	-2.54	1.76089E-05	-0.60	-2.54	1.94
C2	H9	-2.54	1.76089E-05	-0.60	-2.54	1.94
				Avera	uge for $\left \Delta_{cl}^{A,B}\right $	3.6
				Std. deviati	on for $\left \Delta_{cl}^{A,B}\right $	2.2

Table S82. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies computed at B3LYP for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

C···H in LEC		CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	H5	-1.21	8.40036E-06	-1.14	-1.21	0.07
C1	H6	-0.53	3.70975E-06	-0.19	-0.54	0.35
C1	H8	-4.04	2.80583E-05	-4.06	-4.05	-0.01
C1	H10	-3.96	2.74736E-05	-3.87	-3.97	0.10
C2	H5	-0.44	3.07551E-06	-0.39	-0.44	0.06
C2	H6	-1.31	9.10774E-06	-1.10	-1.32	0.22
C2	H7	-3.75	2.59890E-05	-3.51	-3.76	0.24
C2	H9	-3.79	2.63220E-05	-3.85	-3.80	-0.04
					C AD	

Average for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.1$

Std. deviation for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.1$

C···H in	Linear	CCS	D/BBC1		B3LYP	
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{ m Expect}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.32	9.17191E-06	-1.17	-1.33	0.16
C1	H6	-0.50	3.45234E-06	-0.39	-0.50	0.11
C1	H8	-3.79	2.62822E-05	-3.51	-3.80	0.29
C1	H10	-3.79	2.62822E-05	-3.50	-3.80	0.29
C2	Н5	-0.50	3.45234E-06	-0.39	-0.50	0.11
C2	H6	-1.32	9.17191E-06	-1.17	-1.33	0.16
C2	H7	-3.79	2.62822E-05	-3.51	-3.80	0.29
C2	H9	-3.79	2.62822E-05	-3.50	-3.80	0.29
					C A B	

Average for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$ 0.2

Std. deviation for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.1$

C…H in Eclipsed		CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.43	9.88825E-06	-1.25	-1.43	0.18
C1	H6	-0.48	3.36254E-06	-0.37	-0.49	0.11
C1	H8	-4.06	2.82004E-05	-3.81	-4.07	0.27
C1	H10	-4.06	2.82004E-05	-3.81	-4.07	0.27
C2	H5	-0.48	3.36254E-06	-0.37	-0.49	0.11
C2	H6	-1.43	9.88825E-06	-1.25	-1.43	0.18
C2	H7	-4.06	2.82004E-05	-3.81	-4.07	0.27
C2	H9	-4.06	2.82004E-05	-3.81	-4.07	0.27
				Avera	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.2
				Std. deviati	on for $\Delta_{\rm XC}^{\rm A,B}$	0.1

O…H in	O…H in LEC		CCSD/BBC1		B3LYP	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
03	Н5	-63.47	4.40340E-04	-60.75	-63.63	2.89
O3	H7	1.53	-1.05919E-05	-0.68	1.53	-2.21
O3	H8	-6.44	4.46864E-05	-10.36	-6.46	-3.90
O3	H9	1.74	-1.20837E-05	-0.24	1.75	-1.98
O3	H10	-4.72	3.27422E-05	-8.94	-4.73	-4.21
O4	H6	-90.89	6.30517E-04	-86.09	-91.12	5.03
O4	H7	-4.46	3.09496E-05	-8.63	-4.47	-4.16
O4	H8	0.02	-1.51058E-07	-2.06	0.02	-2.08
O4	Н9	-3.22	2.23074E-05	-7.25	-3.22	-4.02
O4	H10	1.98	-1.37476E-05	-0.31	1.99	-2.29
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	3.3

Table S83. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at B3LYP for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Std. deviation for $\left|\Delta_{int}^{A,B}\right|$ 1.1

O…H in Linear		CCSD/BBC1		B3LYP		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
03	Н5	-50.37	3.49449E-04	-48.35	-50.50	2.15
O3	H7	2.11	-1.46101E-05	-0.09	2.11	-2.20
O3	H8	-3.97	2.75121E-05	-8.26	-3.98	-4.28
O3	H9	2.11	-1.46101E-05	-0.09	2.11	-2.20
O3	H10	-3.97	2.75121E-05	-8.26	-3.98	-4.28
O4	H6	-50.37	3.49449E-04	-48.35	-50.50	2.15
O4	H7	-3.97	2.75121E-05	-8.26	-3.98	-4.28
O4	H8	2.11	-1.46101E-05	-0.09	2.11	-2.20
O4	H9	-3.97	2.75121E-05	-8.26	-3.98	-4.28
O4	H10	2.11	-1.46101E-05	-0.09	2.11	-2.20
				Average for $\left \Delta_{\text{int}}^{\text{A,B}}\right $		
				Std. deviatio	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.1

O…H in	Eclipsed	CCSD/BBC1		B3LYP		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta^{A,B}_{int}$
03	Н5	-59.43	4.12334E-04	-57.22	-59.58	2.36
O3	H7	3.69	-2.56299E-05	1.90	3.70	-1.81
O3	H8	-1.45	1.00861E-05	-5.81	-1.46	-4.35
O3	H9	3.69	-2.56299E-05	1.90	3.70	-1.81
O3	H10	-1.45	1.00861E-05	-5.81	-1.46	-4.35
O4	H6	-59.43	4.12334E-04	-57.22	-59.58	2.36
O4	H7	-1.45	1.00861E-05	-5.81	-1.46	-4.35
O4	H8	3.69	-2.56299E-05	1.90	3.70	-1.81
O4	H9	-1.45	1.00861E-05	-5.81	-1.46	-4.35
04	H10	3.69	-2.56299E-05	1.90	3.70	-1.81
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	2.9
				Std. deviatio	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.2

Table S84. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{cl}^{A,B}$ of the interaction energies computed at B3LYP for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in LEC		CC	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	Expect $V_{\rm cl}^{\rm A,B}$	$\Delta^{\rm A,B}_{ m cl}$	
03	Н5	79.50	-5.51515E-04	72.50	79.70	-7.20	
03	H7	48.29	-3.35024E-04	43.15	48.42	-5.27	
03	H8	0.12	-8.38500E-07	1.72	0.12	1.60	
03	Н9	-1.10	7.61256E-06	0.70	-1.10	1.80	
03	H10	39.11	-2.71330E-04	35.15	39.21	-4.06	
O4	Н6	86.47	-5.99872E-04	79.29	86.69	-7.40	
O4	H7	-0.83	5.78789E-06	1.07	-0.84	1.90	
O4	H8	-1.27	8.79525E-06	0.50	-1.27	1.77	
O4	H9	79.50	-5.51515E-04	72.50	79.70	-7.20	
O4	H10	48.29	-3.35024E-04	43.15	48.42	-5.27	
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	3.9	
				Std. deviatio	n for $\left \Delta_{\rm cl}^{\rm A,B}\right $	2.5	

O…H in	Linear	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
03	Н5	-49.87	3.45955E-04	-48.28	-49.99	1.71
O3	H7	4.07	-2.82240E-05	1.36	4.08	-2.72
O3	H8	2.14	-1.48185E-05	-1.41	2.14	-3.56
O3	H9	4.07	-2.82240E-05	1.36	4.08	-2.72
O3	H10	2.14	-1.48185E-05	-1.41	2.14	-3.56
O4	H6	-49.87	3.45955E-04	-48.28	-49.99	1.71
O4	H7	2.14	-1.48185E-05	-1.41	2.14	-3.56
O4	H8	4.07	-2.82240E-05	1.36	4.08	-2.72
O4	H9	2.14	-1.48185E-05	-1.41	2.14	-3.56
O4	H10	4.07	-2.82240E-05	1.36	4.08	-2.72
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	2.9
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.7

O…H in Eclipsed		CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{\rm A,B}_{\rm cl}$
03	Н5	83.83	-5.81584E-04	77.09	84.04	-6.95
O3	H7	38.20	-2.65018E-04	34.71	38.30	-3.58
O3	H8	-2.54	1.76089E-05	-0.60	-2.54	1.94
O3	H9	-2.54	1.76089E-05	-0.60	-2.54	1.94
O3	H10	38.20	-2.65018E-04	34.69	38.30	-3.61
O4	H6	83.83	-5.81584E-04	77.09	84.04	-6.95
O4	H7	-2.54	1.76089E-05	-0.60	-2.54	1.94
O4	H8	-2.54	1.76089E-05	-0.60	-2.54	1.94
O4	H9	83.83	-5.81584E-04	77.09	84.04	-6.95
O4	H10	38.20	-2.65018E-04	34.71	38.30	-3.58
				Averag	ge for $\left \Delta_{cl}^{A,B}\right $	3.6
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	2.2

O…H in	LEC	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.35	2.44852E-06	-0.06	-0.35	0.30
O3	H7	-2.00	1.38900E-05	-1.44	-2.01	0.57
O3	H8	-6.27	4.34686E-05	-6.63	-6.28	-0.34
O3	H9	-1.14	7.90820E-06	-0.83	-1.14	0.31
O3	H10	-6.42	4.45528E-05	-7.01	-6.44	-0.57
O4	H6	-3.03	2.10430E-05	-2.26	-3.04	0.78
O4	H7	-6.28	4.35390E-05	-6.93	-6.29	-0.64
O4	H8	-0.86	5.98068E-06	-0.69	-0.86	0.18
O4	H9	-6.50	4.51269E-05	-6.91	-6.52	-0.39
O4	H10	-1.99	1.38080E-05	-1.44	-2.00	0.56
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.5
				Std. deviation	on for $\left \Delta_{\mathrm{XC}}^{\mathrm{A,B}} \right $	0.2

Table S85. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of the interaction energies computed at B3LYP for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in Linear		CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.50	3.49384E-06	-0.07	-0.50	0.44
03	H7	-1.96	1.36138E-05	-1.45	-1.97	0.52
03	H8	-6.10	4.23306E-05	-6.84	-6.12	-0.72
03	H9	-1.96	1.36138E-05	-1.45	-1.97	0.52
03	H10	-6.10	4.23306E-05	-6.84	-6.12	-0.72
O4	H6	-0.50	3.49384E-06	-0.07	-0.50	0.44
O4	H7	-6.10	4.23306E-05	-6.84	-6.12	-0.72
O4	H8	-1.96	1.36138E-05	-1.45	-1.97	0.52
O4	H9	-6.10	4.23306E-05	-6.84	-6.12	-0.72
O4	H10	-1.96	1.36138E-05	-1.45	-1.97	0.52
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.6
				Std. deviation	on for $\left \Delta_{\mathrm{XC}}^{\mathrm{A,B}} \right $	0.1

O…H in	Eclipsed	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.67	4.62679E-06	-0.15	-0.67	0.52
O3	H7	-0.70	4.84171E-06	-0.28	-0.70	0.42
O3	H8	-6.58	4.56687E-05	-7.39	-6.60	-0.79
O3	Н9	-0.70	4.84171E-06	-0.28	-0.70	0.42
O3	H10	-6.58	4.56687E-05	-7.39	-6.60	-0.80
O4	Н6	-0.67	4.62679E-06	-0.15	-0.67	0.52
O4	H7	-6.58	4.56687E-05	-7.39	-6.60	-0.80
O4	H8	-0.70	4.84171E-06	-0.28	-0.70	0.42
O4	H9	-6.58	4.56687E-05	-7.39	-6.60	-0.80
O4	H10	-0.70	4.84171E-06	-0.28	-0.70	0.42
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.6
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.2

Table S86. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at B3LYP for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H…H in	LEC	CCS	CCSD/BBC1		B3LYP		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$	
H5	H6	36.97	-2.56444E-04	35.99	37.06	-1.06	
H5	H7	-1.91	1.32190E-05	-0.07	-1.91	1.84	
H5	H8	-0.65	4.54108E-06	0.37	-0.66	1.02	
H5	H9	-2.20	1.52426E-05	-0.48	-2.20	1.72	
H5	H10	-1.79	1.23902E-05	-0.58	-1.79	1.21	
H6	H7	-1.78	1.23769E-05	-0.30	-1.79	1.49	
H6	H8	-0.43	2.95773E-06	1.06	-0.43	1.49	
H6	H9	-1.50	1.03754E-05	-0.29	-1.50	1.21	
H6	H10	-1.52	1.05510E-05	0.34	-1.52	1.86	
H7	H8	-0.42	2.91928E-06	-0.17	-0.42	0.25	
H7	Н9	-2.32	1.60696E-05	-2.49	-2.32	-0.17	
H7	H10	-0.55	3.79630E-06	-0.51	-0.55	0.04	
H8	H9	-0.32	2.23740E-06	-0.20	-0.32	0.13	
H8	H10	-2.38	1.65337E-05	-2.42	-2.39	-0.03	
H9	H10	-0.25	1.74888E-06	-0.18	-0.25	0.07	
				Avera	ge for $\Delta_{int}^{A,B}$	0.9	
				Std deviati	on for AA,B	07	

Std. deviation for $\left|\Delta_{int}^{A,B}\right|$ 0.7

H···H in	Linear	CCS	SD/BBC1	B3LYP		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{\rm int}$
H5	H6	22.72	-1.57635E-04	22.58	22.78	-0.20
H5	H7	-1.84	1.27666E-05	-0.08	-1.84	1.76
H5	H8	-1.82	1.25965E-05	-0.65	-1.82	1.17
H5	H9	-1.84	1.27666E-05	-0.08	-1.84	1.76
H5	H10	-1.82	1.25965E-05	-0.65	-1.82	1.17
H6	H7	-1.82	1.25965E-05	-0.65	-1.82	1.17
H6	H8	-1.84	1.27666E-05	-0.08	-1.84	1.76
H6	H9	-1.82	1.25965E-05	-0.65	-1.82	1.17
H6	H10	-1.84	1.27666E-05	-0.08	-1.84	1.76
H7	H8	-0.57	3.92163E-06	-0.48	-0.57	0.09
H7	H9	-2.51	1.73979E-05	-2.53	-2.51	-0.02
H7	H10	-0.46	3.19134E-06	-0.20	-0.46	0.26
H8	H9	-0.46	3.19134E-06	-0.20	-0.46	0.26
H8	H10	-2.51	1.73979E-05	-2.53	-2.51	-0.02
H9	H10	-0.57	3.92163E-06	-0.48	-0.57	0.09
				Avera	ge for $\Delta_{int}^{A,B}$	0.8

Average for $\Delta_{int}^{A,B}$

Std. deviation for $\left|\Delta_{\text{int}}^{\text{A,B}}\right|$ 0.7

H···H in	Eclipsed	CCS	SD/BBC1	B3LYP		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$
Н5	H6	25.93	-1.79929E-04	25.84	26.00	-0.16
Н5	H7	-3.37	2.33517E-05	-1.59	-3.37	1.79
Н5	H8	-2.23	1.54635E-05	-1.21	-2.23	1.02
H5	Н9	-3.37	2.33517E-05	-1.59	-3.37	1.79
Н5	H10	-2.23	1.54635E-05	-1.21	-2.23	1.02
H6	H7	-2.23	1.54635E-05	-1.21	-2.23	1.02
H6	H8	-3.37	2.33517E-05	-1.59	-3.37	1.79
H6	H9	-2.23	1.54635E-05	-1.21	-2.23	1.02
H6	H10	-3.37	2.33517E-05	-1.59	-3.37	1.79
H7	H8	-0.88	6.13093E-06	-0.70	-0.89	0.18
H7	Н9	-2.65	1.83821E-05	-2.84	-2.66	-0.18
H7	H10	-0.25	1.76286E-06	-0.14	-0.25	0.12
H8	H9	-0.25	1.76286E-06	-0.14	-0.25	0.12
H8	H10	-2.65	1.83821E-05	-2.84	-2.66	-0.18
H9	H10	-0.88	6.13093E-06	-0.70	-0.89	0.18
				Avera	ge for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	0.8
				Std. deviati	on for $\Delta_{int}^{A,B}$	0.7

Table S87. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{cl}^{A,B}$ of interaction energies computed at B3LYP for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H…H in LEC		CC	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta_{cl}^{A,B}$	
Н5	H6	37.09	-2.57280E-04	36.03	37.18	-1.15	
H5	H7	-1.73	1.19752E-05	0.06	-1.73	1.79	
H5	H8	-0.59	4.11552E-06	0.44	-0.59	1.03	
H5	H9	-2.11	1.46141E-05	-0.42	-2.11	1.69	
H5	H10	-1.71	1.18685E-05	-0.55	-1.72	1.16	
H6	H7	-1.70	1.17605E-05	-0.29	-1.70	1.41	
H6	H8	-0.08	5.40273E-07	1.46	-0.08	1.54	
H6	H9	-1.41	9.76436E-06	-0.27	-1.41	1.14	
H6	H10	-1.38	9.58579E-06	0.41	-1.39	1.79	
H7	H8	0.20	-1.38967E-06	0.16	0.20	-0.04	
H7	H9	0.69	-4.78518E-06	0.73	0.69	0.04	
H7	H10	0.08	-5.50299E-07	0.06	0.08	-0.02	
H8	H9	0.26	-1.82468E-06	0.18	0.26	-0.09	
H8	H10	0.67	-4.65740E-06	0.79	0.67	0.11	
H9	H10	0.30	-2.06546E-06	0.18	0.30	-0.11	
				Avera	age for $\left \Delta_{cl}^{A,B}\right $	0.9	

