Supporting information

Excited state properties of a series of molecular

photocatalysts investigated by time-dependent density

functional theory

Miłosz Martynow¹, Stephan Kupfer², Sven Rau³ and Julien Guthmuller^{1*}

¹Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
 ²Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
 ³Institute of Inorganic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Figure S1. Excited states energy diagram calculated at the S₀ geometry.

Figure S2. Excited states energy diagram calculated at the S_0 and $T_{BL1_{YZ}}$ geometries.

Figure S3. Excited states energy diagram calculated at the T_{BL1_YZ} geometry.

Figure S4. Frontier orbitals (RuPdCl₂ at the S₀ geometry) and employed nomenclature.

Singlet-singlet transitions:

enence comig	tented comingurations of the main singlet exerted states calculated at the 50 geometry for Ru .					
State	Transition	Weight (%) ^a	VEE (eV)	λ (nm)	f	
$S_6 (S_{tpphz})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	82	2.68	463	0.126	
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	11				
S ₁₁	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	34	2.95	421	0.161	
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	25				
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	18				
S ₁₂ (S _{bpy})	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	47	2.95	421	0.158	
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	40				
S ₁₃	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	67	3.06	405	0.067	
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	29				
S_{14}	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	83	3.09	401	0.019	
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	12				
S ₁₅	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	36	3.22	385	0.010	
	$d_{XY}(Ru) \rightarrow \pi^*_{bpv2}$	27				

Table S1 Vertical excitation energies (VEE), wavelengths (λ), oscillator strengths (f) and singlyexcited configurations of the main singlet excited states calculated at the S₀ geometry for **Ru**.

^a Weights larger than 10%.

Table S2 Vertical excitation energies (VEE), wavelengths (λ), oscillator strengths (f) and singly-excited configurations of the main singlet excited states calculated at the S₀ geometry for **RuPdCl**₂.

State	Transition	Weight (%) ^a	VEE (eV)	λ (nm)	f
S ₂ (S _{tpphz})	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	96	2.45	506	0.058
S ₁₃	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	67	2.83	438	0.036
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	26			
S ₁₅	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	41	2.86	434	0.062
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	36			
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	16			
S_{16}	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	62	2.88	430	0.037
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	20			
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	12			
S ₁₇	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	40	2.93	423	0.205
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	23			
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	21			
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	11			
S ₁₉ (S _{bpy})	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	52	2.97	418	0.142
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	44			

^a Weights larger than 10%.

Table S3 Vertical excitation energies (VEE), wavelengths (λ), oscillator strengths (f) and singly-excited configurations of the main singlet excited states calculated at the S₀ geometry for **RuPtCl**₂.

enerted configurations of the main singlet enerted states calculated at the 50 geometry for Har vor ₂ .					
State	Transition	Weight (%) ^a	VEE (eV)	λ (nm)	f
S ₂ (Stpphz)	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	95	2.44	507	0.058
S 9	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	75	2.82	439	0.022
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	17			
S ₁₁	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	44	2.86	434	0.088
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	39			
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	10			
S ₁₂	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	46	2.88	431	0.034
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	26			
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	19			
S ₁₅	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	40	2.93	423	0.220
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	25			
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	19			
S_{16} (S_{bpy})	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	51	2.97	417	0.144
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	44			

			0	8	
State	Transition	Weight (%) ^a	VEE (eV)	λ (nm)	f
S ₂ (S _{tpphz})	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	95	2.44	508	0.065
S ₁₂	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	70	2.81	440	0.034
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	21			
S ₁₆	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	39	2.85	434	0.137
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	32			
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	16			
S_{17}	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	56	2.87	431	0.032
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	22			
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	14			
S ₁₈	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	81	2.88	430	0.129
S ₂₁	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	39	2.93	423	0.128
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	23			
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	19			
S ₂₂ (S _{bpy})	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	53	2.97	418	0.144
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	42			

Table S4 Vertical excitation energies (VEE), wavelengths (λ), oscillator strengths (f) and singly-excited configurations of the main singlet excited states calculated at the S₀ geometry for **RuPtI**₂.

Table S5 Vertical excitation energies (VEE), wavelengths (λ), oscillator strengths (f) and singly-excited configurations of the main singlet excited states calculated at the S₀ geometry for **OsPtI**₂.

State	Transition	Weight (%) ^a	VEE (eV)	λ (nm)	f
S ₃ (S _{tpphz})	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	93	2.23	555	0.061
S_8	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	79	2.49	498	0.014
S 9	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	60	2.59	479	0.071
	$d_{XY}(Os) \rightarrow \pi^*_{BL2}$	22			
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	10			
S_{10}	$d_{XY}(Os) \rightarrow \pi^*_{BL2}$	68	2.62	472	0.030
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	13			
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	12			
S ₁₁	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	42	2.63	472	0.013
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	32			
	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	15			
S ₁₅	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	78	2.67	464	0.035
S ₁₇	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	46	2.77	447	0.312
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	29			
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	14			
S ₁₈ (S _{bpy})	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	60	2.79	443	0.157
	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	34			
S ₂₁	$d_{XZ}(Os) \rightarrow \pi^*_{BL3}$	82	2.84	436	0.011

State	Transition	Weight (%) ^a	VEE (eV)	λ (nm)	f
S ₆ (Stpphz)	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	80	2.46	503	0.124
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	14			
S ₈	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	41	2.61	475	0.025
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	31			
	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	19			
S ₉	$d_{YZ}(Os) \rightarrow \pi^*_{BL2}$	47	2.62	473	0.026
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	24			
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	21			
S ₁₁	$d_{XY}(Os) \rightarrow \pi^*_{BL2}$	30	2.78	446	0.132
	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	28			
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	19			
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	13			
S ₁₂ (S _{bpy})	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	49	2.78	446	0.163
	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	41			
S ₁₃	$d_{XY}(Os) \rightarrow \pi^*_{BL2}$	60	2.85	435	0.130
	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	30			
S_{14}	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	92	2.88	430	0.026
S ₁₅	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	47	3.06	404	0.031
	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	26			

Table S6	Vertical	excitation	energies	(VEE),	wavelengths	(λ),	oscillator	strengths	(f) and	singly-
excited co	nfiguratio	ons of the n	nain single	et excite	d states calcul	lated	at the S_0 g	eometry fo	or Os .	

