

Supplementary Information

Sodium Bismuth Dichalcogenides: Candidates of Ferroelectric High-mobility Semiconductors for Multifunctional Applications

Tingting Zhong,¹ Minghu Pan,¹ Guoying Gao,¹ Huahua Fu,¹ Menghao Wu,^{1*} Jun-Ming Liu²

¹School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

²Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

Table S1. Fitted parameters A, B, C in Landau-Ginzburg expansion.

	A	B	C
NaBiS₂	-5.97	-29.27	771.26
NaBiSe₂	-5.26	-98.23	1223.03

Table S2. Calculated effective mass m^* (with m_0 being the static electron mass), deformation potential E_i , elastic modulus C and carrier mobility u along the x and y directions.

	m_x^*/m_0	m_y^*/m	E_{ix} o (eV)	E_{iy}	$C_{x,3D}$ ($\text{J} \cdot \text{m}^3$)	$C_{y,3D}$ ($\text{J} \cdot \text{m}^3$)	$u_{x,3D}$ ($10^3 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$)	$u_{y,3D}$ ($10^3 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$)
3% biaxial strain NaBiS ₂	0.21	0.38	-7.47	-4.52	0.56×10^{11}	0.50×10^{11}	3.04	1.68
Na _{0.5} K _{0.5} BiS ₂	0.37	0.42	-6.37	-3.93	0.38×10^{11}	0.33×10^{11}	0.69	1.14
NaBi _{0.75} V _{0.25} S ₂	0.26	0.43	-4.61	-6.11	0.44×10^{11}	0.36×10^{11}	3.68	0.49

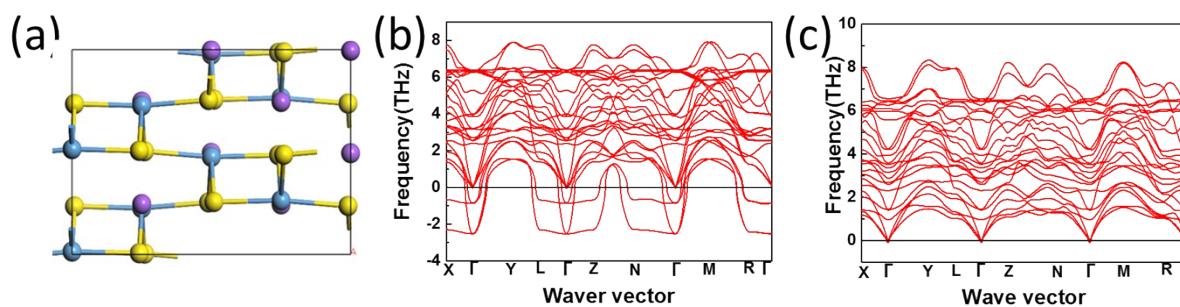


Figure S1. (a)Antiferroelectric configuration of NaBiS_2 . Phonon dispersion of (b)paraelectric and (c)FE phase for NaBiS_2 calculated by using Phonopy.

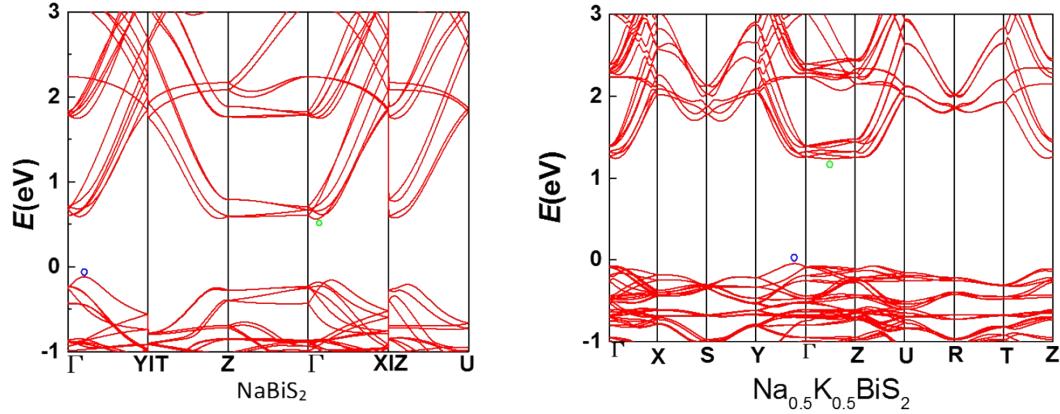


Figure S2. Bandstructures of NaBiS_2 and $\text{Na}_{0.5}\text{K}_{0.5}\text{BiS}_2$ by using PBE+SOC.