Average for $\Delta_{cl}^{A,B}$

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 0.7

H···H in	Linear	CCS	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$	
Н5	H6	22.91	-1.58934E-04	22.59	22.97	-0.38	
Н5	H7	-1.74	1.20370E-05	0.01	-1.74	1.75	
H5	H8	-1.78	1.23721E-05	-0.63	-1.79	1.16	
H5	H9	-1.74	1.20370E-05	0.01	-1.74	1.75	
H5	H10	-1.78	1.23721E-05	-0.63	-1.79	1.16	
H6	H7	-1.78	1.23721E-05	-0.63	-1.79	1.16	
H6	H8	-1.74	1.20370E-05	0.01	-1.74	1.75	
H6	H9	-1.78	1.23721E-05	-0.63	-1.79	1.16	
H6	H10	-1.74	1.20370E-05	0.01	-1.74	1.75	
H7	H8	0.08	-5.35901E-07	0.06	0.08	-0.02	
H7	H9	0.67	-4.65362E-06	0.75	0.67	0.07	
H7	H10	0.21	-1.46599E-06	0.15	0.21	-0.06	
H8	H9	0.21	-1.46599E-06	0.15	0.21	-0.06	
H8	H10	0.67	-4.65362E-06	0.75	0.67	0.07	
H9	H10	0.08	-5.35901E-07	0.06	0.08	-0.02	
				Avera	ge for $\left \Delta_{cl}^{A,B}\right $	0.8	
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.7	

H…H in Eclipsed		CCS	SD/BBC1		B3LYP	
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
H5	H6	26.14	-1.81338E-04	25.84	26.20	-0.36
H5	H7	-3.23	2.23898E-05	-1.47	-3.24	1.76
H5	H8	-2.19	1.52172E-05	-1.19	-2.20	1.01
H5	H9	-3.23	2.23898E-05	-1.47	-3.24	1.76
H5	H10	-2.19	1.52172E-05	-1.19	-2.20	1.01
H6	H7	-2.19	1.52172E-05	-1.19	-2.20	1.01
H6	H8	-3.23	2.23898E-05	-1.47	-3.24	1.76
H6	Н9	-2.19	1.52172E-05	-1.19	-2.20	1.01
H6	H10	-3.23	2.23898E-05	-1.47	-3.24	1.76
H7	H8	0.58	-3.99386E-06	0.37	0.58	-0.21
H7	H9	0.80	-5.52134E-06	0.72	0.80	-0.08
H7	H10	0.25	-1.76849E-06	0.13	0.26	-0.13
H8	H9	0.25	-1.76849E-06	0.13	0.26	-0.13
H8	H10	0.80	-5.52134E-06	0.72	0.80	-0.08
H9	H10	0.58	-3.99386E-06	0.37	0.58	-0.21
				Avera	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	0.8
				Std. deviati	on for $\left \Delta_{cl}^{A,B}\right $	0.7

Table S88. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies, computed at B3LYP for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCS	CCSD/BBC1		B3LYP	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
H5	H6	-0.12	8.35982E-07	-0.03	-0.12	0.09
H5	H7	-0.18	1.24377E-06	-0.13	-0.18	0.05
H5	H8	-0.06	4.25557E-07	-0.07	-0.06	-0.01
H5	H9	-0.09	6.28456E-07	-0.06	-0.09	0.03
H5	H10	-0.08	5.21707E-07	-0.03	-0.08	0.05
H6	H7	-0.09	6.16356E-07	-0.01	-0.09	0.08
H6	H8	-0.35	2.41746E-06	-0.40	-0.35	-0.05
H6	H9	-0.09	6.11051E-07	-0.02	-0.09	0.07
H6	H10	-0.14	9.65231E-07	-0.07	-0.14	0.07
H7	H8	-0.62	4.30895E-06	-0.33	-0.62	0.29
H7	H9	-3.01	2.08548E-05	-3.23	-3.01	-0.21
H7	H10	-0.63	4.34660E-06	-0.57	-0.63	0.05
H8	H9	-0.59	4.06207E-06	-0.37	-0.59	0.21
H8	H10	-3.05	2.11911E-05	-3.21	-3.06	-0.14
H9	H10	-0.55	3.81434E-06	-0.37	-0.55	0.19
				Averag	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.1
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

H···H in	Linear	CCS	SD/BBC1	B3LYP		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
H5	H6	-0.19	1.29892E-06	-0.01	-0.19	0.18
H5	H7	-0.11	7.29610E-07	-0.10	-0.11	0.01
H5	H8	-0.03	2.24489E-07	-0.02	-0.03	0.01
H5	Н9	-0.11	7.29610E-07	-0.10	-0.11	0.01
H5	H10	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H7	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H8	-0.11	7.29610E-07	-0.10	-0.11	0.01
H6	H9	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H10	-0.11	7.29610E-07	-0.10	-0.11	0.01
H7	H8	-0.64	4.45753E-06	-0.54	-0.64	0.10
H7	H9	-3.18	2.20515E-05	-3.28	-3.19	-0.09
H7	H10	-0.67	4.65732E-06	-0.35	-0.67	0.32
H8	Н9	-0.67	4.65732E-06	-0.35	-0.67	0.32
H8	H10	-3.18	2.20515E-05	-3.28	-3.19	-0.09
H9	H10	-0.64	4.45753E-06	-0.54	-0.64	0.10
				Avera	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.1

Std. deviation for $\left| \Delta_{\rm XC}^{\rm A,B} \right| \qquad 0.1$

H···H in	Eclipsed	CCSD/BBC1		B3LYP		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.20	1.40935E-06	-0.01	-0.20	0.20
Н5	H7	-0.14	9.61846E-07	-0.11	-0.14	0.02
Н5	H8	-0.04	2.46282E-07	-0.02	-0.04	0.01
Н5	H9	-0.14	9.61846E-07	-0.11	-0.14	0.02
Н5	H10	-0.04	2.46282E-07	-0.02	-0.04	0.01
H6	H7	-0.04	2.46282E-07	-0.02	-0.04	0.01
H6	H8	-0.14	9.61846E-07	-0.11	-0.14	0.02
H6	H9	-0.04	2.46282E-07	-0.02	-0.04	0.01
H6	H10	-0.14	9.61846E-07	-0.11	-0.14	0.02
H7	H8	-1.46	1.01248E-05	-1.07	-1.46	0.39
H7	H9	-3.45	2.39035E-05	-3.56	-3.45	-0.11
H7	H10	-0.51	3.53135E-06	-0.27	-0.51	0.24
H8	H9	-0.51	3.53135E-06	-0.27	-0.51	0.24
H8	H10	-3.45	2.39035E-05	-3.56	-3.45	-0.11
H9	H10	-1.46	1.01248E-05	-1.07	-1.46	0.39
				Avera	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.1
				Std. deviati	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

C···H in LEC		CCS	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$	
C1	H5	78.29	-5.43115E-04	71.11	78.49	-7.38	
C1	H6	47.76	-3.31314E-04	42.74	47.88	-5.14	
C1	H8	-3.92	2.72198E-05	-2.33	-3.93	1.61	
C1	H10	-5.06	3.50861E-05	-3.12	-5.07	1.96	
C2	H5	38.67	-2.68255E-04	34.68	38.77	-4.09	
C2	H6	85.16	-5.90764E-04	77.93	85.37	-7.44	
C2	H7	-4.58	3.17769E-05	-2.40	-4.59	2.19	
C2	H9	-5.06	3.51173E-05	-3.30	-5.07	1.77	
				Avera	ge for $\Delta_{int}^{A,B}$	3.9	

Table S89. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ of interaction energies $E_{int}^{A,B}$ computed at B3LYP-GD3 for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Std. deviation for $\left|\Delta_{int}^{A,B}\right|$ 2.5

C…H in Linear		CC	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\mathrm{int}}^{\mathrm{A,B}}$	
C1	H5	80.84	-5.60847E-04	73.87	81.05	-7.18	
C1	H6	34.65	-2.40395E-04	31.02	34.74	-3.72	
C1	H8	-4.93	3.41684E-05	-2.69	-4.94	2.25	
C1	H10	-4.93	3.41684E-05	-2.69	-4.94	2.25	
C2	H5	34.65	-2.40395E-04	31.02	34.74	-3.72	
C2	H6	80.84	-5.60847E-04	73.86	81.05	-7.19	
C2	H7	-4.93	3.41684E-05	-2.69	-4.94	2.25	
C2	H9	-4.93	3.41684E-05	-2.69	-4.94	2.25	
				Avera	ge for $\Delta_{\rm int}^{\rm A,B}$	3.8	

Std. deviation for $\left|\Delta_{\text{int}}^{\text{A,B}}\right|$ 2.2

C····H in	C···H in Eclipsed		CCSD/BBC1		B3LYP-GD3	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{\rm int}$
C1	Н5	82.40	-5.71696E-04	75.63	82.61	-6.98
C1	H6	37.71	-2.61656E-04	34.24	37.81	-3.57
C1	H8	-6.60	4.58093E-05	-4.38	-6.62	2.24
C1	H10	-6.60	4.58093E-05	-4.38	-6.62	2.23
C2	Н5	37.71	-2.61656E-04	34.22	37.81	-3.60
C2	H6	82.40	-5.71696E-04	75.62	82.61	-6.99
C2	H7	-6.60	4.58093E-05	-4.38	-6.62	2.24
C2	H9	-6.60	4.58093E-05	-4.38	-6.62	2.24
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	3.8
				Std. deviation	on for $\Delta_{\rm int}^{\rm A,B}$	2.1

Table S90. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{cl}^{A,B}$ of interaction energies computed at B3LYP-GD3 for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

C···H in LEC		CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
C1	Н5	79.50	-5.51515E-04	72.25	79.70	-7.45
C1	H6	48.29	-3.35024E-04	42.93	48.42	-5.49
C1	H8	0.12	-8.38500E-07	1.73	0.12	1.61
C1	H10	-1.10	7.61256E-06	0.76	-1.10	1.86
C2	H5	39.11	-2.71330E-04	35.06	39.21	-4.15
C2	H6	86.47	-5.99872E-04	79.03	86.69	-7.66
C2	H7	-0.83	5.78789E-06	1.13	-0.84	1.96
C2	H9	-1.27	8.79525E-06	0.53	-1.27	1.80
				Avoro	go for AAB	4.0

Average for $\left|\Delta_{cl}^{A,B}\right|$ 4.0

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 2.6

C…H in Linear		CC	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$	
C1	H5	82.17	-5.70019E-04	75.03	82.38	-7.34	
C1	H6	35.15	-2.43847E-04	31.41	35.24	-3.83	
C1	H8	-1.14	7.88614E-06	0.82	-1.14	1.96	
C1	H10	-1.14	7.88614E-06	0.82	-1.14	1.96	
C2	H5	35.15	-2.43847E-04	31.41	35.24	-3.83	
C2	H6	82.17	-5.70019E-04	75.03	82.38	-7.34	
C2	H7	-1.14	7.88614E-06	0.82	-1.14	1.96	
C2	H9	-1.14	7.88614E-06	0.82	-1.14	1.96	
				Avera	ge for $\Delta_{cl}^{A,B}$	3.8	

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 2.4

C···H in	Eclipsed	CCS	SD/BBC1	B3LYP-GD3		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
C1	H5	83.83	-5.81584E-04	76.88	84.04	-7.16
C1	H6	38.20	-2.65018E-04	34.61	38.30	-3.68
C1	H8	-2.54	1.76089E-05	-0.58	-2.54	1.97
C1	H10	-2.54	1.76089E-05	-0.58	-2.54	1.97
C2	Н5	38.20	-2.65018E-04	34.59	38.30	-3.71
C2	H6	83.83	-5.81584E-04	76.87	84.04	-7.17
C2	H7	-2.54	1.76089E-05	-0.58	-2.54	1.97
C2	H9	-2.54	1.76089E-05	-0.58	-2.54	1.97
				Avera	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	3.7
				Std. deviati	on for $\Delta_{cl}^{A,B}$	2.3

Table S91 . Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{\rm XC}^{\rm A,B}$ in the XC-term $V_{\rm XC}^{\rm A,B}$ of
interaction energies computed at B3LYP-GD3 for distant C,H atom-pairs in all conformers of glycol (values in kcal mol ⁻¹).

C···H in	LEC	CCS	SD/BBC1	B3LYP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	H5	-1.21	8.40036E-06	-1.14	-1.21	0.07
C1	H6	-0.53	3.70975E-06	-0.19	-0.54	0.35
C1	H8	-4.04	2.80583E-05	-4.06	-4.05	0.00
C1	H10	-3.96	2.74736E-05	-3.87	-3.97	0.10
C2	H5	-0.44	3.07551E-06	-0.39	-0.44	0.06
C2	H6	-1.31	9.10774E-06	-1.10	-1.32	0.22
C2	H7	-3.75	2.59890E-05	-3.53	-3.76	0.23
C2	H9	-3.79	2.63220E-05	-3.84	-3.80	-0.03
				Avera	ge for $\Lambda^{A,B}$	0.1

Average for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$ 0.1

Std. deviation for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$ 0.1

C···H in	Linear	CCS	D/BBC1	B3	BLYP-GD3	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.32	9.17191E-06	-1.17	-1.33	0.16
C1	H6	-0.50	3.45234E-06	-0.39	-0.50	0.11
C1	H8	-3.79	2.62822E-05	-3.51	-3.80	0.29
C1	H10	-3.79	2.62822E-05	-3.51	-3.80	0.28
C2	H5	-0.50	3.45234E-06	-0.39	-0.50	0.11
C2	H6	-1.32	9.17191E-06	-1.17	-1.33	0.16
C2	H7	-3.79	2.62822E-05	-3.51	-3.80	0.29
C2	H9	-3.79	2.62822E-05	-3.51	-3.80	0.28
				Avera	ge for AA,B	0.0

Average for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.2$

Std. deviation for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$ 0.1

C···H in	Eclipsed	CCS	SD/BBC1	B3LYP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	${}^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.43	9.88825E-06	-1.25	-1.43	0.18
C1	H6	-0.48	3.36254E-06	-0.37	-0.49	0.11
C1	H8	-4.06	2.82004E-05	-3.81	-4.08	0.27
C1	H10	-4.06	2.82004E-05	-3.81	-4.08	0.27
C2	Н5	-0.48	3.36254E-06	-0.37	-0.49	0.11
C2	H6	-1.43	9.88825E-06	-1.25	-1.43	0.18
C2	H7	-4.06	2.82004E-05	-3.81	-4.08	0.27
C2	H9	-4.06	2.82004E-05	-3.81	-4.08	0.27
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.2
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

O…H in LEC		CC	SD/BBC1	B3	BLYP-GD3	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\rm Expect}E_{\rm int}^{\rm A,B}$	$\Delta^{\rm A,B}_{\rm int}$
03	Н5	-63.47	4.40340E-04	-60.69	-63.64	2.95
O3	H7	1.53	-1.05919E-05	-0.80	1.53	-2.34
O3	H8	-6.44	4.46864E-05	-10.35	-6.46	-3.89
O3	H9	1.74	-1.20837E-05	-0.28	1.75	-2.02
O3	H10	-4.72	3.27422E-05	-8.98	-4.73	-4.25
O4	H6	-90.89	6.30517E-04	-85.76	-91.12	5.36
O4	H7	-4.46	3.09496E-05	-8.67	-4.47	-4.20
O4	H8	0.02	-1.51058E-07	-2.08	0.02	-2.10
O4	H9	-3.22	2.23074E-05	-7.27	-3.22	-4.05
O4	H10	1.98	-1.37476E-05	-0.43	1.99	-2.42
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	3.4
				Std. deviatio	on for $\left \Delta_{\text{int}}^{\text{A},\text{B}}\right $	1.1

Table S92. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at B3LYP-GD3 for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O····H in	O…H in Linear		SD/BBC1	B3	SLYP-GD3	
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
03	Н5	-50.37	3.49449E-04	-48.35	-50.50	2.15
03	H7	2.11	-1.46101E-05	-0.16	2.11	-2.27
O3	H8	-3.97	2.75121E-05	-8.24	-3.98	-4.26
O3	H9	2.11	-1.46101E-05	-0.16	2.11	-2.27
O3	H10	-3.97	2.75121E-05	-8.24	-3.98	-4.26
O4	H6	-50.37	3.49449E-04	-48.35	-50.50	2.15
O4	H7	-3.97	2.75121E-05	-8.24	-3.98	-4.26
O4	H8	2.11	-1.46101E-05	-0.16	2.11	-2.27
O4	H9	-3.97	2.75121E-05	-8.24	-3.98	-4.26
04	H10	2.11	-1.46101E-05	-0.16	2.11	-2.27
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	3.0
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.1