Singlet-triplet transitions:

State	Transition	Weight (%)	VEE (eV)	λ (nm)
$T_1 (T_{BL4_YZ})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	34	2.32	533
	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy1}$	26		
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	20		
T_2 (T _{BL4_XZ})	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	42	2.43	510
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	33		
T ₃ (T _{bpy2_YZ})	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy2}$	76	2.46	503
T ₄ (T _{bpy1_YZ})	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy1}$	56	2.48	499
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	25		
$T_5 (T_{bpy1_XY})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	23	2.55	487
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	20		
	$d_{XY}(Ru) \rightarrow \pi^*_{BL4}$	15		
	$d_{XY}(Ru) \rightarrow \pi^*_{BL1}$	10		
$T_6 (T_{bpy2_XY})$	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	57	2.59	479
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	16		
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	10		
T ₇ (T bl1_yz)	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	37	2.61	475
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	16		
	$d_{XY}(Ru) \rightarrow \pi^*_{BL1}$	14		
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	12		
$T_8 (T_{BL1_XZ})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	55	2.63	470
	$\pi_{ m BL} ightarrow \pi^*_{ m BL1}$	13		
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	10		
$T_9 (T_{BL4_XY})$	$d_{XY}(Ru) \rightarrow \pi^*_{BL4}$	28	2.65	468
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	26		
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	23		
	$d_{XY}(Ru) \to \pi^*_{BL1}$	12	0.67	1.00
T_{10}	$\pi_{\mathrm{BL}}[201] \rightarrow \pi^*_{\mathrm{BL}1}$	28	2.67	463
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	12		
	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL2}$	10		
T (T)	$\frac{d_{YZ}(Ru) \rightarrow \pi^*_{BL1}}{d_{12}(Ru) \rightarrow \pi^*}$	10	2.74	450
1 11 (1 bpy1_XZ)	$d_{XZ}(\mathbf{Ru}) \rightarrow \pi^*_{bpy1}$	47	2.74	432
T_{10} (T_{1} , 2 yz)	$\frac{d_{XZ}(Ru) \rightarrow \pi_{BLA}}{d_{VZ}(Ru) \rightarrow \pi^*}$	46	2 77	117
1 12 (1 bpy2_XZ)	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	40 25	2.11	
T_{12} (T ₁₂ + x ₂)	$d_{XY}(Ru) \rightarrow \pi^* p_Y$	40	2.81	441
$1 13 (1 \text{ BL1}_X Y)$	$d_{XY}(Ru) \rightarrow \pi^*_{BLI}$	30	2.01	441
T_{14} (Tpt 2 yz)	$\frac{d_{XY}(Ru) \rightarrow \pi^*_{BL4}}{d_{YZ}(Ru) \rightarrow \pi^*_{BL4}}$	71	2.83	437
$T_{14} \left(T_{BL2_1L} \right)$	$\pi_{\rm PL} \rightarrow \pi^*_{\rm BL1}$	70	2.03	425
- 15	$d_{\rm XZ}({\rm Ru}) \rightarrow \pi^*_{\rm BL1}$	14		
T_{16} (T _{BL2} XZ)	$\frac{d_{XZ}(Ru) \rightarrow \pi^*_{BL2}}{d_{XZ}(Ru) \rightarrow \pi^*_{BL2}}$	55	2.93	422
	$\pi_{\rm BL}[201] \rightarrow \pi^*_{\rm BL1}$	17		
Т ₁₇ (Т п.)	$n_{\rm BL} \rightarrow \pi^*_{\rm BL1}$	83	2.99	414
T_{18} (T _{BL2} XY)	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	83	3.03	409
T_{19} (T _{Ru} yz z ²)	$d_{YZ}(Ru) \rightarrow d^*z^2(Ru)$	68	3.16	391
	$d_{YZ}(Ru) \rightarrow \pi^*_{bpv}[223]$	13		
$T_{20} (T_{Ru} YZ X^2 Y^2)$	$d_{YZ}(Ru) \rightarrow d^* x^2 - x^2(Ru)$	58	3.18	390
T ₂₁	$\pi_{bpy}[198] \rightarrow \pi^*_{bpv2}$	30	3.21	385
	$\pi_{bpy}[197] \rightarrow \pi^*_{bpy1}$	24		
	$\pi_{bpy}[197] \rightarrow \pi^*_{BL4}$	11		
T ₂₂	$\pi_{bpy}[197] \rightarrow \pi^*_{bpy2}$	22	3.22	385
	$\pi_{bpy}[198] \rightarrow \pi^*_{bpy1}$	20		
	$d_{YZ}(Ru) \rightarrow d^*_{X^2-Y^2}(Ru)$	19		
T ₂₃	$\pi_{\mathrm{BL}}[195] \rightarrow \pi^*_{\mathrm{BL}1}$	32	3.29	376
	$\pi_{\rm BI}[195] \rightarrow \pi^*_{\rm BIA}$	10		

Table S7 Vertical excitation energies (VEE), wavelengths (λ) and singly-excited configurations of the main triplet excited states calculated at the S₀ geometry for **Ru**.

T ₂₄	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL2}$	54	3.30	376
	$\pi_{\mathrm{BL}}[201] \rightarrow \pi^*_{\mathrm{BL}1}$	23		
$T_{25} (T_{Ru}xy_z^2)$	$d_{XY}(Ru) \rightarrow d^*_Z(Ru)$	48	3.41	364
	$d_{XZ}(Ru) \rightarrow d^*_{X^2-Y^2}(Ru)$	30		
T_{26}	$\pi_{BL}[201] \rightarrow \pi^*_{BL2}$	36	3.50	354
	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL4}$	33		
$T_{27} \left(\mathbf{T_{Ru}}_{XY} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XY}(Ru) \rightarrow d^*_{X^2-Y^2}(Ru)$	37	3.51	352
	$d_{XZ}(Ru) \rightarrow d^*_Z{}^2(Ru)$	35		
$T_{28} \left(\mathbf{T_{Ru}}_{\mathbf{XZ}} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	50	3.52	352
	$d_{XY}(Ru) \rightarrow d^*Z^2(Ru)$	25		
T ₂₉	$\sigma_{BL}[199] \rightarrow \pi^*_{BL1}$	87	3.55	349
T ₃₀	$\pi_{BL}[201] \rightarrow \pi^*_{BL3}$	40	3.55	348
	$\pi_{\mathrm{BL}}[195] \rightarrow \pi^*_{\mathrm{BL4}}$	14		
	$\pi_{\mathrm{BL}}[201] \rightarrow \pi^*_{\mathrm{BL4}}$	13		
$T_{33} (T_{Ru}xz^2)$	$d_{XY}(Ru) \rightarrow d^*_{X^2-Y^2}(Ru)$	37	3.59	345
	$d_{XZ}(Ru) \rightarrow d^*_Z{}^2(Ru)$	32		
T_{47} (T _{BL3_YZ})	$d_{YZ}(Ru) \rightarrow \pi^*_{BL3}$	98	3.93	315
T_{59} (T _{BL3_XZ})	$d_{XZ}(Ru) \rightarrow \pi^*_{BL3}$	69	4.09	302
T_{60} (TBL3_XY)	$d_{XY}(Ru) \rightarrow \pi^*_{BL3}$	98	4.10	302