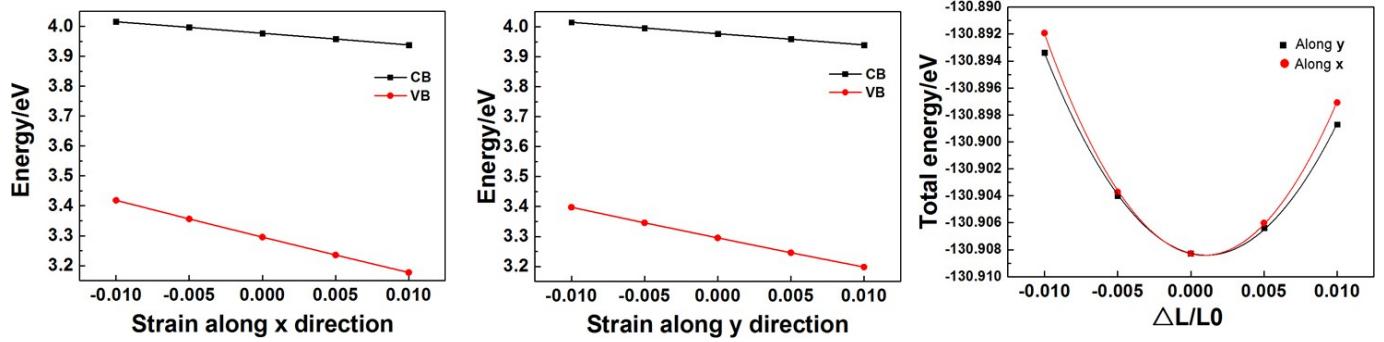


Figure S3. E_1 obtained by linearly fitting the energy shift of the band energy position (CBM and VBM) with respect to a small lattice strain along the $-x$ (left) and $-y$ (middle) direction, and C_{111} calculated based on the quadratic relation between the total energy and lattice dilations under strain (right).

Figure S3. E_1 obtained by linearly fitting the energy shift of the band energy position (CBM and VBM) with respect to a small lattice strain along the $-x$ (left) and $-y$ (middle) direction, and C_{111} calculated based on the quadratic relation between the total energy and lattice dilations under strain (right).

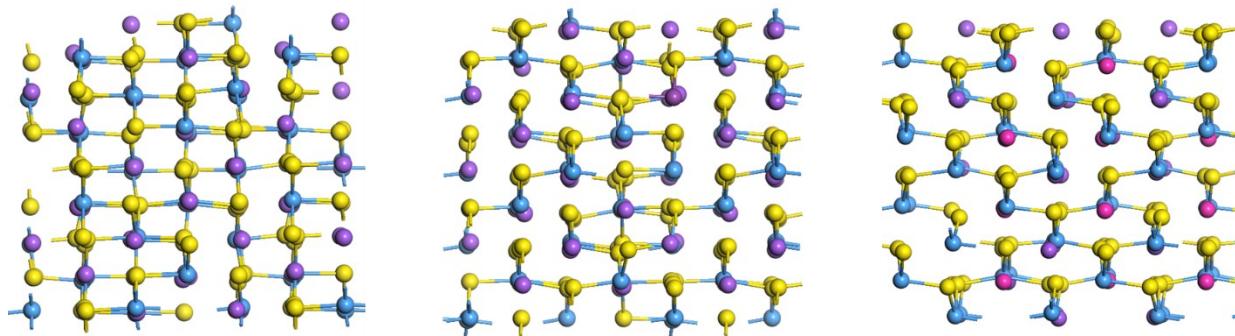


Figure S4. Snapshot of the equilibrium structures at 300K for pristine NaBiS_2 (left), NaBiS_2 upon a 3% biaxial strain at xy plane (middle), and $\text{Na}_{0.5}\text{K}_{0.5}\text{BiS}_2$ (right) at the end of 10ps of ab initio MD simulation with a canonical ensemble (time step is set as 1fs).