O…H in Eclipsed		CC	SD/BBC1	B	BLYP-GD3	
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
03	Н5	-59.43	4.12334E-04	-57.18	-59.58	2.40
O3	H7	3.69	-2.56299E-05	1.86	3.70	-1.84
O3	H8	-1.45	1.00861E-05	-5.82	-1.46	-4.36
O3	H9	3.69	-2.56299E-05	1.86	3.70	-1.84
O3	H10	-1.45	1.00861E-05	-5.82	-1.46	-4.36
O4	H6	-59.43	4.12334E-04	-57.18	-59.58	2.40
O4	H7	-1.45	1.00861E-05	-5.82	-1.46	-4.36
O4	H8	3.69	-2.56299E-05	1.86	3.70	-1.84
O4	H9	-1.45	1.00861E-05	-5.82	-1.46	-4.36
O4	H10	3.69	-2.56299E-05	1.86	3.70	-1.84
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	3.0
				Std. deviatio	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.2

Table S93. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{cl}^{A,B}$ of interaction energies computed at B3LYP-GD3 for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in	O…H in LEC		SD/BBC1	B3	BLYP-GD3	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{\rm A,B}_{\rm cl}$
03	Н5	79.50	-5.51515E-04	72.25	79.70	-7.45
O3	H7	48.29	-3.35024E-04	42.93	48.42	-5.49
O3	H8	0.12	-8.38500E-07	1.73	0.12	1.61
O3	H9	-1.10	7.61256E-06	0.76	-1.10	1.86
O3	H10	39.11	-2.71330E-04	35.06	39.21	-4.15
O4	H6	86.47	-5.99872E-04	79.03	86.69	-7.66
O4	H7	-0.83	5.78789E-06	1.13	-0.84	1.96
O4	H8	-1.27	8.79525E-06	0.53	-1.27	1.80
O4	H9	79.50	-5.51515E-04	72.25	79.70	-7.45
O4	H10	48.29	-3.35024E-04	42.93	48.42	-5.49
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	4.0
				Std. deviatio	on for $\left \Delta_{cl}^{A,B}\right $	2.6

O…H in Linear		CC	SD/BBC1	B3	LYP-GD3	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
03	Н5	-49.87	3.45955E-04	-48.28	-50.00	1.71
03	H7	4.07	-2.82240E-05	1.31	4.08	-2.77
O3	H8	2.14	-1.48185E-05	-1.44	2.14	-3.59
O3	H9	4.07	-2.82240E-05	1.31	4.08	-2.77
03	H10	2.14	-1.48185E-05	-1.44	2.14	-3.59
O4	H6	-49.87	3.45955E-04	-48.28	-50.00	1.71
O4	H7	2.14	-1.48185E-05	-1.44	2.14	-3.59
O4	H8	4.07	-2.82240E-05	1.31	4.08	-2.77
O4	H9	2.14	-1.48185E-05	-1.44	2.14	-3.59
04	H10	4.07	-2.82240E-05	1.31	4.08	-2.77
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	2.9
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.7

O…H in	O…H in Eclipsed		SD/BBC1	B3	SLYP-GD3	
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{\rm cl}$
03	Н5	83.83	-5.81584E-04	76.88	84.04	-7.16
03	H7	38.20	-2.65018E-04	34.61	38.30	-3.68
03	H8	-2.54	1.76089E-05	-0.58	-2.54	1.97
03	Н9	-2.54	1.76089E-05	-0.58	-2.54	1.97
O3	H10	38.20	-2.65018E-04	34.59	38.30	-3.71
O4	H6	83.83	-5.81584E-04	76.87	84.04	-7.17
O4	H7	-2.54	1.76089E-05	-0.58	-2.54	1.97
O4	H8	-2.54	1.76089E-05	-0.58	-2.54	1.97
O4	Н9	83.83	-5.81584E-04	76.88	84.04	-7.16
O4	H10	38.20	-2.65018E-04	34.61	38.30	-3.68
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	3.7
				Std. deviatio	on for $\left \Delta_{\rm cl}^{\rm A,B}\right $	2.3

O…H in	O…H in LEC		SD/BBC1	B3	BLYP-GD3	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.35	2.44852E-06	-0.06	-0.35	0.30
O3	H7	-2.00	1.38900E-05	-1.49	-2.01	0.52
O3	H8	-6.27	4.34686E-05	-6.60	-6.28	-0.32
O3	H9	-1.14	7.90820E-06	-0.83	-1.14	0.31
O3	H10	-6.42	4.45528E-05	-6.97	-6.44	-0.53
O4	H6	-3.03	2.10430E-05	-2.22	-3.04	0.82
O4	H7	-6.28	4.35390E-05	-6.88	-6.29	-0.59
O4	H8	-0.86	5.98068E-06	-0.69	-0.86	0.18
O4	H9	-6.50	4.51269E-05	-6.88	-6.52	-0.35
O4	H10	-1.99	1.38080E-05	-1.49	-2.00	0.51
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.4
				Std. deviatio	on for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.2

Table S94. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC_term of interaction energies computed at B3LYP-GD3 for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in Linear		CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.50	3.49384E-06	-0.07	-0.50	0.43
O3	H7	-1.96	1.36138E-05	-1.47	-1.97	0.50
O3	H8	-6.10	4.23306E-05	-6.80	-6.12	-0.68
O3	H9	-1.96	1.36138E-05	-1.47	-1.97	0.50
O3	H10	-6.10	4.23306E-05	-6.79	-6.12	-0.68
O4	H6	-0.50	3.49384E-06	-0.07	-0.50	0.43
O4	H7	-6.10	4.23306E-05	-6.80	-6.12	-0.68
O4	H8	-1.96	1.36138E-05	-1.47	-1.97	0.50
O4	H9	-6.10	4.23306E-05	-6.80	-6.12	-0.68
04	H10	-1.96	1.36138E-05	-1.47	-1.97	0.50
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.6
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

O…H in	Eclipsed	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$V_{\mathrm{XC}}^{\mathrm{A,B}}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.67	4.62679E-06	-0.15	-0.67	0.52
O3	H7	-0.70	4.84171E-06	-0.28	-0.70	0.42
O3	H8	-6.58	4.56687E-05	-7.36	-6.60	-0.76
O3	H9	-0.70	4.84171E-06	-0.28	-0.70	0.42
O3	H10	-6.58	4.56687E-05	-7.36	-6.60	-0.76
O4	H6	-0.67	4.62679E-06	-0.15	-0.67	0.52
O4	H7	-6.58	4.56687E-05	-7.36	-6.60	-0.76
O4	H8	-0.70	4.84171E-06	-0.28	-0.70	0.42
O4	H9	-6.58	4.56687E-05	-7.36	-6.60	-0.76
O4	H10	-0.70	4.84171E-06	-0.28	-0.70	0.42
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.6
				Std. deviatio	on for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.2

Table S95. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at B3LYP-GD3 for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
H5	H6	36.97	-2.56444E-04	35.95	37.06	-1.11
H5	H7	-1.91	1.32190E-05	-0.02	-1.91	1.89
H5	H8	-0.65	4.54108E-06	0.38	-0.66	1.03
H5	H9	-2.20	1.52426E-05	-0.45	-2.20	1.75
H5	H10	-1.79	1.23902E-05	-0.54	-1.79	1.25
H6	H7	-1.78	1.23769E-05	-0.26	-1.79	1.53
H6	H8	-0.43	2.95773E-06	1.07	-0.43	1.49
H6	H9	-1.50	1.03754E-05	-0.27	-1.50	1.23
H6	H10	-1.52	1.05510E-05	0.38	-1.52	1.91
H7	H8	-0.42	2.91928E-06	-0.16	-0.42	0.26
H7	H9	-2.32	1.60696E-05	-2.48	-2.32	-0.16
H7	H10	-0.55	3.79630E-06	-0.51	-0.55	0.04
H8	Н9	-0.32	2.23740E-06	-0.20	-0.32	0.12
H8	H10	-2.38	1.65337E-05	-2.41	-2.39	-0.02
H9	H10	-0.25	1.74888E-06	-0.18	-0.25	0.08
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	0.9
				Std. deviatio	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	0.7

H···H in	Linear	CCS	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$E_{\rm int}^{\rm A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$	
Н5	H6	22.72	-1.57635E-04	22.59	22.78	-0.19	
H5	H7	-1.84	1.27666E-05	-0.07	-1.84	1.78	
H5	H8	-1.82	1.25965E-05	-0.63	-1.82	1.19	
H5	H9	-1.84	1.27666E-05	-0.07	-1.84	1.78	
H5	H10	-1.82	1.25965E-05	-0.63	-1.82	1.19	
H6	H7	-1.82	1.25965E-05	-0.63	-1.82	1.19	
H6	H8	-1.84	1.27666E-05	-0.07	-1.84	1.78	
H6	H9	-1.82	1.25965E-05	-0.63	-1.82	1.19	
H6	H10	-1.84	1.27666E-05	-0.07	-1.84	1.78	
H7	H8	-0.57	3.92163E-06	-0.48	-0.57	0.09	
H7	H9	-2.51	1.73979E-05	-2.53	-2.51	-0.02	
H7	H10	-0.46	3.19134E-06	-0.20	-0.46	0.26	
H8	H9	-0.46	3.19134E-06	-0.20	-0.46	0.26	
H8	H10	-2.51	1.73979E-05	-2.53	-2.51	-0.02	
H9	H10	-0.57	3.92163E-06	-0.48	-0.57	0.09	
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	0.9	

Std. deviation for $\left|\Delta_{int}^{A,B}\right|$

0.7

H···H in	Eclipsed	CCS	SD/BBC1	B3LYP-GD3		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
Н5	H6	25.93	-1.79929E-04	25.85	26.00	-0.16
H5	H7	-3.37	2.33517E-05	-1.56	-3.37	1.82
H5	H8	-2.23	1.54635E-05	-1.20	-2.23	1.04
H5	H9	-3.37	2.33517E-05	-1.56	-3.37	1.82
H5	H10	-2.23	1.54635E-05	-1.20	-2.23	1.04
H6	H7	-2.23	1.54635E-05	-1.20	-2.23	1.04
H6	H8	-3.37	2.33517E-05	-1.56	-3.37	1.82
H6	H9	-2.23	1.54635E-05	-1.20	-2.23	1.04
H6	H10	-3.37	2.33517E-05	-1.56	-3.37	1.82
H7	H8	-0.88	6.13093E-06	-0.70	-0.89	0.18
H7	H9	-2.65	1.83821E-05	-2.84	-2.66	-0.18
H7	H10	-0.25	1.76286E-06	-0.14	-0.25	0.12
H8	H9	-0.25	1.76286E-06	-0.14	-0.25	0.12
H8	H10	-2.65	1.83821E-05	-2.84	-2.66	-0.18
H9	H10	-0.88	6.13093E-06	-0.70	-0.89	0.18
				Average	e for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	0.8
				Std. deviation	n for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	0.7

H···H in	LEC	CC	SD/BBC1	B	BLYP-GD3	
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{\!A,B}_{cl}$
H5	H6	37.09	-2.57280E-04	35.98	37.18	-1.20
Н5	H7	-1.73	1.19752E-05	0.11	-1.73	1.84
H5	H8	-0.59	4.11552E-06	0.44	-0.59	1.04
H5	H9	-2.11	1.46141E-05	-0.39	-2.11	1.72
H5	H10	-1.71	1.18685E-05	-0.52	-1.72	1.20
H6	H7	-1.70	1.17605E-05	-0.25	-1.70	1.45
H6	H8	-0.08	5.40273E-07	1.47	-0.08	1.55
H6	H9	-1.41	9.76436E-06	-0.25	-1.41	1.16
H6	H10	-1.38	9.58579E-06	0.45	-1.39	1.84
H7	H8	0.20	-1.38967E-06	0.16	0.20	-0.04
H7	Н9	0.69	-4.78518E-06	0.73	0.69	0.04
H7	H10	0.08	-5.50299E-07	0.06	0.08	-0.02
H8	Н9	0.26	-1.82468E-06	0.18	0.26	-0.09
H8	H10	0.67	-4.65740E-06	0.79	0.67	0.11
H9	H10	0.30	-2.06546E-06	0.18	0.30	-0.12
				Avera	age for $\left \Delta_{cl}^{A,B}\right $	0.9

Table S96. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{\rm cl}^{\rm A,B}$ of interaction energies computed at B3LYP-GD3 for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 0.7

H···H in	Linear	CC	SD/BBC1	B3LYP-GD3		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
H5	H6	22.91	-1.58934E-04	22.59	22.97	-0.37
H5	H7	-1.74	1.20370E-05	0.03	-1.74	1.77
H5	H8	-1.78	1.23721E-05	-0.61	-1.79	1.18
H5	Н9	-1.74	1.20370E-05	0.03	-1.74	1.77
H5	H10	-1.78	1.23721E-05	-0.61	-1.79	1.18
H6	H7	-1.78	1.23721E-05	-0.61	-1.79	1.18
H6	H8	-1.74	1.20370E-05	0.03	-1.74	1.77
H6	H9	-1.78	1.23721E-05	-0.61	-1.79	1.18
H6	H10	-1.74	1.20370E-05	0.03	-1.74	1.77
H7	H8	0.08	-5.35901E-07	0.06	0.08	-0.02
H7	H9	0.67	-4.65362E-06	0.75	0.67	0.08
H7	H10	0.21	-1.46599E-06	0.15	0.21	-0.06
H8	H9	0.21	-1.46599E-06	0.15	0.21	-0.06
H8	H10	0.67	-4.65362E-06	0.75	0.67	0.08
H9	H10	0.08	-5.35901E-07	0.06	0.08	-0.02
				Avera	ge for $\left \Delta_{cl}^{A,B}\right $	0.8
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.7

H···H in	Eclipsed	CCS	SD/BBC1	B3	LYP-GD3	
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
Н5	H6	26.14	-1.81338E-04	25.85	26.20	-0.35
Н5	H7	-3.23	2.23898E-05	-1.45	-3.24	1.79
Н5	H8	-2.19	1.52172E-05	-1.17	-2.20	1.03
Н5	H9	-3.23	2.23898E-05	-1.45	-3.24	1.79
Н5	H10	-2.19	1.52172E-05	-1.17	-2.20	1.03
H6	H7	-2.19	1.52172E-05	-1.17	-2.20	1.03
H6	H8	-3.23	2.23898E-05	-1.45	-3.24	1.79
H6	H9	-2.19	1.52172E-05	-1.17	-2.20	1.03
H6	H10	-3.23	2.23898E-05	-1.45	-3.24	1.79
H7	H8	0.58	-3.99386E-06	0.36	0.58	-0.21
H7	H9	0.80	-5.52134E-06	0.72	0.80	-0.08
H7	H10	0.25	-1.76849E-06	0.13	0.26	-0.13
H8	H9	0.25	-1.76849E-06	0.13	0.26	-0.13
H8	H10	0.80	-5.52134E-06	0.72	0.80	-0.08
H9	H10	0.58	-3.99386E-06	0.36	0.58	-0.21
				Avera	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	0.8
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.7

Table S97. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies computed at B3LYP-GD3 for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCS	D/BBC1	B3LYP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
H5	H6	-0.12	8.35982E-07	-0.03	-0.12	0.09
H5	H7	-0.18	1.24377E-06	-0.13	-0.18	0.05
H5	H8	-0.06	4.25557E-07	-0.07	-0.06	-0.01
H5	H9	-0.09	6.28456E-07	-0.06	-0.09	0.03
H5	H10	-0.08	5.21707E-07	-0.03	-0.08	0.05
H6	H7	-0.09	6.16356E-07	-0.01	-0.09	0.08
H6	H8	-0.35	2.41746E-06	-0.40	-0.35	-0.05
H6	H9	-0.09	6.11051E-07	-0.02	-0.09	0.07
H6	H10	-0.14	9.65231E-07	-0.07	-0.14	0.07
H7	H8	-0.62	4.30895E-06	-0.32	-0.62	0.30
H7	H9	-3.01	2.08548E-05	-3.22	-3.01	-0.20
H7	H10	-0.63	4.34660E-06	-0.57	-0.63	0.06
H8	H9	-0.59	4.06207E-06	-0.38	-0.59	0.21
H8	H10	-3.05	2.11911E-05	-3.20	-3.06	-0.14
H9	H10	-0.55	3.81434E-06	-0.36	-0.55	0.20
				Avera	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.1
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