State	Transition	Weight (%)	VEE (eV)	λ (nm)
$T_1 (T_{Pd} z^2)$	$d_Z^2(Pd) \rightarrow d^*_{X^2-Y^2}(Pd)$	80	1.71	724
	$d_Z^2(Pd) \rightarrow \pi^*_{BL3}$	18		
$T_2 (T_{Pd_YZ})$	$d_{YZ}(Pd) \rightarrow d^*_{X^2 - Y^2}(Pd)$	70	1.87	662
	$d_{YZ}(Pd) \rightarrow \pi^*_{BL3}$	16		
$T_3 (T_{Pd_XZ})$	$d_{XZ}(Pd) \rightarrow d^*{}_{X^2-Y^2}(Pd)$	61	2.02	614
	$d_{XZ}(Pd) \rightarrow \pi^*_{BL3}$	14		
$T_4 (T_{BL1_YZ})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	59	2.23	554
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	27		
$\mathbf{T}_{5}\left(\mathbf{T}_{\mathbf{Pd}_{\mathbf{X}}\mathbf{Y}}\right)$	$d_{XY}(Pd) \rightarrow d^*{}_{X^2-Y^2}(Pd)$	70	2.34	529
	$d_{XY}(Pd) \rightarrow \pi^*_{BL3}$	16		
$T_6 (T_{BL1_XZ})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	54	2.36	524
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	31		
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	10		
T ₇ (Tbl4_yz)	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	36	2.38	521
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	24		
	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy1}$	10		
T_8 (T _{BL4_XZ})	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	37	2.44	508
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	24		
	$d_{XZ}(Ru) \to \pi^*_{bpy1}$	13	2.44	507
$T_9 (T_{BL1_XY})$	$d_{XY}(Ru) \rightarrow \pi^*_{BL1}$	76	2.44	507
$T_{10} (T_{bpy2}YZ)$	$d_{YZ}(Ru) \to \pi^*_{bpy2}$	79	2.49	498
T_{11} ($T_{bpy1}Z$)	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy1}$	66	2.51	493
T (T)	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	1/	2.59	400
$I_{12}(I_{BL})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	10 15	2.58	480
	$d_{XY}(Ru) \rightarrow \pi^*_{BL4}$	15		
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	15		
	$d_{XY}(\mathbf{R}\mathbf{u}) \rightarrow \pi^*_{\text{bpyl}}$	13		
T_{12} (T_{1} , 2 yy)	$d_{XY}(Ru) \rightarrow \pi^*_{BLI}$	72	2.61	175
1 13 (1 bpy2_XY)	$d_{XY}(\mathbf{Ru}) \rightarrow \pi^*_{\text{bpy2}}$ $d_{YZ}(\mathbf{Ru}) \rightarrow \pi^*_{\mathbf{PU}}$	13	2.01	475
	$\frac{d_{XZ}(Ru) \rightarrow \pi *_{BL4}}{d_{VZ}(Ru) \rightarrow \pi *_{BL4}}$	79	2.65	468
$T_{14} \left(T_{brv1} \mathbf{y} \mathbf{y} \right)$	$\frac{d_{\rm FZ}({\rm Ru}) \rightarrow \pi^{\rm shoul}}{d_{\rm res}({\rm Ru}) \rightarrow \pi^{\rm shoul}}$	44	2.65	466
1 15 (1 opy1_A1)	$d_{X7}(Ru) \rightarrow \pi^* h_{By7}$	14	2.00	400
	$d_{xz}(Ru) \rightarrow \pi^*_{BL2}$	10		
T_{16} (Triangle xx)	$d_{\rm XY}({\rm Ru}) \rightarrow \pi^*_{\rm BL4}$	61	2.69	461
$\frac{10}{T_{17}} (\mathbf{T_{hpv1} xz})$	$d_{x7}(Ru) \rightarrow \pi^*_{hnv1}$	55	2.77	447
- 17 (- 593)	$d_{\rm XZ}({\rm Ru}) \rightarrow \pi^*_{\rm BI4}$	15		
$T_{18} (T_{bpv2} XZ)$	$d_{XZ}(Ru) \rightarrow \pi^*_{hnv2}$	43	2.79	444
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	26		
$T_{19} \left(T_{BL2_XZ} \right)$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	36	2.83	438
	$\pi_{\mathrm{BL}}[220] \rightarrow \pi^*_{\mathrm{BL}1}$	17		
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	14		
T_{20} (T _{BL2_XY})	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	82	2.83	437
T_{21} (TBL3_YZ)	$d_{YZ}(Ru) \rightarrow \pi^*_{BL3}$	84	2.95	420
	$d_{YZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Pd)$	14		
T_{22} (T_{MLCT})	$d_{XZ}(Pd) \rightarrow \pi^*_{BL1}$	47	2.97	417
	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL1}$	39		
$T_{23}\left(\mathbf{T_{IL}}\right)$	$n_{BL} \rightarrow \pi^*_{BL1}$	89	2.99	414
T_{24} (T_{CS_YZ})	$d_{YZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Pd)$	85	3.02	410
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL3}$	14		
T_{25} (T _{BL3_XZ})	$d_{XZ}(Ru) \rightarrow \pi^*_{BL3}$	71	3.08	402
	$d_{XZ}(Ru) \rightarrow d^*_{X^2-Y^2}(Pd)$	13	-	
T ₂₆	$d_{YZ}(Pd) \rightarrow \pi^*_{BL3}$	21	3.10	399
	$\pi_{\rm BL}[220] \to \pi^*_{\rm BL1}$	13		
$T_{27} (T_{BL3_XY})$	$d_{XY}(Ru) \rightarrow \pi^*_{BL3}$	82	3.11	398
	$d_{XY}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Pd)$	13		

Table S8 Vertical excitation energies (VEE), wavelengths (λ) and singly-excited configurations of the main triplet excited states calculated at the S₀ geometry for **RuPdCl**₂.

$T_{28} \left(\mathbf{T_{Ru}}_{YZ} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{YZ}(Ru) \rightarrow d^*{}_{X^2 \cdot Y^2}(Ru)$	76	3.16	392
T_{29} (Tcs_xz)	$d_{XZ}(Ru) \rightarrow d^*_{X^2-Y^2}(Pd)$	82	3.17	391
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL3}$	16		
T_{30} (T _{CS_XY})	$d_{XY}(Ru) \rightarrow d^*_{X^2-Y^2}(Pd)$	85	3.17	390
	$d_{XY}(Ru) \rightarrow \pi^*_{BL3}$	14		
$T_{31} (T_{Ru}YZ_z^2)$	$d_{YZ}(Ru) \rightarrow d^*Z^2(Ru)$	53	3.18	389
$T_{39} \left(\mathbf{T_{Ru}}_{XY} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XY}(Ru) \rightarrow d^* \chi^2 - \chi^2(Ru)$	59	3.40	364
	$d_{XZ}(Ru) \rightarrow d^*_Z(Ru)$	23		
$T_{43} \left(\mathbf{T_{Ru}}_{XZ} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XZ}(Ru) \rightarrow d^* X^2 - Y^2(Ru)$	40	3.51	353
	$d_{XY}(Ru) \rightarrow d^*_Z(Ru)$	32		
T_{44} ($T_{Ru}_{XZ}^{2}$)	$d_{XZ}(Ru) \rightarrow d^*_Z(Ru)$	49	3.52	352
	$d_{XY}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	24		
$T_{49} \left(\mathbf{T_{Ru}}_{XY} \mathbf{z}^2 \right)$	$d_{XZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	42	3.58	346
	$d_{XY}(Ru) \rightarrow d^*Z^2(Ru)$	36		

