Supporting Information

In situ, operando studies on size and structure of supported Pt catalysts under supercritical conditions by simultaneous synchrotron-based x-ray techniques

Sungwon Lee¹, Sungsik Lee¹, Duygu Gerceker², Mrunmayi Kumbhalkar², Kamila M. Wiaderek¹, Madelyn R. Ball², Manos Mavrikakis², James Dumesic², and Randall E. Winans^{1,*}

¹X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 United States

²Department of Chemistry and Biological Engineering, University of Wisconsin, Madison, WI 53706 United States

Figure S1. STEM images of $Pt-Sn/SiO_2$ catalysts, (A) Pt (B) Pt_3Sn_1 (C) Pt_1Sn_1 (D) Pt_1Sn_3

Figure S2. The fitting results of SAXS profiles of Pt, Pt_3Sn_1 , Pt_1Sn_1 , and Pt_1Sn_3 obtained from the model curve fitting with Schultz-Zimm distribution : Red line shows the fitted result, gray circles indicates the raw data, and the dashed lines shows the model curve. The broad scattering below 0.1 A⁻¹ is from support material (SiO₂).

(a) Pt

(d) Pt₁Sn₃

Figure S3. Fourier transform magnitude of the Pt L3 data and fit (k^3 weighed) of SiO₂ supported Pt, Pt₃Sn₁, Pt₁Sn₁ and Pt foil with a vertical offset added for clarity.

Table S1. Structural	I parameter determined	from EXAFS analy	ysis of Pt and Pt-Sn/S	iO ₂ catalysts.
----------------------	------------------------	------------------	------------------------	----------------------------

	Pt/SiO ₂	Pt ₃ Sn ₁ /SiO ₂		Pt_1Sn_1/SiO_2	
	Pt-Pt	Pt-Pt	Pt-Sn	Pt-Pt	Pt-Sn
N	7.2 ± 0.9	4.9 ± 1.2	0.7 ± 0.3	5.6 ± 0.7	0.8 ± 0.2
R (Å)	2.70	2.70	2.59	2.71	2.58
σ^2 (Å ²)	0.01 ± 0.001	0.007 ± 0.002	0.007 ± 0.002	0.007 ± 0.002	0.007 ± 0.002
$\Delta E (eV)$	5.6	3.6	-0.6	3.5	3.5
R factor	0.0088	0.0069		0.010	

Figure S4. XANES spectra of (A) normalized Sn K-edge and (B) derivative plot of SiO₂ supported Pt_3Sn_1 , Pt_1Sn_1 , Pt_1Sn_3 and Sn foil with a vertical offset added for clarity

Figure S5. Pt L₂ XANES for Pt-Sn/SiO₂ catalysts in air, Helium and the presence of toluene with respect to Pt foil. (A) Pt (b) Pt_1Sn_1 (C) Pt_1Sn_3 (Pt_3Sn_1 is not shown)

Figure S6. n-dodecane conversion measured over $Pt-Sn/SiO_2$ catalysts under supercritical conditions (*normalized with Pt)

Figure S7. Catalytic selectivity of Pt-Sn/SiO₂ catalysts in the temperature range of 400 – 600 °C at 750 psi with n-dodecane; (A) Pt (B) $Pt_3Sn_1(C) Pt_1Sn_1(D) Pt_1Sn_3$ (a normalized with conversion yields; ^b normalized by conversion yields at 500 °C)

Table S2. Products of n-

Pt₃Sn₁/SiO₂ catalysts at

dodecane cracking over

600 °C under 750 psi.

Time(min.)	Products
1.661	2-Hexene
1.796	3-methyl-cyclopentane
1.897	Methyl-cyclopentane
1.954	Benzene
2.081	1-Heptene
2.134	Heptane
2.251	2-Heptene
2.348	Methyl-cyclohexane
2.5	4-methyl-cyclohexene
2.634	Dimethyl-cyclopentane
2.785	Toluene
3.04	1-Octene
3.163	Octane
3.263	2-Octene
3.606	1,6-dimethyl-cyclohexene
3.769	1-ethyl-cyclohexene
4.307	Ethylbenzene
4.47	Xylene
4.899	1-nonene
4.993	o-xylene
5.094	Nonane
5.243	2-nonene
6.5	Propylbenzene
6.713	1-ethyl-2-methylbenzene
7.499	1-decene
7.586	Trimethylbenzene
7.736	Decane
7.907	4-decene
8.148	2-decene
8.78	Cyclopropylbenzene
10.263	Alkylbenzene
10.403	1-undecene
10.651	Undecane
12.089	Alkylbenzeene
12.515	Methyl-undecane
12.998	IS
13.335	dodecane
13.996	dodecene
16.319	Tridecane

Figure S8. The fitting results of SAXS profiles of (a) Pt/γ -Al₂O₃ and (b) $Pt/Mg(Al)O_x$ as well as (c)Pt/SiO₂ obtained from the model curve fitting with Schultz-Zimm distribution : Red line shows

the fitted result, gray circles indicates the raw data (background subtracted), and the dashed lines shows the model curve.

Figure S9. Size distribution profiles of Pt catalyst supported on (A) γ -Al₂O₃ and (B) Mg(Al)O_x in the temperature range of 25 to 500 °C at 750 psi with n-dodecane. Inset shows the corresponding FWHM values of catalysts.

Figure S10. Catalytic selectivity^a of Pt catalyst supported on (A) γ -Al₂O₃ and (B) Mg(Al)O_x in the temperature range of 400 – 500 °C at 750 psi with n-dodecane (a normalized with conversion yield)