H···H in	Linear	CCSD/BBC1		B3LYP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
H5	H6	-0.19	1.29892E-06	-0.01	-0.19	0.18
H5	H7	-0.11	7.29610E-07	-0.10	-0.11	0.01
H5	H8	-0.03	2.24489E-07	-0.02	-0.03	0.01
H5	H9	-0.11	7.29610E-07	-0.10	-0.11	0.01
H5	H10	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H7	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H8	-0.11	7.29610E-07	-0.10	-0.11	0.01
H6	H9	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H10	-0.11	7.29610E-07	-0.10	-0.11	0.01
H7	H8	-0.64	4.45753E-06	-0.54	-0.64	0.10
H7	H9	-3.18	2.20515E-05	-3.28	-3.19	-0.09
H7	H10	-0.67	4.65732E-06	-0.35	-0.67	0.32
H8	H9	-0.67	4.65732E-06	-0.35	-0.67	0.32
H8	H10	-3.18	2.20515E-05	-3.28	-3.19	-0.09
H9	H10	-0.64	4.45753E-06	-0.54	-0.64	0.10
				Avera	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.1

Std. deviation for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$ 0.1

H···H in	Eclipsed	CCS	SD/BBC1	B3LYP-GD3		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.20	1.40935E-06	-0.01	-0.20	0.20
H5	H7	-0.14	9.61846E-07	-0.11	-0.14	0.03
H5	H8	-0.04	2.46282E-07	-0.02	-0.04	0.01
H5	Н9	-0.14	9.61846E-07	-0.11	-0.14	0.03
H5	H10	-0.04	2.46282E-07	-0.02	-0.04	0.01
H6	H7	-0.04	2.46282E-07	-0.02	-0.04	0.01
H6	H8	-0.14	9.61846E-07	-0.11	-0.14	0.03
H6	H9	-0.04	2.46282E-07	-0.02	-0.04	0.01
H6	H10	-0.14	9.61846E-07	-0.11	-0.14	0.03
H7	H8	-1.46	1.01248E-05	-1.07	-1.46	0.40
H7	H9	-3.45	2.39035E-05	-3.56	-3.45	-0.11
H7	H10	-0.51	3.53135E-06	-0.27	-0.51	0.24
H8	H9	-0.51	3.53135E-06	-0.27	-0.51	0.24
H8	H10	-3.45	2.39035E-05	-3.56	-3.45	-0.11
H9	H10	-1.46	1.01248E-05	-1.07	-1.46	0.40
				Avera	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.1
				Std. deviati	on for $\Delta_{\rm XC}^{\rm A,B}$	0.1

C···H in LEC		CCS	CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$	
C1	Н5	80.84	-5.60847E-04	78.56	80.83	-2.28	
C1	H6	34.65	-2.40395E-04	33.43	34.65	-1.21	
C1	H8	-4.93	3.41684E-05	-2.72	-4.92	2.20	
C1	H10	-4.93	3.41684E-05	-2.73	-4.92	2.20	
C2	Н5	34.65	-2.40395E-04	33.43	34.65	-1.21	
C2	H6	80.84	-5.60847E-04	78.56	80.83	-2.28	
C2	H7	-4.93	3.41684E-05	-2.72	-4.92	2.20	
C2	H9	-4.93	3.41684E-05	-2.73	-4.92	2.20	
				Avera	ge for $\Delta_{int}^{A,B}$	2.0	

Table S98. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ of interaction energies $E_{int}^{A,B}$ computed at MP2/Müller for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Std. deviation for $\left|\Delta_{int}^{A,B}\right|$ 0.5

C…H in Linear		CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E^{\mathrm{A,B}}_{\mathrm{int}}$	$\Delta_{\text{int}}^{\text{A,B}}$
C1	H5	78.29	-5.43115E-04	75.67	78.28	-2.61
C1	H6	47.76	-3.31314E-04	46.59	47.75	-1.16
C1	H8	-3.92	2.72198E-05	-2.16	-3.92	1.76
C1	H10	-5.06	3.50861E-05	-3.10	-5.06	1.96
C2	H5	38.67	-2.68255E-04	37.44	38.66	-1.22
C2	H6	85.16	-5.90764E-04	83.19	85.14	-1.96
C2	H7	-4.58	3.17769E-05	-2.34	-4.58	2.24
C2	H9	-5.06	3.51173E-05	-3.20	-5.06	1.86
				Averag	ge for $\Delta_{\rm int}^{\rm A,B}$	1.8

Std. deviation for $\left|\Delta_{int}^{A,B}\right|$

0.5

C…H in Eclipsed		CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$E_{ m int}^{ m A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\mathrm{int}}^{\mathrm{A,B}}$
C1	H5	82.40	-5.71696E-04	80.28	82.39	-2.11
C1	H6	37.71	-2.61656E-04	36.74	37.71	-0.97
C1	H8	-6.60	4.58093E-05	-4.44	-6.60	2.16
C1	H10	-6.60	4.58093E-05	-4.44	-6.60	2.16
C2	H5	37.71	-2.61656E-04	36.73	37.71	-0.98
C2	H6	82.40	-5.71696E-04	80.29	82.39	-2.10
C2	H7	-6.60	4.58093E-05	-4.44	-6.60	2.16
C2	H9	-6.60	4.58093E-05	-4.44	-6.60	2.16
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.8
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	0.5

Table S99. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical component $V_{cl}^{A,B}$ of interaction energies computed at MP2/Müller for distant C,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

C···H in LEC		CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
C1	Н5	79.50	-5.51515E-04	76.67	79.49	-2.82
C1	H6	48.29	-3.35024E-04	46.77	48.29	-1.51
C1	H8	0.12	-8.38500E-07	1.38	0.12	1.26
C1	H10	-1.10	7.61256E-06	0.27	-1.10	1.37
C2	Н5	39.11	-2.71330E-04	37.72	39.11	-1.39
C2	H6	86.47	-5.99872E-04	84.14	86.46	-2.32
C2	H7	-0.83	5.78789E-06	0.72	-0.83	1.55
C2	H9	-1.27	8.79525E-06	0.12	-1.27	1.39
					a 1 a	

Average for $\left| \Delta_{cl}^{A,B} \right|$ 1.7

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 0.6

C…H in Linear		CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
C1	H5	82.17	-5.70019E-04	79.58	82.15	-2.57
C1	H6	35.15	-2.43847E-04	33.72	35.14	-1.42
C1	H8	-1.14	7.88614E-06	0.33	-1.14	1.47
C1	H10	-1.14	7.88614E-06	0.33	-1.14	1.47
C2	H5	35.15	-2.43847E-04	33.72	35.14	-1.42
C2	H6	82.17	-5.70019E-04	79.58	82.15	-2.57
C2	H7	-1.14	7.88614E-06	0.33	-1.14	1.47
C2	H9	-1.14	7.88614E-06	0.33	-1.14	1.47
				Avera	ge for $\Delta_{cl}^{A,B}$	1.7

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 0.5

C…H in Eclipsed		CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	${}^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
C1	H5	83.83	-5.81584E-04	81.40	83.81	-2.41
C1	H6	38.20	-2.65018E-04	37.01	38.19	-1.19
C1	H8	-2.54	1.76089E-05	-1.10	-2.54	1.43
C1	H10	-2.54	1.76089E-05	-1.10	-2.54	1.43
C2	H5	38.20	-2.65018E-04	36.99	38.19	-1.20
C2	H6	83.83	-5.81584E-04	81.41	83.81	-2.40
C2	H7	-2.54	1.76089E-05	-1.11	-2.54	1.43
C2	H9	-2.54	1.76089E-05	-1.10	-2.54	1.43
				Avera	ge for $\left \Delta_{cl}^{A,B}\right $	1.6
				Std. deviation	on for $\Delta_{\rm cl}^{\rm A,B}$	0.5
Table S100 . Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of						

interaction energies computed at MP2/Müller for distant C,H atom-pairs in all conformers of glycol (values in kcal mol ⁻¹).						

C···H in LEC		CCS	SD/BBC1	Μ	P2/Müller	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	Н5	-1.21	8.40036E-06	-1.00	-1.21	0.21
C1	H6	-0.53	3.70975E-06	-0.18	-0.53	0.36
C1	H8	-4.04	2.80583E-05	-3.54	-4.04	0.50
C1	H10	-3.96	2.74736E-05	-3.38	-3.96	0.58
C2	H5	-0.44	3.07551E-06	-0.28	-0.44	0.16
C2	H6	-1.31	9.10774E-06	-0.95	-1.31	0.37
C2	H7	-3.75	2.59890E-05	-3.06	-3.75	0.69
C2	H9	-3.79	2.63220E-05	-3.32	-3.79	0.47
				A	an fam AB	

Average for $\left| \Delta_{\rm XC}^{\rm A,B} \right| = 0.42$

Std. deviation for $\left|\Delta_{\rm XC}^{\rm A,B}\right|$ 0.18

C···H in	C…H in Linear		CCSD/BBC1		MP2/Müller	
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	H5	-1.32	9.17191E-06	-1.02	-1.32	0.30
C1	H6	-0.50	3.45234E-06	-0.29	-0.50	0.21
C1	H8	-3.79	2.62822E-05	-3.06	-3.79	0.73
C1	H10	-3.79	2.62822E-05	-3.06	-3.79	0.73
C2	Н5	-0.50	3.45234E-06	-0.29	-0.50	0.21
C2	H6	-1.32	9.17191E-06	-1.02	-1.32	0.30
C2	H7	-3.79	2.62822E-05	-3.06	-3.79	0.73
C2	H9	-3.79	2.62822E-05	-3.06	-3.79	0.73
				Avera	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.5

Std. deviation for $\left| \Delta_{\rm XC}^{\rm A,B} \right|$ 0.3

C···H in	Eclipsed	CCSD/BBC1		MP2/Müller		
Atom A	Atom B	$V_{ m XC}^{ m A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
C1	H5	-1.43	9.88825E-06	-1.12	-1.43	0.30
C1	H6	-0.48	3.36254E-06	-0.26	-0.48	0.22
C1	H8	-4.06	2.82004E-05	-3.34	-4.06	0.73
C1	H10	-4.06	2.82004E-05	-3.34	-4.06	0.73
C2	H5	-0.48	3.36254E-06	-0.26	-0.48	0.22
C2	H6	-1.43	9.88825E-06	-1.12	-1.43	0.31
C2	H7	-4.06	2.82004E-05	-3.33	-4.06	0.73
C2	H9	-4.06	2.82004E-05	-3.34	-4.06	0.73
				Avera	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.5
				Std. deviation	on for $\Delta_{\rm XC}^{\rm A,B}$	0.3

O…H in LEC		CCSD/BBC1		MP2/Müller		
Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta_{\text{int}}^{\text{A,B}}$	
Н5	-63.47	4.40340E-04	-64.64	-63.46	-1.17	
H7	1.53	-1.05919E-05	-0.07	1.53	-1.60	
H8	-6.44	4.46864E-05	-8.69	-6.44	-2.25	
H9	1.74	-1.20837E-05	0.56	1.74	-1.18	
H10	-4.72	3.27422E-05	-6.95	-4.72	-2.23	
Н6	-90.89	6.30517E-04	-92.95	-90.87	-2.08	
H7	-4.46	3.09496E-05	-6.83	-4.46	-2.37	
H8	0.02	-1.51058E-07	-1.28	0.02	-1.30	
Н9	-3.22	2.23074E-05	-5.36	-3.22	-2.15	
H10	1.98	-1.37476E-05	0.44	1.98	-1.54	
			Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	1.8	
	LEC Atom B H5 H7 H8 H9 H10 H6 H7 H8 H9 H10	LEC CC3 Atom B $E_{int}^{A,B}$ H5 -63.47 H7 1.53 H8 -6.44 H9 1.74 H10 -4.72 H6 -90.89 H7 -4.46 H8 0.02 H9 -3.22 H10 1.98	LECCCSD/BBC1Atom B $E_{int}^{A,B}$ $E_{int}^{A,B}/E$ H5-63.474.40340E-04H71.53-1.05919E-05H8-6.444.46864E-05H91.74-1.20837E-05H10-4.723.27422E-05H6-90.896.30517E-04H7-4.463.09496E-05H80.02-1.51058E-07H9-3.222.23074E-05H101.98-1.37476E-05	LECCCSD/BBC1MAtom B $E_{int}^{A,B}$ $E_{int}^{A,B}/E$ Comput $E_{int}^{A,B}$ H5-63.474.40340E-04-64.64H71.53-1.05919E-05-0.07H8-6.444.46864E-05-8.69H91.74-1.20837E-050.56H10-4.723.27422E-05-6.95H6-90.896.30517E-04-92.95H7-4.463.09496E-05-6.83H80.02-1.51058E-07-1.28H9-3.222.23074E-05-5.36H101.98-1.37476E-050.44	LECCCSJ/BBC1 $MP2/Müller$ Atom B $E_{int}^{A,B}$ $E_{int}^{A,B}/E$ $Comput E_{int}^{A,B}$ $Expect E_{int}^{A,B}$ H5-63.474.40340E-04-64.64-63.46H71.53-1.05919E-05-0.071.53H8-6.444.46864E-05-8.69-6.44H91.74-1.20837E-050.561.74H10-4.723.27422E-05-6.95-4.72H6-90.896.30517E-04-92.95-90.87H7-4.463.09496E-05-6.83-4.46H80.02-1.51058E-07-1.280.02H9-3.222.23074E-05-5.36-3.22H101.98-1.37476E-050.441.98	

Table S101. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ in interaction energies $E_{int}^{A,B}$ computed at MP2/Müller for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

Std. deviation for $\left| \Delta_{\text{int}}^{\text{A,B}} \right|$ 0.5

O…H in	O…H in Linear		SD/BBC1	MP2/Müller		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{int}$
03	Н5	-50.37	3.49449E-04	-50.77	-50.36	-0.40
O3	H7	2.11	-1.46101E-05	0.65	2.11	-1.46
O3	H8	-3.97	2.75121E-05	-6.28	-3.97	-2.32
O3	H9	2.11	-1.46101E-05	0.65	2.11	-1.46
O3	H10	-3.97	2.75121E-05	-6.29	-3.97	-2.32
O4	H6	-50.37	3.49449E-04	-50.77	-50.36	-0.40
O4	H7	-3.97	2.75121E-05	-6.28	-3.97	-2.32
O4	H8	2.11	-1.46101E-05	0.65	2.11	-1.46
O4	H9	-3.97	2.75121E-05	-6.29	-3.97	-2.32
04	H10	2.11	-1.46101E-05	0.65	2.11	-1.46
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	1.6
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	0.7

O…H in	Eclipsed	CC	SD/BBC1	MP2/Müller		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{int}$
03	Н5	-59.43	4.12334E-04	-60.00	-59.42	-0.58
O3	H7	3.69	-2.56299E-05	2.67	3.69	-1.02
O3	H8	-1.45	1.00861E-05	-3.64	-1.45	-2.19
O3	H9	3.69	-2.56299E-05	2.67	3.69	-1.02
O3	H10	-1.45	1.00861E-05	-3.64	-1.45	-2.18
O4	H6	-59.43	4.12334E-04	-60.00	-59.42	-0.57
O4	H7	-1.45	1.00861E-05	-3.64	-1.45	-2.18
O4	H8	3.69	-2.56299E-05	2.67	3.69	-1.02
O4	H9	-1.45	1.00861E-05	-3.64	-1.45	-2.18
O4	H10	3.69	-2.56299E-05	2.67	3.69	-1.02
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	1.4
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A,B}}\right $	0.7

Table S102. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{cl}^{A,B}$ of interaction energies computed at MP2/Müller for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O····H in	O…H in LEC		SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{A,B}_{cl}$
03	Н5	79.50	-5.51515E-04	76.67	79.49	-2.82
03	H7	48.29	-3.35024E-04	46.77	48.29	-1.51
03	H8	0.12	-8.38500E-07	1.38	0.12	1.26
O3	H9	-1.10	7.61256E-06	0.27	-1.10	1.37
O3	H10	39.11	-2.71330E-04	37.72	39.11	-1.39
O4	H6	86.47	-5.99872E-04	84.14	86.46	-2.32
O4	H7	-0.83	5.78789E-06	0.72	-0.83	1.55
O4	H8	-1.27	8.79525E-06	0.12	-1.27	1.39
O4	H9	79.50	-5.51515E-04	76.67	79.49	-2.82
O4	H10	48.29	-3.35024E-04	46.77	48.29	-1.51
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	1.7
				Std. deviation	on for $\left \Delta_{cl}^{A,B} \right $	0.6

O…H in	O…H in Linear		SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
03	Н5	-49.87	3.45955E-04	-50.71	-49.86	-0.86
03	H7	4.07	-2.82240E-05	2.18	4.07	-1.88
O3	H8	2.14	-1.48185E-05	-0.42	2.14	-2.55
03	H9	4.07	-2.82240E-05	2.18	4.07	-1.89
O3	H10	2.14	-1.48185E-05	-0.42	2.14	-2.56
O4	H6	-49.87	3.45955E-04	-50.71	-49.86	-0.86
O4	H7	2.14	-1.48185E-05	-0.42	2.14	-2.55
O4	H8	4.07	-2.82240E-05	2.18	4.07	-1.88
O4	H9	2.14	-1.48185E-05	-0.42	2.14	-2.56
O4	H10	4.07	-2.82240E-05	2.18	4.07	-1.89
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	1.9
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.7