State	Transition	Weight (%)	VEE (eV)	λ (nm)
$T_1 (T_{BL1_YZ})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	61	2.23	556
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	26		
$T_2 (T_{BL1_XZ})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	58	2.36	525
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	28		
$T_3 (T_{BL4_YZ})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	34	2.37	522
	$d_{YZ}(Ru) \rightarrow \pi^*_{BI4}$	25		
	$d_{YZ}(Ru) \rightarrow \pi^*_{bpv1}$	10		
$T_4 (T_{BL4 XZ})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	33	2.43	510
/	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	28		
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	14		
T ₅ (T _{BL1} xy)	$d_{XY}(Ru) \rightarrow \pi^*_{BL1}$	77	2.43	509
$T_6 (T_{bpv2} YZ)$	$d_{YZ}(Ru) \rightarrow \pi^*_{bpv2}$	79	2.49	498
$T_7 (T_{bpv1} YZ)$	$d_{YZ}(Ru) \rightarrow \pi^*_{hpv1}$	68	2.51	493
/ (~ F J/	$d_{\rm YZ}({\rm Ru}) \rightarrow \pi^*_{\rm BI4}$	15		
T8 (TPt VZ)	$d_{yz}(Pt) \rightarrow d^*x^2 \cdot y^2(Pt)$	65	2.56	484
Τ.	$\frac{dyz(Pt) \rightarrow d^{*}x^{2}y^{2}(Pt)}{dyz(Pt) \rightarrow d^{*}x^{2}y^{2}(Pt)}$	24	2.57	483
_ ,	$d_{\rm VZ}({\rm Ru}) \rightarrow \pi^*_{\rm BI4}$	12	,	
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	10		
T_{10} (T _{Pt} z^2)	$\frac{dz^2(Pt) \rightarrow d^*x^2 \cdot y^2(Pt)}{dz^2(Pt)}$	88	2.58	479
T_{11} (T _{bnv2} xy)	$d_{xy}(Ru) \rightarrow \pi^*_{hny2}$	72	2.61	475
- 11 (- *P3--11)	$d_{xz}(Ru) \rightarrow \pi^*_{BI4}$	12		
T_{12} (T _{bnv1} xy)	$d_{xy}(Ru) \rightarrow \pi^*_{hny1}$	30	2.63	471
- 12 (- *PJ1 _ 11)	$d_{\rm XV}({\rm Ru}) \rightarrow \pi^*_{\rm BI4}$	13		
	$d_{\rm VZ}({\rm Pt}) \rightarrow \pi^*_{\rm BL3}$	12		
T_{13} (TBL2 YZ)	$d_{\rm VZ}({\rm Ru}) \rightarrow \pi^*_{\rm BL2}$	78	2.64	470
T_{14} (TBL4 XY)	$d_{\rm XV}({\rm Ru}) \rightarrow \pi^*_{\rm BL4}$	47	2.68	462
14 ($d_{xy}(Ru) \rightarrow \pi^*_{hnv1}$	23		
	$d_{xz}(Ru) \rightarrow \pi^*_{hnv2}$	17		
T_{15} (Trl 2 xz)	$d_{\rm XZ}({\rm Ru}) \rightarrow \pi^*_{\rm BL2}$	46	2.73	453
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	16		
T_{16} (T _{Pt} xz)	$d_{XZ}(Pt) \rightarrow d^*x^2 y^2(Pt)$	85	2.76	449
T_{17} (T _{bpv1} xz)	$d_{XZ}(Ru) \rightarrow \pi^*_{hnv1}$	54	2.77	448
	$d_{XZ}(Ru) \rightarrow \pi^*_{BI4}$	13		
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	10		
T_{18} (T _{bpv2} xz)	$d_{XZ}(Ru) \rightarrow \pi^*_{hnv2}$	56	2.80	442
	$d_{XY}(Ru) \rightarrow \pi^*_{bpv1}$	24		
$T_{19} \left(T_{BL2 XY} \right)$	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	78	2.82	439
T ₂₀	$d_{XZ}(Pt) \rightarrow \pi^*_{BL3}$	75	2.84	437
T_{21} (T_{MLCT})	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	65	2.88	430
/	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL1}$	22		
T_{22} (T _{BL3_YZ})	$d_{YZ}(Ru) \rightarrow \pi^*_{BL3}$	59	2.91	425
T ₂₃	$d_{YZ}(Ru) \rightarrow \pi^*_{BL3}$	39	2.92	425
-	$\pi_{\mathrm{BL}}[221] \rightarrow \pi^*_{\mathrm{BL}1}$	12		
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL1}$	12		
T_{24}	$d_Z^2(Pt) \rightarrow \pi^*_{BL3}$	52	2.93	423
	$d_Z^2(Pt) \rightarrow \pi^*_{BL1}$	30		
T_{25} (T _{IL})	$n_{BL} \rightarrow \pi^*_{BL1}$	76	2.99	414
	$\pi_{\mathrm{BL}}[217] \rightarrow \pi^*_{\mathrm{BL}1}$	12		
T ₂₆	$d_{YZ}(Pt) \rightarrow \pi^*_{BL1}$	55	3.01	412
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	26		
T ₂₇ (T _{BL3_XZ})	$d_{XZ}(Ru) \rightarrow \pi^*_{BL3}$	94	3.06	404
T_{28} (T _{BL3_XY})	$d_{XY}(Ru) \rightarrow \pi^*_{BL3}$	98	3.07	403
T_{29} (T_{Pt_XY})	$d_{XY}(Pt) \rightarrow d^* x^2 - y^2(Pt)$	92	3.09	401
$T_{30} \left(\mathbf{T_{Ru}}_{\mathbf{YZ}} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{YZ}(Ru) \rightarrow d^* x^2 - y^2(Ru)$	77	3.16	392
$T_{32} (\mathbf{T_{Ru}}_{YZ}\mathbf{z}^2)$	$d_{YZ}(Ru) \rightarrow d^*z^2(Ru)$	53	3.18	389
$T_{40} \left(\mathbf{T_{Ru}}_{\mathbf{XY}} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XY}(Ru) \rightarrow d^* x^2 - y^2(Ru)$	59	3.40	364

Table S9 Vertical excitation energies (VEE), wavelengths (λ) and singly-excited configurations of the main triplet excited states calculated at the S₀ geometry for **RuPtCl₂**.