O…H in	Eclipsed	CCS	SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\rm Expect}V_{\rm cl}^{\rm A,B}$	$\Delta^{\rm A,B}_{\rm cl}$
03	Н5	83.83	-5.81584E-04	81.40	83.81	-2.41
O3	H7	38.20	-2.65018E-04	37.01	38.19	-1.19
03	H8	-2.54	1.76089E-05	-1.10	-2.54	1.43
03	H9	-2.54	1.76089E-05	-1.10	-2.54	1.43
03	H10	38.20	-2.65018E-04	36.99	38.19	-1.20
O4	H6	83.83	-5.81584E-04	81.41	83.81	-2.40
O4	H7	-2.54	1.76089E-05	-1.11	-2.54	1.43
O4	H8	-2.54	1.76089E-05	-1.10	-2.54	1.43
O4	H9	83.83	-5.81584E-04	81.40	83.81	-2.41
O4	H10	38.20	-2.65018E-04	37.01	38.19	-1.19
				Averag	ge for $\left \Delta_{\rm cl}^{\rm A,B}\right $	1.6
				Std. deviatio	on for $\left \Delta_{\rm cl}^{\rm A,B}\right $	0.5

O…H in	O…H in LEC		SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.35	2.44852E-06	-0.05	-0.35	0.30
O3	H7	-2.00	1.38900E-05	-1.49	-2.00	0.51
O3	H8	-6.27	4.34686E-05	-5.88	-6.26	0.38
O3	Н9	-1.14	7.90820E-06	-0.59	-1.14	0.55
O3	H10	-6.42	4.45528E-05	-5.99	-6.42	0.43
O4	Н6	-3.03	2.10430E-05	-2.75	-3.03	0.28
O4	H7	-6.28	4.35390E-05	-5.97	-6.28	0.30
O4	H8	-0.86	5.98068E-06	-0.50	-0.86	0.37
O4	Н9	-6.50	4.51269E-05	-5.92	-6.50	0.58
O4	H10	-1.99	1.38080E-05	-1.49	-1.99	0.50
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.4
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

Table S103. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies computed at MP2/Müller for distant O,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

O…H in	O…H in Linear		SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{\mathrm{XC}}^{\mathrm{A,B}}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.50	3.49384E-06	-0.05	-0.50	0.45
O3	H7	-1.96	1.36138E-05	-1.53	-1.96	0.43
O3	H8	-6.10	4.23306E-05	-5.86	-6.10	0.24
O3	H9	-1.96	1.36138E-05	-1.53	-1.96	0.43
O3	H10	-6.10	4.23306E-05	-5.86	-6.10	0.24
O4	H6	-0.50	3.49384E-06	-0.05	-0.50	0.45
O4	H7	-6.10	4.23306E-05	-5.86	-6.10	0.24
O4	H8	-1.96	1.36138E-05	-1.53	-1.96	0.43
O4	H9	-6.10	4.23306E-05	-5.86	-6.10	0.24
04	H10	-1.96	1.36138E-05	-1.53	-1.96	0.43
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.4
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

O…H in	Eclipsed	CCS	CCSD/BBC1		MP2/Müller	
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
03	Н5	-0.67	4.62679E-06	-0.14	-0.67	0.53
O3	H7	-0.70	4.84171E-06	-0.21	-0.70	0.49
O3	H8	-6.58	4.56687E-05	-6.36	-6.58	0.22
O3	H9	-0.70	4.84171E-06	-0.21	-0.70	0.49
O3	H10	-6.58	4.56687E-05	-6.36	-6.58	0.22
O4	H6	-0.67	4.62679E-06	-0.14	-0.67	0.53
O4	H7	-6.58	4.56687E-05	-6.36	-6.58	0.22
O4	H8	-0.70	4.84171E-06	-0.21	-0.70	0.49
O4	H9	-6.58	4.56687E-05	-6.36	-6.58	0.22
O4	H10	-0.70	4.84171E-06	-0.21	-0.70	0.49
				Averag	ge for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.4
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B}\right $	0.1

Table S104. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{int}^{A,B}$ of interaction energies $E_{int}^{A,B}$ computed at MP2/Müller for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCS	SD/BBC1	MP2/Müller		
Atom A	Atom B	$E_{\rm int}^{\rm A,B}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{ m Expect}E^{ m A,B}_{ m int}$	$\Delta^{A,B}_{int}$
Н5	H6	36.97	-2.56444E-04	38.74	36.96	1.78
H5	H7	-1.91	1.32190E-05	-0.52	-1.91	1.38
H5	H8	-0.65	4.54108E-06	0.11	-0.65	0.76
H5	H9	-2.20	1.52426E-05	-0.92	-2.20	1.28
H5	H10	-1.79	1.23902E-05	-0.91	-1.79	0.87
H6	H7	-1.78	1.23769E-05	-0.63	-1.78	1.16
H6	H8	-0.43	2.95773E-06	0.77	-0.43	1.19
H6	H9	-1.50	1.03754E-05	-0.57	-1.50	0.93
H6	H10	-1.52	1.05510E-05	-0.13	-1.52	1.39
H7	H8	-0.42	2.91928E-06	-0.16	-0.42	0.26
H7	H9	-2.32	1.60696E-05	-2.17	-2.32	0.15
H7	H10	-0.55	3.79630E-06	-0.38	-0.55	0.17
H8	H9	-0.32	2.23740E-06	-0.17	-0.32	0.15
H8	H10	-2.38	1.65337E-05	-2.14	-2.38	0.25
H9	H10	-0.25	1.74888E-06	-0.16	-0.25	0.09
				Averag	e for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	0.8
				Std. deviation	n for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	0.6

H…H in Linear		CCS	SD/BBC1	MP2/Müller		
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{\rm A,B}_{int}$
Н5	H6	22.72	-1.57635E-04	23.75	22.72	1.03
Н5	H7	-1.84	1.27666E-05	-0.58	-1.84	1.26
Н5	H8	-1.82	1.25965E-05	-1.00	-1.82	0.81
Н5	H9	-1.84	1.27666E-05	-0.58	-1.84	1.26
Н5	H10	-1.82	1.25965E-05	-1.00	-1.82	0.81
H6	H7	-1.82	1.25965E-05	-1.00	-1.82	0.81
H6	H8	-1.84	1.27666E-05	-0.58	-1.84	1.26
H6	H9	-1.82	1.25965E-05	-1.00	-1.82	0.81
H6	H10	-1.84	1.27666E-05	-0.58	-1.84	1.26
H7	H8	-0.57	3.92163E-06	-0.35	-0.57	0.22
H7	H9	-2.51	1.73979E-05	-2.21	-2.51	0.30
H7	H10	-0.46	3.19134E-06	-0.17	-0.46	0.29
H8	H9	-0.46	3.19134E-06	-0.17	-0.46	0.29
H8	H10	-2.51	1.73979E-05	-2.21	-2.51	0.30
H9	H10	-0.57	3.92163E-06	-0.35	-0.57	0.22
				Averag	ge for $\left \Delta_{\text{int}}^{\text{A,B}} \right $	0.7

Std. deviation for $\left| \Delta_{int}^{A,B} \right|$

0.4

H···H in	Eclipsed	CCS	CCSD/BBC1		MP2/Müller	
Atom A	Atom B	$E_{\mathrm{int}}^{\mathrm{A,B}}$	$E_{ m int}^{ m A,B}$ / E	$^{ m Comput}E_{ m int}^{ m A,B}$	$^{\mathrm{Expect}}E_{\mathrm{int}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{int}$
Н5	H6	25.93	-1.79929E-04	27.13	25.93	1.20
Н5	H7	-3.37	2.33517E-05	-2.16	-3.37	1.20
Н5	H8	-2.23	1.54635E-05	-1.54	-2.23	0.69
H5	H9	-3.37	2.33517E-05	-2.16	-3.37	1.20
Н5	H10	-2.23	1.54635E-05	-1.54	-2.23	0.69
H6	H7	-2.23	1.54635E-05	-1.54	-2.23	0.69
H6	H8	-3.37	2.33517E-05	-2.16	-3.37	1.20
H6	H9	-2.23	1.54635E-05	-1.54	-2.23	0.69
H6	H10	-3.37	2.33517E-05	-2.16	-3.37	1.20
H7	H8	-0.88	6.13093E-06	-0.67	-0.88	0.22
H7	H9	-2.65	1.83821E-05	-2.48	-2.65	0.17
H7	H10	-0.25	1.76286E-06	-0.06	-0.25	0.20
H8	H9	-0.25	1.76286E-06	-0.06	-0.25	0.20
H8	H10	-2.65	1.83821E-05	-2.48	-2.65	0.17
H9	H10	-0.88	6.13093E-06	-0.67	-0.88	0.22
				Averag	ge for $\left \Delta_{\rm int}^{\rm A,B}\right $	0.7
				Std. deviation	on for $\left \Delta_{\text{int}}^{\text{A},\text{B}} \right $	0.4

Table S105. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{cl}^{A,B}$ in the classical term $V_{\rm cl}^{\rm A,B}$ of interaction energies computed at MP2/Müller for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H…H in LEC		CC	SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
Н5	H6	37.09	-2.57280E-04	38.77	37.08	1.69
H5	H7	-1.73	1.19752E-05	-0.38	-1.73	1.34
H5	H8	-0.59	4.11552E-06	0.16	-0.59	0.75
H5	H9	-2.11	1.46141E-05	-0.86	-2.11	1.25
H5	H10	-1.71	1.18685E-05	-0.89	-1.71	0.82
H6	H7	-1.70	1.17605E-05	-0.62	-1.69	1.08
H6	H8	-0.08	5.40273E-07	1.08	-0.08	1.16
H6	H9	-1.41	9.76436E-06	-0.55	-1.41	0.86
H6	H10	-1.38	9.58579E-06	-0.07	-1.38	1.31
H7	H8	0.20	-1.38967E-06	0.16	0.20	-0.04
H7	H9	0.69	-4.78518E-06	0.73	0.69	0.04
H7	H10	0.08	-5.50299E-07	0.06	0.08	-0.02
H8	H9	0.26	-1.82468E-06	0.19	0.26	-0.07
H8	H10	0.67	-4.65740E-06	0.76	0.67	0.09
H9	H10	0.30	-2.06546E-06	0.20	0.30	-0.09
				Avera	ge for $\Delta_{cl}^{A,B}$	0.7

Average for $\left|\Delta_{cl}^{A,B}\right|$

Std. deviation for $\left|\Delta_{cl}^{A,B}\right|$ 0.6

H···H in	Linear	CCS	SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{\rm cl}^{\rm A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
H5	H6	22.91	-1.58934E-04	23.75	22.91	0.85
H5	H7	-1.74	1.20370E-05	-0.49	-1.73	1.25
H5	H8	-1.78	1.23721E-05	-0.98	-1.78	0.80
H5	H9	-1.74	1.20370E-05	-0.49	-1.73	1.25
H5	H10	-1.78	1.23721E-05	-0.98	-1.78	0.80
H6	H7	-1.78	1.23721E-05	-0.98	-1.78	0.80
H6	H8	-1.74	1.20370E-05	-0.49	-1.73	1.25
H6	Н9	-1.78	1.23721E-05	-0.98	-1.78	0.80
H6	H10	-1.74	1.20370E-05	-0.49	-1.73	1.25
H7	H8	0.08	-5.35901E-07	0.06	0.08	-0.02
H7	H9	0.67	-4.65362E-06	0.73	0.67	0.06
H7	H10	0.21	-1.46599E-06	0.16	0.21	-0.05
H8	H9	0.21	-1.46599E-06	0.16	0.21	-0.05
H8	H10	0.67	-4.65362E-06	0.73	0.67	0.06
H9	H10	0.08	-5.35901E-07	0.06	0.08	-0.02
				Avera	ge for $\left \Delta_{cl}^{A,B}\right $	0.6
				Std. deviati	on for $\Delta_{\rm cl}^{\rm A,B}$	0.5

H…H in	Eclipsed	CCS	SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{ m cl}^{ m A,B}$	$V_{ m cl}^{ m A,B}$ / E	$^{ m Comput}V_{ m cl}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{cl}}^{\mathrm{A,B}}$	$\Delta^{A,B}_{cl}$
H5	H6	26.14	-1.81338E-04	27.14	26.13	1.01
H5	H7	-3.23	2.23898E-05	-2.05	-3.23	1.18
H5	H8	-2.19	1.52172E-05	-1.52	-2.19	0.67
H5	H9	-3.23	2.23898E-05	-2.05	-3.23	1.18
H5	H10	-2.19	1.52172E-05	-1.52	-2.19	0.67
H6	H7	-2.19	1.52172E-05	-1.52	-2.19	0.67
H6	H8	-3.23	2.23898E-05	-2.05	-3.23	1.18
H6	H9	-2.19	1.52172E-05	-1.52	-2.19	0.67
H6	H10	-3.23	2.23898E-05	-2.05	-3.23	1.18
H7	H8	0.58	-3.99386E-06	0.42	0.58	-0.15
H7	H9	0.80	-5.52134E-06	0.76	0.80	-0.04
H7	H10	0.25	-1.76849E-06	0.16	0.25	-0.09
H8	H9	0.25	-1.76849E-06	0.16	0.25	-0.09
H8	H10	0.80	-5.52134E-06	0.76	0.80	-0.04
H9	H10	0.58	-3.99386E-06	0.42	0.58	-0.15
				Avera	ge for $\left \Delta_{cl}^{A,B}\right $	0.6
				Std. deviation	on for $\left \Delta_{cl}^{A,B}\right $	0.5

Table S106. Using the CCSD/BBC1 data as a reference, analysis of relative errors $\Delta_{XC}^{A,B}$ in the XC-term $V_{XC}^{A,B}$ of interaction energies computed at MP2/Müller for distant H,H atom-pairs in all conformers of glycol (values in kcal mol⁻¹).

H···H in	LEC	CCS	CCSD/BBC1		MP2/Müller	
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\rm Expect}V_{\rm XC}^{\rm A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
H5	H6	-0.12	8.35982E-07	-0.03	-0.12	0.09
H5	H7	-0.18	1.24377E-06	-0.14	-0.18	0.04
H5	H8	-0.06	4.25557E-07	-0.05	-0.06	0.01
H5	H9	-0.09	6.28456E-07	-0.06	-0.09	0.03
H5	H10	-0.08	5.21707E-07	-0.03	-0.08	0.05
H6	H7	-0.09	6.16356E-07	-0.01	-0.09	0.08
H6	H8	-0.35	2.41746E-06	-0.31	-0.35	0.04
H6	H9	-0.09	6.11051E-07	-0.02	-0.09	0.07
H6	H10	-0.14	9.65231E-07	-0.07	-0.14	0.07
H7	H8	-0.62	4.30895E-06	-0.33	-0.62	0.30
H7	H9	-3.01	2.08548E-05	-2.89	-3.01	0.11
H7	H10	-0.63	4.34660E-06	-0.44	-0.63	0.19
H8	H9	-0.59	4.06207E-06	-0.36	-0.59	0.22
H8	H10	-3.05	2.11911E-05	-2.90	-3.05	0.16
H9	H10	-0.55	3.81434E-06	-0.37	-0.55	0.18
				Averag	ge for $\Delta_{\rm XC}^{\rm A,B}$	0.1
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

H···H in	Linear	CCS	SD/BBC1	MP2/Müller		
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{ m Expect}V_{ m XC}^{ m A,B}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.19	1.29892E-06	-0.01	-0.19	0.18
Н5	H7	-0.11	7.29610E-07	-0.09	-0.11	0.01
Н5	H8	-0.03	2.24489E-07	-0.02	-0.03	0.01
Н5	Н9	-0.11	7.29610E-07	-0.09	-0.11	0.01
H5	H10	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H7	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H8	-0.11	7.29610E-07	-0.09	-0.11	0.01
H6	Н9	-0.03	2.24489E-07	-0.02	-0.03	0.01
H6	H10	-0.11	7.29610E-07	-0.09	-0.11	0.01
H7	H8	-0.64	4.45753E-06	-0.41	-0.64	0.23
H7	H9	-3.18	2.20515E-05	-2.94	-3.18	0.23
H7	H10	-0.67	4.65732E-06	-0.33	-0.67	0.34
H8	Н9	-0.67	4.65732E-06	-0.33	-0.67	0.34
H8	H10	-3.18	2.20515E-05	-2.94	-3.18	0.23
H9	H10	-0.64	4.45753E-06	-0.41	-0.64	0.23
				Avera	ge for $\left \Delta_{\mathbf{x}_{C}}^{\mathrm{A},\mathrm{B}} \right $	0.1

Average for $|\Delta_{\rm XC}^{A,B}|$ 0.1Std. deviation for $|\Delta_{\rm XC}^{A,B}|$ 0.1

H···H in	Eclipsed	CCS	CCSD/BBC1		MP2/Müller	
Atom A	Atom B	$V_{\rm XC}^{\rm A,B}$	$V_{ m XC}^{ m A,B}$ / E	$^{ m Comput}V_{ m XC}^{ m A,B}$	$^{\mathrm{Expect}}V_{\mathrm{XC}}^{\mathrm{A,B}}$	$\Delta_{\rm XC}^{\rm A,B}$
Н5	H6	-0.20	1.40935E-06	-0.01	-0.20	0.20
Н5	H7	-0.14	9.61846E-07	-0.12	-0.14	0.02
H5	H8	-0.04	2.46282E-07	-0.02	-0.04	0.02
H5	H9	-0.14	9.61846E-07	-0.12	-0.14	0.02
Н5	H10	-0.04	2.46282E-07	-0.02	-0.04	0.02
H6	H7	-0.04	2.46282E-07	-0.02	-0.04	0.02
H6	H8	-0.14	9.61846E-07	-0.12	-0.14	0.02
H6	H9	-0.04	2.46282E-07	-0.02	-0.04	0.02
H6	H10	-0.14	9.61846E-07	-0.12	-0.14	0.02
H7	H8	-1.46	1.01248E-05	-1.09	-1.46	0.37
H7	Н9	-3.45	2.39035E-05	-3.23	-3.44	0.21
H7	H10	-0.51	3.53135E-06	-0.22	-0.51	0.29
H8	H9	-0.51	3.53135E-06	-0.22	-0.51	0.29
H8	H10	-3.45	2.39035E-05	-3.23	-3.44	0.21
H9	H10	-1.46	1.01248E-05	-1.09	-1.46	0.37
				Avera	ge for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1
				Std. deviation	on for $\left \Delta_{\rm XC}^{\rm A,B} \right $	0.1

Figure S9. Changes in the classical term of diatomic interaction energies for the indicated atom-pairs on Lin \rightarrow LEC (part a) and Lin \rightarrow Ecl (part b) structural transformations of glycol at specified levels of theory.

Changes in the classical term of interactions are shown in Figure S9. Trends in $\Delta V_{el}^{A,B}$ and their values observed for Lin \rightarrow LEC mimic those for $\Delta E_{int}^{A,B}$ seen in Figure 10a in the main body of the text. From that follows that main contributions to $\Delta E_{int}^{A,B}$ come from the classical term. For instance, $\Delta V_{el}^{O4,H6} = -$ 38.0 kcal mol⁻¹ is smaller than $\Delta E_{int}^{O4,H6}$ by just 2.5 kcal mol⁻¹; this is in full agreement with common knowledge when intramolecular H-bonds are considered. Dominance of classical contributions is also observed for C1–O4 and C2–O3 atom-pairs as they are smaller, relative to their interaction energies, by 1.3 and 2.6 kcal mol⁻¹, respectively). Quite a different picture emerged from the Lin \rightarrow Ecl structural change where $\Delta V_{el}^{O3,O4}$ term is 9.5 kcal mol⁻¹ larger than $\Delta E_{int}^{O3,O4}$ and this exemplifies a large increase in repulsive forces acting on these two clashing O-atoms in Ecl. Interestingly, the change in the interaction energy between C-atoms of the linker ($\Delta E_{int}^{C1,C2} = +8.9$ kcal mol⁻¹) is not dominated by the classical term as it became more positive only by +3.2 kcal mol⁻¹, from $V_{el}^{C1,C2}$ of +78.4 (in Lin) to +81.6 (in Ecl) kcal mol⁻¹.

Figure S10. Changes in the XC-term of diatomic interaction energies for the indicated atom-pairs on $Lin \rightarrow LEC$ (part a) and $Lin \rightarrow Ecl$ (part b) structural transformations of glycol at specified levels of theory.

Figure S10 uncovers many atom-pairs for which significant change in covalent component of an interaction took place, the $\Delta V_{\rm XC}^{\rm A,B}$ term. There are 3 ({O3,H6}, {O4,H6} and {C2,O3}) and 2 ({C1,C2} and {C1,O4}) atom-pairs in LEC for which the XC-term changed at CCSD/BBC1 by more than 2 and 1 kcal mol⁻¹, respectively. Among them, the C1-C2, C2-O3 and O4...H6 atom-pairs experienced an increase in the covalent component of an interaction. On Lin \rightarrow LEC (Figure S10a), the largest change among all possible atom pairs in glycol took place for the O3-H6 atom-pair for which a significant decrease in the XC-term is observed, by +3.9 kcal mol⁻¹. Four significant changes in the XC-term are seen for the Ecl conformer in Figure S10b. Note that atoms involved in a steric clash (O3--O4) in the Ecl conformer experienced a significant increase in the XC-term as also found for the H-bonding (O4…H6) in LEC. Moreover, $\Delta V_{\rm XC}^{C1,C2}$ of -9.5 kcal mol⁻¹ at CCSD/BBC1 is most significant on Lin \rightarrow Ecl. Recalling that $V_{\rm XC}^{\rm A,B} < 0$ always holds (hence, it is always of a stabilizing nature) one could argue that this energy component strengthens the H-bonding (O4...H6) in LEC whereas partly counteracts, or compensates for, the increased repulsive classical term in the case of a steric clash (O3--O4) in Ecl. Lastly, let us focus on the link for which we observe opposite trends in the two conformers. A significant decrease in the XC-term, by 5.6 kcal mol⁻¹, took place in **Ecl** but a small increase by -1.3 kcal mol⁻¹ is observed in LEC and in both cases $\Delta V_{\rm XC}^{\rm C1,C2}$ is more significant that $\Delta V_{\rm cl}^{\rm C1,C2}$. As a consequence, the link became significantly weaker in Ecl and somewhat stronger in LEC.

Figure S11. Relative to CCSD/BBC1, errors in $\Delta E_{int}^{A,B}$ (part a), $\Delta V_{cl}^{A,B}$ (part b) and $\Delta V_{XC}^{A,B}$ (part c) obtained for covalently bonded atoms and the intra-molecular O4...H6 interaction on the Lin \rightarrow LEC structural change.

Figure S12. Relative to CCSD/BBC1, errors in $\Delta E_{int}^{A,B}$ (part a), $\Delta V_{cl}^{A,B}$ (part b) and $\Delta V_{XC}^{A,B}$ (part c) obtained for covalently bonded atoms and an intra-molecular interaction O3…O4 on the Lin \rightarrow Ecl structural change.

	_				
Part a	_	HF	B3LYP	B3LYP-GD3	MP2/Müller
Atom A	Atom B		Error in	$\Delta E_{\rm int}^{\rm A,B}$	
C2	C1	-0.13	-0.27	-0.46	-0.53
O4	C1	3.04	0.71	1.19	1.12
H7	C1	0.30	-0.14	-0.09	0.02
Н9	C1	-0.96	0.09	0.08	0.05
03	C2	-2.87	0.44	0.90	0.33
H8	C2	1.20	0.41	0.35	0.41
H10	C2	0.02	0.34	0.40	0.25
H6	03	-0.63	1.37	1.44	0.19
H5	O4	1.39	1.34	1.42	1.09
H6	O4	-2.97	2.88	3.21	-1.66
	Average:	-0.16	0.72	0.84	0.13
	Std. dev.:	1.85	0.94	1.05	0.80
	-				
Part b		А	veraged absolu	te error in $\Delta E_{\text{int}}^{\text{A,B}}$	
	Average:	1.35	0.80	0.95	0.56
	Std. dev.:	1.19	0.86	0.95	0.55

Table S107. Relative to the CCSD/BBC1 data, errors (part a) and averaged absolute errors (part b) in $\Delta E_{int}^{A,B}$ (kcal mol⁻¹) obtained for the Lin \rightarrow LEC structural change at the indicated levels of theory.

Table S108. Relative to the CCSD/BBC1 data, errors (part a) and averaged absolute errors (part b) in $\Delta V_{cl}^{A,B}$ (kcal mol⁻¹) obtained for the Lin \rightarrow LEC structural change at the indicated levels of theory.

Part a		HF	B3LYP	B3LYP-GD3	MP2/Müller
Atom A	Atom B		Error in	$\Delta V_{ m cl}^{ m A,B}$	
C2	C1	0.01	0.34	0.12	0.04
O4	C1	3.11	0.10	0.55	0.53
H7	C1	0.26	-0.18	-0.13	-0.01
H9	C1	-1.12	-0.10	-0.07	-0.03
O3	C2	-3.59	0.11	0.48	-0.22
H8	C2	0.70	0.04	0.04	0.04
H10	C2	-0.10	0.01	0.07	0.00
H6	03	-0.89	0.80	0.95	-0.24
H5	O4	0.47	0.33	0.44	0.09
H6	O4	-4.27	2.54	2.82	-1.50
	Average:	-0.54	0.40	0.53	-0.13
	Std. dev.:	2.13	0.80	0.87	0.52
	_				
Part b		Av	veraged absolut	te error in $\Delta V_{\rm cl}^{\rm A,B}$	
	Average:	1.45	0.45	0.57	0.27
	Std. dev.:	1.58	0.77	0.85	0.46

Part a		HF	B3LYP	B3LYP-GD3	MP2/Müller
Atom A	Atom B		Error in	$\Delta V_{\rm XC}^{\rm A,B}$	
C2	C1	-0.14	-0.61	-0.57	-0.57
O4	C1	-0.07	0.61	0.64	0.59
H7	C1	0.04	0.04	0.03	0.03
H9	C1	0.16	0.19	0.15	0.08
O3	C2	0.72	0.33	0.42	0.55
H8	C2	0.49	0.37	0.31	0.36
H10	C2	0.12	0.33	0.33	0.25
H6	O3	0.26	0.56	0.49	0.43
H5	O4	0.92	1.01	0.98	1.00
H6	O4	1.30	0.34	0.39	-0.17
	Average:	0.38	0.32	0.32	0.25
	Std. dev.:	0.47	0.42	0.41	0.44
Part b	-	A	veraged absolu	te error in $\Delta V_{\rm XC}^{\rm A,B}$	
	Average:	0.42	0.44	0.43	0.40
	Std. dev.:	0.43	0.27	0.27	0.29

Table S109. Relative to the CCSD/BBC1 data, errors (part a) and averaged absolute errors (part b) in $\Delta V_{\rm XC}^{A,B}$ (kcal mol⁻¹) obtained for the Lin \rightarrow LEC structural change at the indicated levels of theory.

Table S110. Relative to the CCSD/BBC1 data, errors (part a) and averaged absolute errors (part b) in $\Delta E_{int}^{A,B}$ (kcal mol⁻¹) obtained for the Lin \rightarrow Ecl structural change at the indicated levels of theory.

Part a		HF	B3LYP	B3LYP-GD3	MP2/Müller
Atom A	Atom B		Error ir	$\Delta E_{\rm int}^{\rm A,B}$	
C2	C1	2.61	0.43	0.29	0.56
O4	C1	-6.77	-2.10	-1.66	-0.51
H7	C1	-2.12	0.24	0.25	0.07
H9	C1	-2.11	0.22	0.24	0.06
O3	C2	-6.67	-2.08	-1.65	-0.54
H8	C2	-2.12	0.25	0.26	0.09
H10	C2	-2.11	0.22	0.25	0.07
H6	O3	-1.00	-0.78	-0.73	0.07
H5	O4	-1.00	-0.79	-0.73	0.08
O4	O3	9.97	0.98	0.76	0.96
	Average:	-1.13	-0.34	-0.27	0.09
	Std. dev.:	4.76	1.06	0.86	0.44
Part b	_	А	veraged absolu	te error in $\Delta E_{\text{int}}^{\text{A,B}}$	
	Average:	3.65	0.81	0.68	0.30
	Std. dev.:	3.04	0.73	0.56	0.32

	_				
Part a		HF	B3LYP	B3LYP-GD3	MP2/Müller
Atom A	Atom B		Error in	$\Delta V_{ m cl}^{ m A,B}$	
C2	C1	3.18	0.37	0.05	0.29
O4	C1	-6.34	-1.43	-1.02	-0.51
H7	C1	-2.38	0.52	0.55	0.28
H9	C1	-2.38	0.52	0.55	0.28
03	C2	-6.17	-1.37	-0.96	-0.51
H8	C2	-2.37	0.52	0.54	0.27
H10	C2	-2.37	0.52	0.55	0.28
Н6	O3	-0.75	-0.75	-0.71	0.20
H5	O4	-0.75	-0.76	-0.72	0.21
H6	O4	6.99	-1.09	-1.32	-0.05
	Average:	-1.34	-0.29	-0.25	0.07
	Std. dev.:	3.99	0.86	0.77	0.32
	-				
Part b		Av	veraged absolut	te error in $\Delta V_{\rm cl}^{\rm A,B}$	
	Average:	3.37	0.78	0.70	0.29
	Std. dev.:	2.30	0.38	0.35	0.14

Table S111. Relative to the CCSD/BBC1 data, errors (part a) and averaged absolute errors (part b) in $\Delta V_{cl}^{A,B}$ (kcal mol⁻¹) obtained for the Lin \rightarrow Ecl structural change at the indicated levels of theory.

Table S112. Relative to the CCSD/BBC1 data, errors (part a) and averaged absolute errors (part b) in $\Delta V_{\rm XC}^{A,B}$ (kcal mol⁻¹) obtained for the Lin \rightarrow Ecl structural change at the indicated levels of theory.

Part a		HF	B3LYP	B3LYP-GD3	MP2/Müller
Atom A	Atom B		Error in	$\Delta V_{ m XC}^{ m A,B}$	
C2	C1	-0.57	0.06	0.24	0.28
O4	C1	-0.43	-0.67	-0.64	0.00
H7	C1	0.26	-0.28	-0.30	-0.20
H9	C1	0.27	-0.30	-0.30	-0.22
03	C2	-0.50	-0.71	-0.68	-0.04
H8	C2	0.25	-0.27	-0.28	-0.19
H10	C2	0.27	-0.30	-0.30	-0.21
H6	O3	-0.25	-0.03	-0.01	-0.13
Н5	O4	-0.25	-0.03	-0.02	-0.13
H6	O4	2.98	2.07	2.08	1.01
	Average:	0.20	-0.05	-0.02	0.02
	Std. dev.:	1.03	0.78	0.79	0.38
Part b		A	veraged absolu	te error in $\Delta V_{\rm XC}^{\rm A,B}$	
	Average:	0.60	0.47	0.49	0.24
	Std. dev.:	0.84	0.61	0.60	0.28

Figure S13. FAMSEC energy terms $\Delta E_{\text{self}}^{\text{G}}(1)$, $\Delta E_{\text{int}}^{\text{G}}(2)$, $E_{\text{attr-loc}}^{\text{G}}(3)$, $\Delta E_{\text{int}}^{\text{G,H}}(4)$ and $E_{\text{attr-mol}}^{\text{G}}(5)$ computed for the specified molecular 2-atom fragments G on the Lin \rightarrow LEC structural change of glycol at the indicated levels of theory. Data obtained at the CCSD/BBC1 level is shown as a reference (for comparison).

Figure S14. FAMSEC energy terms $\Delta E_{\text{self}}^{\text{G}}(1)$, $\Delta E_{\text{int}}^{\text{G}}(2)$, $E_{\text{attr-loc}}^{\text{G}}(3)$, $\Delta E_{\text{int}}^{\text{G,H}}(4)$ and $E_{\text{attr-mol}}^{\text{G}}(5)$ computed for the specified molecular 3-atom fragments G on the Lin \rightarrow LEC structural change of glycol at the indicated levels of theory. Data obtained at the CCSD/BBC1 level is shown as a reference (for comparison).

Figure S15. FAMSEC energy terms $\Delta E_{\text{self}}^{\text{G}}(1)$, $\Delta E_{\text{int}}^{\text{G}}(2)$, $E_{\text{attr-loc}}^{\text{G}}(3)$, $\Delta E_{\text{int}}^{\text{G,H}}(4)$ and $E_{\text{attr-mol}}^{\text{G}}(5)$ computed for the specified molecular 4-atom fragments G on the Lin \rightarrow LEC structural change of glycol at the indicated levels of theory. Data obtained at the CCSD/BBC1 level is shown as a reference (for comparison).

Figure S16. Energy terms $\Delta E_{\text{self}}^{\text{G}}(1)$, $\Delta E_{\text{int}}^{\text{G}}(2)$, $E_{\text{attr-loc}}^{\text{G}}(3)$, $\Delta E_{\text{int}}^{\text{G},\text{H}}(4)$ and $E_{\text{attr-mol}}^{\text{G}}(5)$ computed for the specified molecular 2-atom fragments G on the Lin \rightarrow Ecl structural change of glycol at the indicated levels of theory. Data obtained at the CCSD/BBC1 level is shown as a reference (for comparison).