	$d_{XZ}(Ru) \rightarrow d^*_Z(Ru)$	22		
$T_{43} \left(\mathbf{T_{Ru}}_{XZ} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	38	3.51	353
	$d_{XY}(Ru) \rightarrow d^*_Z(Ru)$	33		
T_{44} ($T_{Ru}XZ_Z^2$)	$d_{XZ}(Ru) \rightarrow d^*_Z(Ru)$	47	3.52	352
	$d_{XY}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	23		
$T_{49} (T_{Ru}XY_z^2)$	$d_{XZ}(Ru) \rightarrow d^* x^2 - y^2(Ru)$	41	3.58	346
	$d_{XY}(Ru) \rightarrow d^*_Z(Ru)$	35		
$T_{66} (T_{CS_YZ})$	$d_{YZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Pt)$	99	3.87	320
T_{75} (T_{CS_XZ})	$d_{XZ}(Ru) \rightarrow d^*_{X^2-Y^2}(Pt)$	99	4.02	308
$T_{77} (T_{CS_XY})$	$d_{XY}(Ru) \rightarrow d^*_{X^2-Y^2}(Pt)$	99	4.03	307

State	Transition	Weight (%)	VEE (eV)	λ (nm)
$T_1 (T_{Pt_YZ})$	$d_{YZ}(Pt) \rightarrow d^*x^2 - y^2(Pt)$	47	2.11	586
· · · ·	$d_Z^2(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	24		
	$d_{XY}(Pt) \rightarrow d^* x^2 - y^2(Pt)$	18		
T_2 (T _{Pt} z^2)	$d_{YZ}(Pt) \rightarrow d^* x^2 y^2(Pt)$	35	2.12	584
- 、 - 、	$d_{Z}^{2}(Pt) \rightarrow d*_{X}^{2} - Y^{2}(Pt)$	31		
	$d_{XY}(Pt) \rightarrow d^*x^2 - y^2(Pt)$	24		
$T_3 (T_{BL1_YZ})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	61	2.23	555
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	25		
T_4 (T_{Pt_XZ})	$d_{XZ}(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	85	2.30	538
	$n_{I}[205] \rightarrow d^{*}x^{2}y^{2}(Pt)$	11		
$T_5 (T_{BL1_XZ})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	61	2.35	526
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	27		
$T_6 (T_{BL4_YZ})$	$d_{YZ}(Ru) \rightarrow \pi^*_{BL1}$	33	2.37	522
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	22		
$T_7 (T_{BL1_XY})$	$d_{XY}(Ru) \rightarrow \pi^*_{BL1}$	75	2.42	511
$T_8 (T_{BL4_XZ})$	$d_{XZ}(Ru) \rightarrow \pi^*_{BL1}$	31	2.43	510
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	31		
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	14		
T ₉ (T _{bpy2_YZ})	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy2}$	80	2.50	496
$T_{10} (T_{bpy1}YZ)$	$d_{YZ}(Ru) \rightarrow \pi^*_{bpy1}$	68	2.52	492
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	13		
T ₁₁	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	17	2.55	486
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL1}$	17		
	$d_{YZ}(Ru) \rightarrow \pi^*_{BL4}$	16		
	$\pi_{BL}[209] \rightarrow \pi^*_{BL1}$	10		
T ₁₂	$d_{XY}(Ru) \rightarrow \pi^*_{BL4}$	22	2.60	477
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	20		
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL1}$	15		
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	10		
$T_{13} (T_{bpy2}XY)$	$d_{XY}(Ru) \rightarrow \pi^*_{bpy2}$	74	2.60	476
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL4}$	12		
T_{14} (T_{BL2_YZ})	$d_{YZ}(Ru) \rightarrow \pi^*_{BL2}$	80	2.65	468
$\mathbf{T}_{15}\left(\mathbf{T}_{\mathbf{Pt}_{\mathbf{X}}\mathbf{Y}}\right)$	$d_{XY}(Pt) \rightarrow d^*{}_{X^2-Y^2}(Pt)$	49	2.65	467
	$d_Z^2(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	39		
$T_{16} (T_{bpy1_XY})$	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	42	2.67	465
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	18		
	$d_{XY}(Ru) \rightarrow \pi^*_{BL4}$	16		
T ₁₇ (Tbl4_xy)	$d_{XY}(Ru) \rightarrow \pi^*_{BL4}$	35	2.69	461
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	26		
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL1}$	17		
T_{18} (Tmlct)	$n_{\rm I} \rightarrow d^* {}_{\rm X}{}^2 {}_{\rm Y}{}^2 ({\rm Pt})$	33	2.75	451
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL3}$	32		
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	26		
T ₁₉	$n_I \rightarrow d^* X^2 - Y^2(Pt)$	34	2.76	448
	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	26		
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	13		
$T_{20} (T_{bpy1}xz)$	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy1}$	28	2.77	448
	$n_{\rm I} \rightarrow d^* {\rm X}^2 {\rm -Y}^2({\rm Pt})$	26		
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	11		
T ₂₁	$d_{YZ}(Pt) \rightarrow \pi^*_{BL1}$	36	2.78	446
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	21		
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	13		4.5-
$T_{22} (T_{bpy2}xz)$	$d_{XZ}(Ru) \rightarrow \pi^*_{bpy2}$	52	2.80	443
	$d_{XY}(Ru) \rightarrow \pi^*_{bpy1}$	19	2.01	
1 ²³	$n_{\rm I} \rightarrow \pi^*_{\rm BL1}$	92	2.81	440
T_{24} (T _{BL2_XY})	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	67	2.81	440

Table S10 Vertical excitation energies (VEE), wavelengths (λ) and singly-excited configurations of the main triplet excited states calculated at the S₀ geometry for **RuPtI₂**.

T ₂₅	$d_{XZ}(Pt) \rightarrow \pi^*_{BL3}$	30	2.82	440
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	25		
	$d_{XY}(Ru) \rightarrow \pi^*_{BL2}$	12		
T ₂₆	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	27	2.88	430
	$\pi_{\rm BL}[209] \rightarrow \pi^*_{\rm BL1}$	26		
	$d_{XZ}(Ru) \rightarrow \pi^*_{BL2}$	19		
T ₂₇	$d_Z^2(Pt) \rightarrow \pi^*_{BL3}$	32	2.89	429
	$d_{XY}(Pt) \rightarrow \pi^*_{BL3}$	25		
	$d_Z^2(Pt) \rightarrow \pi^*_{BL1}$	20		
	$d_{XY}(Pt) \rightarrow \pi^*_{BL1}$	17		
T_{28} (TBL3_YZ)	$d_{YZ}(Ru) \rightarrow \pi^*_{BL3}$	98	2.92	424
$T_{29}(T_{IL})$	$n_{BL} \rightarrow \pi^*{}_{BL1}$	87	2.99	415
T ₃₀	$n_I \rightarrow \pi^*{}_{BL3}$	92	3.03	409
T_{32} (TBL3_XZ)	$d_{XZ}(Ru) \rightarrow \pi^*_{BL3}$	86	3.06	405
	$d_{YZ}(Pt) \rightarrow \pi^*_{BL2}$	10		
T ₃₃ (T BL3_XY)	$d_{XY}(Ru) \rightarrow \pi^*_{BL3}$	98	3.06	404
$T_{38} \left(\mathbf{T_{Ru}}_{YZ} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{YZ}(Ru) \rightarrow d^* x^2 - y^2(Ru)$	73	3.17	391
$T_{40} (T_{Ru}YZ_Z^2)$	$d_{YZ}(Ru) \rightarrow d^*z^2(Ru)$	50	3.19	389
T_{45} (T_{CS_YZ})	$d_{YZ}(Ru) \rightarrow d^*_{X^2-Y^2}(Pt)$	99	3.31	374
$T_{47} \left(\mathbf{T_{Ru}}_{XY} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XY}(Ru) \rightarrow d^* x^2 - y^2(Ru)$	58	3.40	364
	$d_{XZ}(Ru) \rightarrow d^*_Z(Ru)$	22		
T_{48} (T_{CS_XY})	$d_{XY}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Pt)$	98	3.45	359
T ₄₉ (T _{CS_XZ})	$d_{XZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Pt)$	99	3.45	359
$T_{55} \left(\mathbf{T_{Ru}}_{\mathbf{XZ}} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XZ}(Ru) \rightarrow d^* x^2 - y^2(Ru)$	36	3.51	353
	$d_{XY}(Ru) \rightarrow d^*_Z(Ru)$	35		
$T_{56} (T_{Ru} Z^2)$	$d_{XZ}(Ru) \rightarrow d^*_Z(Ru)$	42	3.52	352
	$d_{XY}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	17		
$T_{60} (T_{Ru}XY_z^2)$	$d_{XZ}(Ru) \rightarrow d^*{}_{X^2-Y^2}(Ru)$	42	3.58	346
	$d_{XY}(Ru) \rightarrow d^*_Z(Ru)$	35		