Figure S17. FAMSEC energy terms $\Delta E_{self}^{G}(1)$, $\Delta E_{int}^{G}(2)$, $E_{attr-loc}^{G}(3)$, $\Delta E_{int}^{G,H}(4)$ and $E_{attr-mol}^{G}(5)$ computed for the specified molecular 3-atom fragments G on the Lin \rightarrow Ecl structural change of glycol at the indicated levels of theory. Data obtained at the CCSD/BBC1 level is shown as a reference (for comparison).

Figure S18. FAMSEC energy terms $\Delta E_{\text{self}}^{\text{G}}(1)$, $\Delta E_{\text{int}}^{\text{G}}(2)$, $E_{\text{attr-loc}}^{\text{G}}(3)$, $\Delta E_{\text{int}}^{\text{G,H}}(4)$ and $E_{\text{attr-mol}}^{\text{G}}(5)$ computed for the specified molecular 4-atom fragments G on the Lin \rightarrow Ecl structural change of glycol at the indicated levels of theory. Data obtained at the CCSD/BBC1 level is shown as a reference (for comparison).

PART 1		G	= {03,04}		
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\sf G}$
CCSD/BBC1	3.13	33.90	37.03	-84.18	-47.14
HF	5.86	40.91	46.77	-93.59	-46.82
B3LYP	5.57	31.46	37.03	-74.35	-37.31
B3LYP-GD3	5.40	31.18	36.59	-72.55	-35.96
MP2/Müller	6.14	34.46	40.60	-83.06	-42.47
Average:	5.2	34.4	39.6	-81.5	-41.9
Std. dev.:	1.2	3.9	4.3	8.5	5.2
		Exc	luding HF da	ata	
Average:	5.1	32.8	37.8	-78.5	-40.7
Std. dev.:	1.3	1.7	1.9	5.9	5.1
	Combined	l CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	4.7	32.2	36.9	-77.0	-40.1
Std. dev.:	1.4	1.5	0.3	6.3	6.1

Table S113. FAMSEC descriptors (values in kcal mol⁻¹) computed at the indicated levels of theory for specified and meaningful 2-atom fragments G of glycol (PART 1–5) on the Lin \rightarrow LEC structural change.

PART 2

G = {O4,H5}

LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{ m attr-mol}^{\sf G}$
CCSD/BBC1	0.85	-2.09	-1.24	-8.33	-9.58
HF	1.77	-0.70	1.08	-5.57	-4.49
B3LYP	2.72	-0.75	1.96	-6.76	-4.80
B3LYP-GD3	2.54	-0.68	1.87	-6.22	-4.36
MP2/Müller	3.40	-1.01	2.39	-8.37	-5.98
Average:	2.3	-1.0	1.2	-7.1	-5.8
Std. dev.:	1.0	0.6	1.5	1.3	2.2
		Exc	luding HF da	ita	
Average:	2.4	-1.1	1.2	-7.4	-6.2
Std. dev.:	1.1	0.7	1.7	1.1	2.4
	Combined	l CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	2.0	-1.2	0.9	-7.1	-6.2
Std. dev.:	1.0	0.8	1.8	1.1	2.9

G = {O3,H6}

FART 3	G – {U3,N0}					
LoT	$\Delta E_{\rm self}^{\rm G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\sf G}$	
CCSD/BBC1	6.44	-4.36	2.08	-4.98	-2.89	
HF	8.00	-4.97	3.03	-2.73	0.31	
B3LYP	6.47	-3.00	3.47	-4.06	-0.59	
B3LYP-GD3	6.39	-2.93	3.46	-3.59	-0.14	
MP2/Müller	7.47	-4.17	3.30	-4.23	-0.92	
Average:	7.0	-3.9	3.1	-3.9	-0.8	
Std. dev.:	0.7	0.9	0.6	0.8	1.2	
		Exc	luding HF da	ita		
Average:	6.7	-3.6	3.1	-4.2	-1.1	
Std. dev.:	0.5	0.8	0.7	0.6	1.2	
	Combined	CCSD/BBC	C1, B3LYP at	nd B3LYP-G	D3 data	
Average:	6.4	-3.4	3.0	-4.2	-1.2	
Std. dev.:	0.0	0.8	0.8	0.7	1.5	

PART 4

G = {O4,H6}

171111		9	(0 1,110)		
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{ m int}^{ m G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\sf G}$
CCSD/BBC1	4.47	-40.52	-36.05	56.11	20.06
HF	4.56	-43.32	-38.76	67.33	28.57
B3LYP	5.10	-37.73	-32.64	56.22	23.58
B3LYP-GD3	4.91	-37.41	-32.50	56.36	23.87
MP2/Müller	6.56	-42.19	-35.63	60.87	25.24
Average:	5.1	-40.2	-35.1	59.4	24.3
Std. dev.:	0.8	2.6	2.6	4.9	3.1
		Exc	luding HF da	ata	
Average:	5.3	-39.5	-34.2	57.4	23.2
Std. dev.:	0.9	2.3	1.9	2.3	2.2
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	4.8	-38.6	-33.7	56.2	22.5
Std. dev.:	0.3	1.7	2.0	0.1	2.1

PART 5		G	= {C1,C2}		
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{ m int}^{ m G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{\rm int}^{\rm G,H}$	$E_{ m attr-mol}^{ m G}$
CCSD/BBC1	-3.24	-1.32	-4.56	4.15	-0.41
HF	-1.55	-1.44	-3.00	4.70	1.71
B3LYP	-3.50	-1.59	-5.09	4.21	-0.88
B3LYP-GD3	-4.47	-1.78	-6.25	5.30	-0.94
MP2/Müller	-3.27	-1.84	-5.11	5.71	0.60
Average:	-3.2	-1.6	-4.8	4.8	0.0
Std. dev.:	1.1	0.2	1.2	0.7	1.1
		Exc	luding HF da	ıta	
Average:	-3.6	-1.6	-5.3	4.8	-0.4
Std. dev.:	0.6	0.2	0.7	0.8	0.7
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	-3.7	-1.6	-5.3	4.6	-0.7
Std. dev.:	0.6	0.2	0.9	0.6	0.3

Table S114. FAMSEC descriptors (values in kcal mol⁻¹) computed at the indicated levels of theory for specified and meaningful 3-atom fragments G of glycol (PART 1–3) on the Lin \rightarrow LEC structural change.

PART 1		G =	= {03,04,H	6}	
LoT	$\Delta E_{\rm self}^{\sf G}$	$\Delta E_{\rm int}^{\sf G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\rm G}$
CCSD/BBC1	7.02	-10.97	-3.95	-5.55	-9.50
HF	9.21	-7.38	1.83	-7.11	-5.28
B3LYP	8.57	-9.28	-0.71	-1.82	-2.53
B3LYP-GD3	8.35	-9.16	-0.80	-0.73	-1.53
MP2/Müller	10.08	-11.89	-1.81	-1.32	-3.13
Average:	8.6	<i>-9.7</i>	-1.1	-3.3	-4.4
Std. dev.:	1.1	1.8	2.1	2.8	3.2
		Exc	luding HF da	ita	
Average:	8.5	-10.3	-1.8	-2.4	-4.2
Std. dev.:	1.3	1.3	1.5	2.2	3.6
	Combined	l CCSD/BBC	C1, B3LYP at	nd B3LYP-G	D3 data
Average:	8.0	-9.8	-1.8	-2.7	-4.5
Std. dev.:	0.8	1.0	1.8	2.5	4.3

PART 2	G = { C1,H7,H9 }				
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{\rm int}^{\rm G,H}$	$E_{\rm attr-mol}^{\sf G}$
CCSD/BBC1	-6.37	-0.63	-7.00	10.67	3.66
HF	-7.38	-1.36	-8.73	14.71	5.98
B3LYP	-5.87	-0.83	-6.71	9.87	3.16
B3LYP-GD3	-6.34	-0.79	-7.13	10.17	3.05
MP2/Müller	-6.47	-0.71	-7.19	10.89	3.70
Average:	-6.5	-0.9	-7.4	11.3	3.9
Std. dev.:	0.5	0.3	0.8	2.0	1.2
		Exc	luding HF da	ata	
Average:	-6.3	-0.7	-7.0	10.4	3.4
Std. dev.:	0.3	0.1	0.2	0.5	0.3
	Combined	l CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	-6.2	-0.8	-6.9	10.2	3.3
Std. dev.:	0.3	0.1	0.2	0.4	0.3

PART 3

G = {C2,H8,H10}

LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{ m int}^{\sf G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta\!E_{\rm int}^{\rm G,H}$	$E_{\mathrm{attr-mol}}^{G}$
CCSD/BBC1	1.74	3.11	4.85	-12.50	-7.65
HF	4.73	4.10	8.84	-18.55	-9.71
B3LYP	1.61	3.86	5.47	-13.61	-8.14
B3LYP-GD3	1.07	3.87	4.93	-13.27	-8.34
MP2/Müller	2.26	3.72	5.97	-13.43	-7.46
Average:	2.3	3.7	6.0	-14.3	-8.3
Std. dev.:	1.4	0.4	1.6	2.4	0.9
		Exc	luding HF da	ita	
Average:	1.7	3.6	5.3	-13.2	-7.9
Std. dev.:	0.5	0.4	0.5	0.5	0.4
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	1.5	3.6	5.1	-13.1	-8.0
Std. dev.:	0.4	0.4	0.3	0.6	0.4

PART 1		G = {	O3,O4,H5,	H6}				
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{ m int}^{ m G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta\!E_{\rm int}^{\rm G,H}$	$E_{ m attr-mol}^{ m G}$			
CCSD/BBC1	7.29	-11.92	-4.63	-2.37	-7.00			
HF	9.78	-7.78	1.99	-4.06	-2.07			
B3LYP	9.19	-9.01	0.17	-0.31	-0.14			
B3LYP-GD3	8.93	-8.81	0.12	0.58	0.71			
MP2/Müller	10.87	-11.78	-0.91	0.62	-0.29			
Average:	9.2	-9.9	-0.6	-1.1	-1.8			
Std. dev.:	1.3	1.9	2.5	2.0	3.1			
		9.2 -9.9 -0.6 -1.1 -1 1.3 1.9 2.5 2.0 3 Excluding HF data						
Average:	9.1	-10.4	-1.3	-0.4	-1.7			
Std. dev.:	1.5	1.7	2.3	1.4	3.6			
	Combined	CCSD/BBC	C1, B3LYP at	nd B3LYP-G	D3 data			
Average:	8.5	-9.9	-1.4	-0.7	-2.1			
Std. dev.:	1.0	1.7	2.8	1.5	4.2			

Table S115. FAMSEC descriptors (values in kcal mol⁻¹) computed at the indicated levels of theory for specified and meaningful 4-atom fragments G of glycol (PART 1–2) on the Lin \rightarrow LEC structural change.

PART 2

 $G = \{C1, O3, O4, H6\}$

LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{\rm int}^{\rm G,H}$	$E_{ m attr-mol}^{\sf G}$			
CCSD/BBC1	1.1	2.7	3.8	-23.1	-19.3			
HF	2.0	11.5	13.5	-30.4	-16.9			
B3LYP	3.1	4.7	7.8	-21.0	-13.2			
B3LYP-GD3	2.4	5.4	7.9	-20.8	-12.9			
MP2/Müller	4.1	3.4	7.4	-21.9	-14.4			
Average:	2.5	5.6	8.1	-23.4	-15.3			
Std. dev.:	1.1	3.5	3.5	4.0	2.7			
		Excluding HF data						
Average:	2.7	4.1	6.7	-21.7	-14.9			
Std. dev.:	1.3	1.2	2.0	1.1	3.0			
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data			
Average:	2.2	4.3	6.5	-21.6	-15.1			
Std. dev.:	1.0	1.4	2.3	1.3	3.6			

Table S116. FAMSEC descriptors (values in kcal mol⁻¹) computed at the indicated levels of theory for specified and meaningful 2-atom fragments G of glycol (PART 1–5) on the Lin \rightarrow Ecl structural change.

PART 1		G	= {03,04}		
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{ m int}^{ m G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{ m attr-mol}^{ m G}$
CCSD/BBC1	-1.68	18.02	16.33	-6.34	10.00
HF	2.25	27.99	30.24	-30.21	0.03
B3LYP	2.20	19.02	21.23	-11.61	9.62
B3LYP-GD3	2.42	18.83	21.24	-9.91	11.34
MP2/Müller	-0.59	18.98	18.39	-6.08	12.31
Average:	0.9	20.6	21.5	-12.8	8.7
Std. dev.:	1.9	4.2	5.3	10.0	4.9
		Exc	luding HF da	ita	
Average:	0.6	18.7	19.3	-8.5	10.8
Std. dev.:	2.0	0.5	2.4	2.7	1.2
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	1.0	18.6	19.6	-9.3	10.3
Std. dev.:	2.3	0.5	2.8	2.7	0.9

PART 2

 $\mathbf{G} = \{\mathbf{O4},\!\mathbf{H5}\}$

		-	(=)		
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\rm G}$
CCSD/BBC1	-2.44	4.36	1.92	5.39	7.30
HF	-0.32	3.35	3.04	5.05	8.09
B3LYP	-0.24	3.58	3.34	5.02	8.35
B3LYP-GD3	-0.09	3.64	3.55	5.53	9.08
MP2/Müller	-2.04	4.44	2.40	6.48	8.88
Average:	-1.0	3.9	2.8	5.5	8.3
Std. dev.:	1.1	0.5	0.7	0.6	0.7
		Exc	luding HF da	ita	
Average:	-1.2	4.0	2.8	5.6	8.4
Std. dev.:	1.2	0.5	0.8	0.6	0.8
	Combined	CCSD/BBC	C1, B3LYP at	nd B3LYP-G	D3 data
Average:	-0.9	3.9	2.9	5.3	8.2
Std. dev.:	1.3	0.4	0.9	0.3	0.9

PART 3	G = {O3,H6}					
LoT	$\Delta E_{\rm self}^{\sf G}$	$\Delta E_{ m int}^{ m G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\sf G}$	
CCSD/BBC1	-2.44	4.36	1.92	5.39	7.30	
HF	-0.24	3.36	3.12	5.02	8.15	
B3LYP	-0.17	3.59	3.42	5.01	8.43	
B3LYP-GD3	-0.07	3.64	3.57	5.52	9.09	
MP2/Müller	-2.18	4.42	2.24	6.45	8.69	
Average:	-1.0	3.9	2.9	5.5	8.3	
Std. dev.:	1.2	0.5	0.7	0.6	0.7	
		Exc	luding HF da	ata		
Average:	-1.2	4.0	2.8	5.6	8.4	
Std. dev.:	1.3	0.4	0.8	0.6	0.8	
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data	
Average:	-0.9	3.9	3.0	5.3	8.3	
Std. dev.:	1.3	0.4	0.9	0.3	0.9	

PART 4

G = {O4,H6}

17HCI I		0	(0 1,110)		
LoT	$\Delta E_{\rm self}^{\sf G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{ m attr-mol}^{ m G}$
CCSD/BBC1	-2.44	-9.06	-11.50	32.22	20.72
HF	-0.32	-10.77	-11.09	33.30	22.21
B3LYP	-0.24	-8.87	-9.11	29.93	20.82
B3LYP-GD3	-0.09	-8.83	-8.92	30.49	21.57
MP2/Müller	-2.04	-9.23	-11.27	33.84	22.56
Average:	-1.0	-9.4	-10.4	32.0	21.6
Std. dev.:	1.1	0.8	1.3	1.7	0.8
		Exc	luding HF da	ata	
Average:	-1.2	-9.0	-10.2	31.6	21.4
Std. dev.:	1.2	0.2	1.4	1.8	0.9
	Combined	l CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	-0.9	-8.9	-9.8	30.9	21.0
Std. dev.:	1.3	0.1	1.4	1.2	0.5

PART 5		G	= {C1,C2}		
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{ m int}^{ m G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{\rm int}^{\rm G,H}$	$E_{ m attr-mol}^{ m G}$
CCSD/BBC1	4.13	8.88	13.01	-25.11	-12.10
HF	13.76	11.49	25.25	-50.92	-25.67
B3LYP	5.37	9.32	14.69	-28.73	-14.04
B3LYP-GD3	4.21	9.20	13.41	-27.48	-14.08
MP2/Müller	5.62	9.44	15.07	-25.97	-10.90
Average:	6.6	9.7	16.3	-31.6	-15.4
Std. dev.:	4.0	1.0	5.1	10.9	5.9
		$G = \{C1, C2\}$ $G = \{C1, C2\}$ $AE_{int}^{G} = E_{attr-loc}^{G} = \Delta E_{int}^{G} = E_{attr-loc}^{G}$ $AE_{int}^{G} = E_{attr-loc}^{G} = E$			
Average:	4.8	9.2	14.0	-26.8	-12.8
Std. dev.:	0.8	0.2	1.0	1.6	1.6
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	4.6	9.1	13.7	-27.1	-13.4
Std. dev.:	0.7	0.2	0.9	1.8	1.1

Table S117. FAMSEC descriptors (values in kcal mol⁻¹) computed at the indicated levels of theory for specified and meaningful 3-atom fragments G of glycol (PART 1–3) on the Lin \rightarrow Ecl structural change.

PART 1	G = {O3,O4,H6}					
LoT	$\Delta E_{\rm self}^{\rm G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{\mathrm{int}}^{\mathrm{G,H}}$	$E_{\rm attr-mol}^{\sf G}$	
CCSD/BBC1	-3.28	13.31	10.03	2.32	12.36	
HF	0.85	20.59	21.43	-16.53	4.90	
B3LYP	0.90	13.74	14.64	-2.07	12.57	
B3LYP-GD3	1.13	13.64	14.77	-0.59	14.18	
MP2/Müller	-2.41	14.17	11.76	2.93	14.69	
Average:	-0.6	15.1	14.5	-2.8	11.7	
Std. dev.:	2.1	3.1	4.3	8.0	4.0	
		Exc	luding HF da	ata		
Average:	-0.9	13.7	12.8	0.6	13.4	
Std. dev.:	2.3	0.4	2.3	2.4	1.2	
-	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data	
Average:	-0.4	13.6	13.1	-0.1	13.0	
Std. dev.:	2.5	0.2	2.7	2.2	1.0	

PART 2	G = {C1,H7,H9}					
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\sf G}$	
CCSD/BBC1	3.89	-7.30	-3.41	4.22	0.82	
HF	11.13	-11.20	-0.07	-1.40	-1.46	
B3LYP	4.20	-7.01	-2.81	2.70	-0.12	
B3LYP-GD3	3.58	-6.99	-3.42	3.20	-0.21	
MP2/Müller	4.16	-7.29	-3.14	4.74	1.60	
Average:	5.4	-8.0	-2.6	2.7	0.1	
Std. dev.:	3.2	1.8	1.4	2.4	1.2	
		Exc	luding HF da	ata		
Average:	4.0	-7.1	-3.2	3.7	0.5	
Std. dev.:	0.3	0.2	0.3	0.9	0.9	
	Combined	CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data	
Average:	3.9	-7.1	-3.2	3.4	0.2	
Std. dev.:	0.3	0.2	0.3	0.8	0.6	

PART 3		G =	{C2,H8,H1	10}	
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{\rm int}^{\rm G,H}$	$E_{ m attr-mol}^{ m G}$
CCSD/BBC1	3.89	-7.30	-3.41	4.22	0.82
HF	10.12	-11.20	-1.08	-1.30	-2.38
B3LYP	3.87	-7.00	-3.12	2.71	-0.41
B3LYP-GD3	3.22	-6.98	-3.76	3.22	-0.54
MP2/Müller	4.05	-7.27	-3.22	4.73	1.51
Average:	5.0	-7.9	-2.9	2.7	-0.2
Std. dev.:	2.9	1.8	1.1	2.4	1.5
		Exc	luding HF da	ata	
Average:	3.8	-7.1	-3.4	3.7	0.3
Std. dev.:	0.4	0.2	0.3	0.9	1.0
	Combined	l CCSD/BBC	C1, B3LYP a	nd B3LYP-G	D3 data
Average:	3.7	-7.1	-3.4	3.4	0.0
Std. dev.:	0.4	0.2	0.3	0.8	0.8

PART 1		G = {	O3,O4,H5,	H6}	
LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{ m attr-mol}^{\sf G}$
CCSD/BBC1	-4.9	11.8	6.9	4.6	11.5
HF	-0.6	16.9	16.3	-10.2	6.1
B3LYP	-0.4	11.7	11.3	0.9	12.2
B3LYP-GD3	-0.2	11.7	11.5	2.2	13.7
MP2/Müller	-4.2	12.8	8.5	5.1	13.7
Average:	-2.0	13.0	10.9	0.5	11.4
Std. dev.:	2.3	2.2	3.6	6.2	3.1
		Exc	luding HF da	ita	
Average:	-2.4	12.0	9.6	3.2	12.8
Std. dev.:	2.5	0.5	2.2	2.0	1.1
	Combined	CCSD/BBC	C1, B3LYP at	nd B3LYP-G	D3 data
Average:	-1.8	11.7	9.9	2.6	12.5
Std. dev.:	2.7	0.1	2.6	1.8	1.1

Table S118. FAMSEC descriptors (values in kcal mol⁻¹) computed at the indicated levels of theory for specified and meaningful 4-atom fragments G of glycol (PART 1–2) on the Lin \rightarrow Ecl structural change.

PART 2

 $G = \{C1, O3, O4, H6\}$

LoT	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{\rm int}^{\rm G,H}$	$E_{\rm attr-mol}^{\sf G}$		
CCSD/BBC1	-1.22	9.71	8.49	5.85	14.34		
HF	8.23	7.87	16.10	-5.12	10.98		
B3LYP	3.75	7.62	11.37	5.11	16.47		
B3LYP-GD3	3.41	8.19	11.60	5.75	17.36		
MP2/Müller	0.45	9.91	10.37	7.90	18.27		
Average:	2.9	8.7	11.6	3.9	15.5		
Std. dev.:	3.6	1.1	2.8	5.2	2.9		
	Excluding HF data						
Average:	1.6	8.9	10.5	6.2	16.6		
Std. dev.:	2.4	1.1	1.4	1.2	1.7		
	Combined CCSD/BBC1, B3LYP and B3LYP-GD3 data						
Average:	2.0	8.5	10.5	5.6	16.1		
Std. dev.:	2.8	1.1	1.7	0.4	1.5		

Data obtained for the steric clash between O3 and O4 atoms in the **Ecl** conformer is shown in Figures S16-S18 and Tables S116-S118. The data reveals that, except HF, trends and general description obtained at CCSD/BBC1 were reproduced very well. To illustrate this, we combined data obtained at the CCSD/BBC1, B3LYP, B3LYP-GD3 and MP2/Müller levels for 2-atom fragment ($G = \{O3, O4\}$)

and two 4-atom fragments, $G = \{C1-O3\cdotsO4-H6\}$ and $G = \{H5-O3\cdotsO4-H6\}$. Former 4-atom fragment resembles the IUPAC recommendation for H-bonds. The steric O3…O4 clash in the **Ecl** conformer consistently resulted in (i) unfavourable change in the inter-fragment interaction energy term, ΔE_{int}^{G} , by +18.7±0.5, +8.7±1.1 and +12±0.5 kcal mol⁻¹ for 2- and 4-atom fragments, respectively, (ii) locally destabilized fragments with $E_{attr-loc}^{G}$ of +19.3±2.4, +10.5±1.4 and +9.6±2.2 kcal mol⁻¹ for 2- and 4-atom fragments, respectively, (iii) more favourable environment in the case of 2-atom fragment ($\Delta E_{int}^{G,H} = -$ 8.5±2.7 kcal mol⁻¹) but less favourable environment in the case of 4-atom fragments with $\Delta E_{int}^{G,H}$ of 6.2±1.2 and 3.2±2.0 kcal mol⁻¹, respectively, and (iv) fragments destabilizing the **Ecl** conformer with $E_{attr-mol}^{G}$ of +10.8±1.2, 16.6±1.7 and +12.8±1.1 kcal mol⁻¹ for 2- and 4-atom fragments, respectively. **Table S119**. Relative to the CCSD/BBC1 data, absolute errors in the FAMSEC-defined energy terms ΔE_{self}^{G} , ΔE_{int}^{G} , $E_{attr-loc}^{G}$, $\Delta E_{int}^{G,H}$, and $E_{attr-mol}^{G}$ computed for the indicated and meaningful molecular fragments at the HF (part a), B3LYP (part b), B3LYP-GD3 (part c), and MP2/Müller (part d) levels on the Lin \rightarrow LEC and Lin \rightarrow Ecl structural changes of glycol. All values in kcal mol⁻¹.

Molecular	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{ m attr-mol}^{ m G}$	
fragment G	$Lin \rightarrow LEC$					
{03,04}	2.73	7.00	9.74	9.41	0.33	
{O4,H5}	0.92	1.40	2.32	2.77	5.09	
{O3,H6}	1.56	0.61	0.95	2.25	3.20	
{O4,H6}	0.09	2.81	2.72	11.22	8.51	
{C1,C2}	1.68	0.12	1.56	0.56	2.12	
{O3,O4,H6}	2.19	3.59	5.78	1.55	4.22	
{C1,H7,H9}	1.00	0.73	1.73	4.05	2.32	
{C2,H8,H10}	2.99	0.99	3.98	6.04	2.06	
{O3,O4,H5,H6}	2.48	4.14	6.62	1.69	4.93	
{C1,O3,O4,H6}	0.90	8.77	9.67	7.29	2.38	
Avr.:	1.7	3.0	4.5	4.7	3.5	
Std. dev.:	0.9	2.9	3.3	3.6	2.3	
	$Lin \rightarrow Ecl$					
{03,04}	3.93	9.98	13.91	23.87	9.97	
{O4,H5}	2.12	1.00	1.12	0.34	0.78	
{O3,H6}	2.20	0.99	1.20	0.36	0.84	
{O4,H6}	2.12	1.71	0.41	1.08	1.49	
{C1,C2}	9.63	2.61	12.24	25.81	13.57	
{O3,O4,H6}	4.13	7.27	11.40	18.85	7.45	
{C1,H7,H9}	7.24	3.90	3.34	5.62	2.28	
{C2,H8,H10}	6.23	3.90	2.33	5.53	3.20	
{O3,O4,H5,H6}	4.32	5.04	9.36	14.77	5.41	
{C1,O3,O4,H6}	9.45	1.84	7.61	10.97	3.36	
Avr.:	5.1	3.8	6.3	10.7	4.8	
Std. dev.:	2.9	2.9	5.2	9.7	4.3	
Overall Avr.:	3.4	3.4	5.4	7.7	4.2	
Overall Std. dev.:	2.7	2.9	4.3	7.8	3.4	
Grand total Avr. for all energy terms:			4.8			
Grand total Std. dev. for all energy terms:			4.8			

Part a. Data obtained at the HF level.

Molecular	$\Delta E_{\rm self}^{\sf G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{ m attr-loc}^{ m G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\rm attr-mol}^{\rm G}$	
fragment G	$Lin \rightarrow LEC$					
{03,04}	2.45	2.45	0.00	9.83	9.83	
{O4,H5}	1.86	1.34	3.20	1.58	4.78	
{O3,H6}	0.03	1.36	1.38	0.91	2.30	
{O4,H6}	0.63	2.78	3.41	0.11	3.52	
{C1,C2}	0.26	0.27	0.54	0.07	0.47	
{O3,O4,H6}	1.55	1.70	3.25	3.73	6.98	
{C1,H7,H9}	0.50	0.20	0.30	0.80	0.50	
{C2,H8,H10}	0.13	0.75	0.62	1.11	0.49	
{O3,O4,H5,H6}	1.89	2.91	4.80	2.06	6.86	
{C1,O3,O4,H6}	2.02	1.98	4.01	2.08	6.08	
Avr.:	1.1	1.6	2.2	2.2	4.2	
Std. dev.:	0.9	1.0	1.8	2.9	3.3	
	$Lin \rightarrow Ecl$					
{03,04}	3.89	1.00	4.89	5.27	0.38	
{O4,H5}	2.20	0.78	1.42	0.37	1.05	
{O3,H6}	2.27	0.77	1.50	0.38	1.13	
{O4,H6}	2.20	0.19	2.39	2.29	0.10	
{C1,C2}	1.24	0.44	1.68	3.61	1.93	
{O3,O4,H6}	4.18	0.43	4.61	4.39	0.21	
{C1,H7,H9}	0.30	0.29	0.59	1.52	0.93	
{C2,H8,H10}	0.02	0.30	0.28	1.51	1.23	
{O3,O4,H5,H6}	4.47	0.12	4.36	3.62	0.74	
{C1,O3,O4,H6}	4.96	2.09	2.87	0.74	2.13	
Avr.:	2.6	0.6	2.5	2.4	1.0	
Std. dev.:	1.7	0.6	1.7	1.8	0.7	
Overall Avr.:	1.9	1.1	2.3	2.3	2.6	
Overall Std. dev.:	1.5	0.9	1.7	2.3	2.8	
Grand total Avr. for all energy terms:			2.0			
Grand total Std. dev. for all energy terms:			2.0			

Part b. Data obtained at the B3LYP level.

Molecular	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\rm G}$	$\Delta E_{ m int}^{ m G,H}$	$E_{\mathrm{attr-mol}}^{G}$		
fragment G	$Lin \rightarrow LEC$						
{03,04}	2.28	2.72	0.45	11.63	11.18		
{O4,H5}	1.69	1.41	3.11	2.11	5.22		
{O3,H6}	0.05	1.43	1.38	1.38	2.76		
{O4,H6}	0.44	3.11	3.55	0.26	3.81		
{C1,C2}	1.23	0.46	1.69	1.15	0.53		
{O3,O4,H6}	1.33	1.81	3.15	4.82	7.97		
{C1,H7,H9}	0.04	0.16	0.12	0.49	0.61		
{C2,H8,H10}	0.67	0.75	0.08	0.77	0.69		
{O3,O4,H5,H6}	1.64	3.11	4.75	2.95	7.70		
{C1,O3,O4,H6}	1.36	2.70	4.06	2.34	6.40		
Avr.:	1.1	1.8	2.2	2.8	4.7		
Std. dev.:	0.7	1.1	1.7	3.4	3.6		
	$Lin \rightarrow Ecl$						
{03,04}	4.10	0.81	4.91	3.57	1.34		
{O4,H5}	2.35	0.72	1.63	0.14	1.78		
{O3,H6}	2.37	0.72	1.65	0.13	1.78		
{O4,H6}	2.35	0.23	2.58	1.73	0.85		
{C1,C2}	0.08	0.32	0.40	2.37	1.97		
{O3,O4,H6}	4.41	0.33	4.74	2.91	1.82		
{C1,H7,H9}	0.32	0.31	0.01	1.02	1.03		
{C2,H8,H10}	0.67	0.32	0.36	1.01	1.36		
{O3,O4,H5,H6}	4.72	0.11	4.61	2.37	2.24		
{C1,O3,O4,H6}	4.63	1.52	3.11	0.10	3.01		
Avr.:	2.6	0.5	2.4	1.5	1.7		
Std. dev.:	1.8	0.4	1.9	1.2	0.6		
Overall Avr.:	1.8	1.2	2.3	2.2	3.2		
Overall Std. dev.:	1.6	1.0	1.8	2.6	3.0		
Grand total Avr	2.1						
Grand total Std. dev	2.2						

Part c. Data obtained at the B3LYP-GD3 level.

Molecular	$\Delta E_{ m self}^{ m G}$	$\Delta E_{\rm int}^{\rm G}$	$E_{\rm attr-loc}^{\sf G}$	$\Delta E_{ m int}^{ m G,H}$	$E^{\sf G}_{ m attr-mol}$	
fragment G	$Lin \rightarrow LEC$					
{03,04}	3.01	0.55	3.57	1.11	4.68	
{O4,H5}	2.55	1.09	3.64	0.04	3.60	
{O3,H6}	1.03	0.19	1.22	0.75	1.97	
{O4,H6}	2.09	1.67	0.42	4.76	5.18	
{C1,C2}	0.03	0.53	0.56	1.57	1.01	
{O3,O4,H6}	3.06	0.92	2.14	4.23	6.37	
{C1,H7,H9}	0.10	0.08	0.18	0.22	0.04	
{C2,H8,H10}	0.52	0.60	1.12	0.93	0.19	
{O3,O4,H5,H6}	3.58	0.14	3.72	2.99	6.70	
{C1,O3,O4,H6}	3.01	0.62	3.63	1.22	4.85	
Avr.:	1.9	0.6	2.0	1.8	3.5	
Std. dev.:	1.4	0.5	1.5	1.6	2.5	
	$Lin \rightarrow Ecl$					
{03,04}	1.09	0.97	2.06	0.26	2.31	
{O4,H5}	0.40	0.08	0.48	1.09	1.57	
{O3,H6}	0.26	0.07	0.32	1.06	1.39	
{O4,H6}	0.40	0.17	0.22	1.62	1.84	
{C1,C2}	1.49	0.57	2.06	0.86	1.20	
{O3,O4,H6}	0.87	0.86	1.73	0.61	2.34	
{C1,H7,H9}	0.26	0.01	0.27	0.52	0.79	
{C2,H8,H10}	0.16	0.03	0.19	0.50	0.69	
{O3,O4,H5,H6}	0.65	0.95	1.60	0.56	2.16	
{C1,O3,O4,H6}	1.67	0.20	1.87	2.05	3.93	
Avr.:	0.7	0.4	1.1	0.9	1.8	
Std. dev.:	0.5	0.4	0.8	0.6	0.9	
Overall Avr.:	1.3	0.5	1.5	1.3	2.6	
Overall Std. dev.:	1.2	0.5	1.3	1.3	2.0	
Grand total Avr. for all energy terms:			1.5			
Grand total Std. dev. for all energy terms:			1.5			

Part d. Data obtained from the MP2/Müller combination.