State	Transition	Weight (%)	VEE (eV)	λ (nm)
$T_1 (T_{BL1 YZ})$	$d_{YZ}(Os) \rightarrow \pi^*_{BL1}$	58	1.96	633
· - /	$d_{YZ}(Os) \rightarrow \pi^*_{BL4}$	26		
$T_2 (T_{Pt_YZ})$	$d_{YZ}(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	62	2.11	586
	$d_Z^2(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	20		
$T_3 (T_{BL4_XZ})$	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	34	2.12	585
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	28		
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	20		
$T_4 (T_{BL4_YZ})$	$d_{YZ}(Os) \rightarrow \pi^*_{BL1}$	33	2.12	585
	$d_{YZ}(Os) \rightarrow \pi^*_{BL4}$	31		
$T_5 (T_{Pt}z^2)$	$d_Z^2(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	61	2.14	580
	$d_{YZ}(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	19		
	$d_{XY}(Pt) \rightarrow d^*_{X^2-Y^2}(Pt)$	13		
$T_6 (T_{BL1_XZ})$	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	49	2.20	563
	$d_{YZ}(Os) \rightarrow \pi^*_{BL2}$	12		
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	12		
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	11		
T ₇ (T_{BL1_Xy})	$d_{XY}(Os) \rightarrow \pi^*_{BL1}$	56	2.20	562
	$d_{YZ}(Os) \rightarrow \pi^*_{BL4}$	14		
	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	11		
T ₈ (T _{bpy1_YZ})	$d_{YZ}(Os) \rightarrow \pi^*_{bpy1}$	57	2.22	558
	$d_{XY}(Os) \rightarrow \pi^*_{BL1}$	21		
	$d_{YZ}(Os) \rightarrow \pi^*_{BL4}$	12		
$T_9 (T_{bpy2}YZ)$	$d_{YZ}(Os) \rightarrow \pi^*_{bpy2}$	85	2.24	553
$\mathbf{T}_{10} \left(\mathbf{T}_{\mathbf{Pt}} \mathbf{XZ} \right)$	$d_{XZ}(Pt) \rightarrow d^*x^2 - Y^2(Pt)$	85	2.30	538
	$n_{\rm I}[205] \to d^*_{\rm X^2-Y^2}({\rm Pt})$	11		
$T_{11} \left(\mathbf{T_{bpy2}}_{XY} \right)$	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	67	2.35	527
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	16		
T ₁₂ (Tbl4_xy)	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	32	2.37	522
	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	17		
	$d_{XY}(Os) \rightarrow \pi^*_{BL1}$	14		
	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	12		
$T_{13} (T_{BL2}YZ)$	$d_{YZ}(Os) \to \pi^*_{BL2}$	71	2.38	520
T_{14} (T _{bpy1_XY})	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	47	2.39	519
	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	31		
	$\frac{d_{XZ}(Os) \rightarrow \pi^*_{bpy2}}{1}$	16	2.40	100
I_{15} ($I_{BL2}XZ$)	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	46	2.48	499
	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	15		
(F)	$\frac{d_{XY}(Os) \rightarrow \pi^*_{bpy1}}{1 \qquad (O)}$	11	2.52	100
1 16 (1 bpy1_XZ)	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	47	2.53	490
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	17		
$\mathbf{T} = (\mathbf{T}_{1} + \mathbf{r}_{2})$	$\frac{d_{XY}(OS) \rightarrow \pi^*_{bpy2}}{d_{xy}(OS) \rightarrow \pi^*}$	50	2.58	470
1 17 (1 bpy2_XZ)	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	50	2.38	4/9
	$d_{XY}(Os) \rightarrow \pi^*_{bpyl}$	10		
Τ	$d_{YZ}(OS) \rightarrow \pi_{BLI}$	27	2.50	178
1 18	$d_{YZ}(\mathbf{r}_{t}) \rightarrow \pi^{*}_{BL1}$	27	2.39	470
	$d_{XZ}(OS) \rightarrow \pi_{bpy2}$ $d_{VT}(Pt) \rightarrow \pi^* px c$	22		
	$d_{YZ}(\mathbf{r}t) \rightarrow \pi^* B_{L3}$	22	2.60	177
$\frac{1}{19} \left(\frac{1}{\text{BL2}_XY} \right)$	$d_{XY}(Os) \rightarrow \pi^*_{BL2}$	0/	2.00	4//
1 20 (1 Pt_XY)	$d_{xY}(\Gamma t) \rightarrow d_{X-Y}(\Gamma t)$ $d_{z}^{2}(\mathbf{P}t) \rightarrow d^{*} v^{2} v^{2}(\mathbf{P}t)$	15	2.04	407
	$\frac{u_{Z}(1) \rightarrow u_{X-Y}(\Gamma t)}{d_{YZ}(\Omega s) \rightarrow \pi^{*} r s^{*}}$	15	2.65	169
$\frac{121(1BL3_YZ)}{T_{22}(T_{22}, C_{22})}$	$u_{YZ}(OS) \rightarrow \pi^2 BL3$ $n_X \rightarrow d^{*} c^2 c^2(Dt)$	27	2.05	400
1 22 (1 MLCT)	$ \begin{array}{c} \mathbf{n}_{I} \rightarrow \mathbf{u} \cdot \mathbf{X} \cdot \mathbf{Y} (\mathbf{r}_{I}) \\ \mathbf{d}_{\mathbf{V}_{T}}(\mathbf{P}_{I}) \rightarrow \pi^{*} \\ \end{array} $	30	2.15	430
	$d_{XZ}(\mathbf{Pt}) \rightarrow \pi^*_{BL3}$ $d_{YZ}(\mathbf{Pt}) \rightarrow \pi^*_{BL3}$	10		
T _m	$d_{XZ}(\mathbf{Pt}) \rightarrow \pi^*_{BL1}$	53	2.76	118
1 23	$\pi_{\rm PV}[210] \rightarrow \pi^*_{\rm PV}.$	11	2.70	++0
	WRT[710] , W BFI	11		

Table S11 Vertical excitation energies (VEE), wavelengths (λ) and singly-excited configurations of the main triplet excited states calculated at the S₀ geometry for **OsPtI₂**.

T ₂₄	$n_I \rightarrow d^* {}_{X^2 - Y^2}(Pt)$	55	2.77	447
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	23		
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL3}$	12		
T ₂₅	$d_{XZ}(Pt) \rightarrow \pi^*_{BL1}$	34	2.81	441
	$d_{XZ}(Os) \rightarrow \pi^*_{BL3}$	29		
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL3}$	13		
	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL1}$	10		
T ₂₆	$n_{\rm I} \rightarrow \pi^*_{\rm BL1}$	92	2.83	438
T ₂₇ (Tbl3_xy)	$d_{XY}(Os) \rightarrow \pi^*_{BL3}$	97	2.85	435
T_{28}	$d_{YZ}(Pt) \rightarrow \pi^*_{BL3}$	42	2.86	434
	$\pi_{\mathrm{BL}}[210] \rightarrow \pi^*_{\mathrm{BL}1}$	24		
$T_{29} \left(T_{BL3_XZ} \right)$	$d_{XZ}(Os) \rightarrow \pi^*_{BL3}$	59	2.86	433
	$d_{XZ}(Pt) \rightarrow \pi^*_{BL3}$	23		
T ₃₀	$d_Z^2(Pt) \rightarrow \pi^*_{BL3}$	49	2.91	426
	$d_Z^2(Pt) \rightarrow \pi^*_{BL1}$	30		
	$d_{XY}(Pt) \rightarrow \pi^*_{BL3}$	10		
T ₃₁ (T IL)	$n_{BL} \rightarrow \pi^*{}_{BL1}$	88	2.99	415
T_{32} (T_{CS_YZ})	$d_{YZ}(Os) \rightarrow d^*_{X^2-Y^2}(Pt)$	99	3.03	409
T_{42} (T_{CS}_{XY})	$d_{XY}(Os) \rightarrow d^*_{X^2-Y^2}(Pt)$	98	3.23	384
T_{43} ($T_{CS}xz$)	$d_{XZ}(Os) \rightarrow d^*_{X^2-Y^2}(Pt)$	97	3.23	383
$T_{89} (T_{Os_YZ_Z}^2)$	$d_{YZ}(Os) \rightarrow d^*Z^2(Os)$	52	3.96	312
	$d_{YZ}(Os) \rightarrow [249]$	23		
$T_{91} \left(\mathbf{T}_{\mathbf{0s}_{\mathbf{Y}\mathbf{Z}_{\mathbf{X}}}\mathbf{x}^{2}\mathbf{y}^{2}} \right)$	$d_{YZ}(Os) \rightarrow d^*_X{}^2 - Y^2(Os)$	39	3.98	311
	$d_{YZ}(Os) \rightarrow \pi^*_{BL}[233]$	27		
	$d_{YZ}(Os) \rightarrow [248]$	13		
$T_{109} \left(\mathbf{T_{0s}}_{xy} \mathbf{x}^{2} \mathbf{y}^{2} \right)$	$d_{XY}(Os) \rightarrow d^*_X{^2-Y}^2(Os)$	50	4.26	290
	$d_{XY}(Os) \rightarrow [248]$	16		
	$d_{XZ}(Os) \rightarrow d^*{}_Z^2(Os)$	15		
$T_{119} (T_{Os}xy_2^2)$	$d_{XY}(Os) \rightarrow d^*z^2(Os)$	39	4.34	285
	$d_{XY}(Os) \rightarrow [249]$	16		
	$d_{XZ}(Os) \rightarrow d^*_{X^2 - Y^2}(Os)$	16		
$T_{124} (T_{0s}xz_{2})$	$d_{XZ}(Os) \rightarrow d^*Z^2(Os)$	34	4.36	284
	$d_{XY}(Os) \rightarrow d^* x^2 - y^2(Os)$	16		
	$d_{XZ}(Os) \rightarrow [249]$	14		
$T_{131} (T_{Os}xz_{x}^{2}y^{2})$	$d_{XZ}(Os) \rightarrow d^*x^2 - y^2(Os)$	52	4.41	281
	$d_{XZ}(Os) \rightarrow [248]$	16		
	$d_{XY}(Os) \rightarrow d^*Z^2(Os)$	13		

State	Transition	Weight (%)	VEE (eV)	λ (nm)
T_1 (T _{BL4} yz)	$d_{YZ}(Os) \rightarrow \pi^*_{BL4}$	38	2.05	605
· - /	$d_{YZ}(Os) \rightarrow \pi^*_{bpy1}$	27		
	$d_{YZ}(Os) \rightarrow \pi^*_{BL1}$	25		
$T_2 (T_{BL4}xz)$	$d_{XZ}(Os) \rightarrow \pi^*_{bpv1}$	50	2.18	568
· - /	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	24		
	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	11		
$T_3 (T_{bpy1}YZ)$	$d_{YZ}(Os) \rightarrow \pi^*_{bpy1}$	53	2.19	566
	$d_{YZ}(Os) \rightarrow \pi^*_{BL4}$	38		
$T_4 (T_{bpy2}YZ)$	$d_{YZ}(Os) \rightarrow \pi^*_{bpy2}$	87	2.21	562
$T_5 (T_{BL1_YZ})$	$d_{YZ}(Os) \rightarrow \pi^*_{BL1}$	53	2.32	534
	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	11		
$T_6 (T_{bpy2}XY)$	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	63	2.33	531
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	22		
$T_7 (T_{BL4_XY})$	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	32	2.36	524
. – ,	$d_{XY}(Os) \rightarrow \pi^*_{BL1}$	29		
	$d_{YZ}(Os) \rightarrow \pi^*_{BL1}$	15		
$T_8 (T_{bpy1_XY})$	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	45	2.37	522
	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	24		
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	22		
$T_9 (T_{BL1_XZ})$	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	63	2.43	510
	$d_{YZ}(Os) \rightarrow \pi^*_{BL2}$	17		
$T_{10} (T_{bpy1}xz)$	$d_{XZ}(Os) \rightarrow \pi^*_{bpy1}$	39	2.50	495
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	27		
	$d_{XY}(Os) \rightarrow \pi^*_{bpy2}$	21		
T_{11} (T _{BL2_XZ})	$d_{XY}(Os) \rightarrow \pi^*_{BL1}$	27	2.54	488
	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	26		
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy2}$	13		
T_{12} (T _{BL2} yz)	$d_{YZ}(Os) \rightarrow \pi^*_{BL2}$	70	2.57	482
	$d_{XZ}(Os) \rightarrow \pi^*_{BL1}$	10		
	$d_{XZ}(Os) \rightarrow \pi^*_{BL4}$	10		
T_{13} (T_{bpv2} xz)	$d_{XZ}(Os) \rightarrow \pi^*_{hpv2}$	55	2.57	482
	$d_{XY}(Os) \rightarrow \pi^*_{by1}$	11		
T_{14} (T _{BL1_XY})	$d_{XY}(Os) \rightarrow \pi^*_{BL1}$	32	2.63	472
	$d_{XY}(Os) \rightarrow \pi^*_{bpy1}$	20		
	$d_{XY}(Os) \rightarrow \pi^*_{BL4}$	16		
	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	12		
T ₁₅	$\pi_{ m BL} ightarrow \pi^*_{ m BL1}$	38	2.79	445
	$d_{XZ}(Os) \rightarrow \pi^*_{BL2}$	34		
T_{16} (T _{BL2_XY})	$d_{XY}(Os) \rightarrow \pi^*_{BL2}$	91	2.80	442
T ₁₇	$\pi_{\mathrm{BL}}[200] \rightarrow \pi^*_{\mathrm{BL}1}$	87	2.88	430
$T_{18} \left(\mathbf{T_{IL}} \right)$	$n_{\rm BL} \rightarrow \pi^*_{\rm BL1}$	84	2.99	414
T ₁₉	$\pi_{bpy}[198] \rightarrow \pi^*_{bpy2}$	27	3.17	390
	$\pi_{\mathrm{bpy}}[197] \rightarrow \pi^*_{\mathrm{BL4}}$	17		
	$\pi_{bpy}[197] \rightarrow \pi^*_{bpy1}$	14		
T ₂₀	$\pi_{\mathrm{bpy}}[197] \rightarrow \pi^*_{\mathrm{bpy}2}$	29	3.18	390
	$\pi_{bpy}[198] \rightarrow \pi^*_{BL4}$	20		
	$\pi_{bpy}[198] \rightarrow \pi^*_{bpy1}$	17		
T ₂₁	$\pi_{\mathrm{BL}}[200] \rightarrow \pi^*_{\mathrm{BL2}}$	34	3.28	378
	$\pi_{ m BL} ightarrow \pi^*_{ m BL1}$	15		
	$\pi_{\rm BL}[195] \to \pi^*_{\rm BL1}$	15		
T ₂₂	$\pi_{\mathrm{BL}}[200] \rightarrow \pi^*_{\mathrm{BL}2}$	26	3.29	376
	$\pi_{\mathrm{BL}}[195] \rightarrow \pi^*_{\mathrm{BL}1}$	13		
	$d_{YZ}(Os) \rightarrow \pi^*_{bpy}[211]$	13		
	$\pi_{BL} \rightarrow \pi^*_{BL1}$	11		
T ₂₃	$d_{YZ}(Os) \rightarrow \pi^*_{bpy}[211]$	56	3.29	376
T ₂₄	$d_{XY}(Os) \rightarrow \pi^*_{bpy}[211]$	48	3.35	369

Table S12 Vertical excitation energies (VEE), wavelengths (λ) and singly-excited configurations of the main triplet excited states calculated at the S₀ geometry for **Os**.

	$\overline{d_{YZ}(Os)} \rightarrow \pi^*_{bpy}[214]$	20		
T ₂₅	$d_{YZ}(Os) \rightarrow \pi^*_{bpy}[213]$	41	3.37	368
	$d_{XZ}(Os) \rightarrow \pi^*_{bpy}[211]$	17		
	$d_{YZ}(Os) \rightarrow \pi^*_{bpy}[215]$	12		
T ₂₆	$d_{YZ}(Os) \rightarrow \pi^*_{bpy}[215]$	47	3.47	357
	$d_{XY}(Os) \rightarrow \pi^*_{bpy}[215]$	15		
T_{27}	$\pi_{\mathrm{BL}} \rightarrow \pi^*_{\mathrm{BL2}}$	39	3.50	354
	$\pi_{\mathrm{BL}}[200] \rightarrow \pi^*_{\mathrm{BL4}}$	26		
	$\pi_{\mathrm{BL}}[200] \rightarrow \pi^*_{\mathrm{bpyl}}$	12		
T_{28}	$\sigma_{BL}[199] \rightarrow \pi^*_{BL1}$	87	3.55	349
T ₂₉	$d_{XZ}(Os) \rightarrow \pi^*_{bpy}[211]$	49	3.55	349
	$d_{YZ}(Os) \rightarrow \pi^*_{bpy}[213]$	33		
T ₃₀	$\pi_{\rm BL} \rightarrow \pi^*_{\rm BL3}$	39	3.56	348
	$\pi_{ m BL} ightarrow \pi^*_{ m BL4}$	12		
	$\pi_{\mathrm{BL}}[195] \rightarrow \pi^*_{\mathrm{BL4}}$	11		
T ₃₄ (T BL3_YZ)	$d_{YZ}(Os) \rightarrow \pi^*_{BL3}$	98	3.66	338
T_{41} (TBL3_XZ)	$d_{XZ}(Os) \rightarrow \pi^*_{BL3}$	63	3.80	326
	$\pi_{BL}[200] \rightarrow \pi^*_{BL3}$	19		
T ₄₇ (T BL3_XY)	$d_{XY}(Os) \rightarrow \pi^*_{BL3}$	98	3.88	319
$T_{48} \left(\mathbf{T}_{0\mathbf{s}_\mathbf{Y}\mathbf{Z}_\mathbf{X}^{2}\mathbf{Y}^{2}} \right)$	$d_{YZ}(Os) \rightarrow d^*x^2 - x^2(Os)$	64	3.95	314
	$d_{YZ}(Os) \rightarrow [227]$	24		
$T_{50} (T_{Os_YZ_z^2})$	$d_{YZ}(Os) \rightarrow d^*_Z(Os)$	36	3.96	313
	$d_{YZ}(Os) \rightarrow [228]$	14		
	$\pi_{\mathrm{BL}}[200] \rightarrow \pi^*_{\mathrm{BL3}}$	11		
$T_{69} \left(\mathbf{T}_{08} \mathbf{X} \mathbf{Y} \mathbf{X}^2 \mathbf{Y}^2 \right)$	$d_{XY}(Os) \rightarrow d^*_X{^2-Y}^2(Os)$	45	4.27	290
	$d_{XZ}(Os) \rightarrow d^*_Z(Os)$	22		
	$d_{XY}(Os) \rightarrow [227]$	16		
T_{75} (T os_ XY _ Z ²)	$d_{XY}(Os) \rightarrow d^*_Z(Os)$	42	4.34	285
	$d_{XZ}(Os) \rightarrow d^*x^2 - y^2(Os)$	19		
	$d_{XY}(Os) \rightarrow [228]$	15		
$T_{77} \left(\mathbf{T}_{\mathbf{Os}} \mathbf{x} \mathbf{z} \mathbf{z}^2 \right)$	$d_{XZ}(Os) \rightarrow d^*_Z(Os)$	37	4.35	285
	$d_{XY}(Os) \rightarrow d^* X^2 - Y^2(Os)$	16		
	$d_{XZ}(Os) \rightarrow [228]$	14		
	$d_{XY}(Os) \rightarrow \pi^*_{BL}[216]$	13		
$T_{85} \left(\mathbf{T}_{\mathbf{0s}_\mathbf{XZ}_\mathbf{X}^2\mathbf{Y}^2} \right)$	$d_{XZ}(Os) \rightarrow d^*{}_{X^2-Y^2}(Os)$	32	4.42	280
	$d_{XY}(Os) \rightarrow d^*Z^2(Os)$	14		
	$\pi_{bpy}[197] \rightarrow \pi^{*}_{BL2}$	11		
	$d_{xz}(Os) \rightarrow [227]$	11		