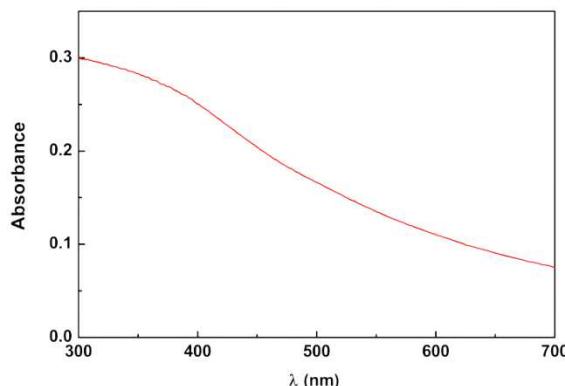


Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers


Sérgio R. S. Veloso,^a Carlos A. B. Magalhães,^a Ana Rita O. Rodrigues,^a H. Vilaça,^b Maria-João R. P. Queiroz,^b J. A. Martins,^b Paulo J. G. Coutinho,^a Paula M. T. Ferreira,^b and Elisabete M. S. Castanheira^{a,†}

^a Centro de Física (CFUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

^b Centro de Química (CQUM), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Supplementary Information

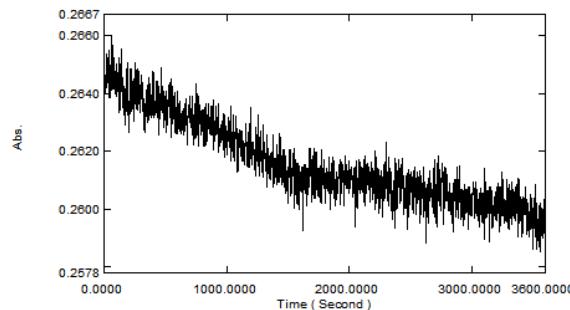

1. UV-Visible absorption spectrum of MnFe₂O₄ nanoparticles

Figure S1. UV-visible absorption spectrum of a dilute dispersion of MnFe₂O₄ nanoparticles in water.

2. Evidence of no aggregation of the nanoparticles during gel formation

From UV-Visible absorption measurements overtime (Figure S2), it can be observed that the nanoparticles/gel dispersion takes about one hour to lose 0.02% of its initial transmittance, with no evidence of aggregation. As the hydrogels/magnetogels take in average 2-3 hours to form a stable gel, most (>90%) of the nanoparticles will remain encapsulated at the used concentration.

Figure S2. UV-visible absorption spectrum of nanoparticles/hydrogel dispersion over time.

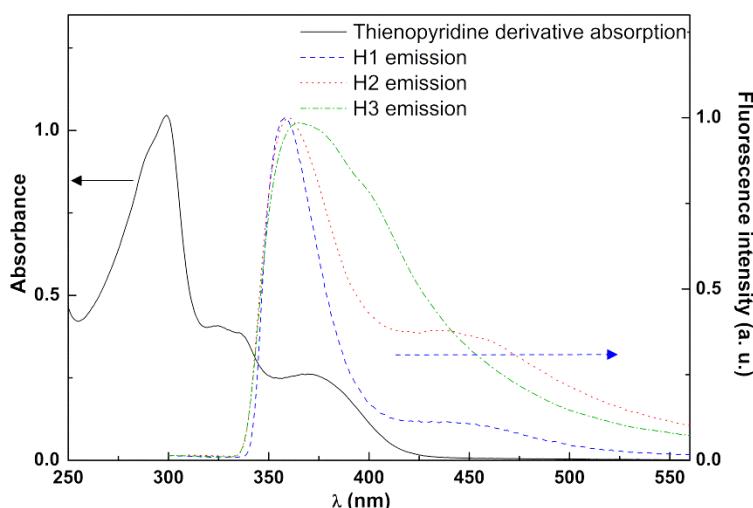
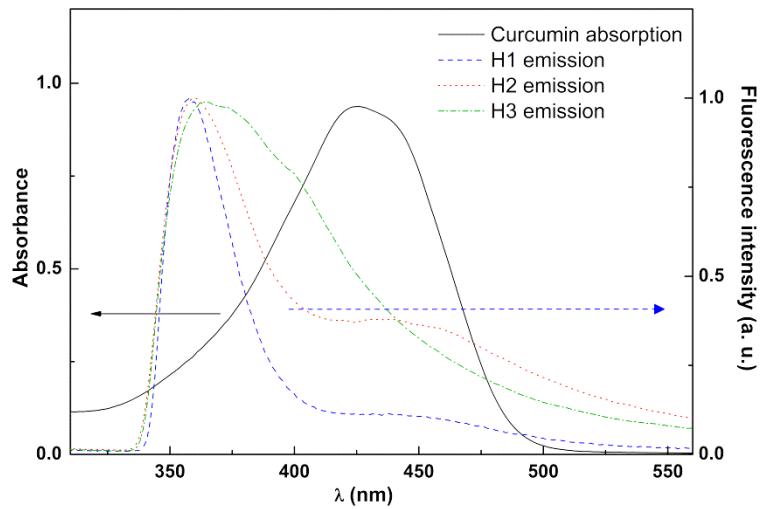

3. FTIR absorption spectrum assignments of hydrogels and magnetogels

Table S1. Vibrational wavenumber (in cm^{-1}) assignments according to previously reported values for naproxen and amino acids. The symbols are ν : stretching; δ : bending; $\delta_{\text{o.o.p}}$: out-of-plane bending; as : asymmetric; s : symmetric.


Assignments	Vibrational wavenumber (cm^{-1})		
	H1	H2	H3
ν C-N	-	1076	-
δ C-H _{ring}	-	1095	-
ν_{s} C-O-C	1030	1030	1030
ν C _{ext} -C _{ring}	-	1209	-
ν_{as} C-C-O	1265	1265	1265
ν_{as} C-C-O-H	1394	1394	1394
ν C-C	1494	1494	1494
δ C-H	1506	1506	1506
ν_{s} C-C _{ring}	1604	1604	1604
δ NH	1580	1580	~1577
ν C-H	2850-3000	2850-3000	-
$\delta_{\text{o.o.p}}$ C-H _{ring}	682-750	-	-
$\delta_{\text{o.o.p}}$ ring	-	617	-

The peak close to 1580 cm^{-1} is assigned to NH bending, which is followed by the vibration modes in the amide II region ($1480 - 1575 \text{ cm}^{-1}$). A sharper peak observed in the magnetogels close to 3272 cm^{-1} is assigned to secondary amide N-H stretching resonance with the first amide II overtone (amide A band), which is superimposed by the broad carboxylic acid O-H dimers in the $3100 - 3400 \text{ cm}^{-1}$ region. Considering the amide I region ($1610 - 1695 \text{ cm}^{-1}$), a high absorption enhancement is observed for the amide C=O stretching at 1641 cm^{-1} , accompanied by the 1710 cm^{-1} amide C=O dimers vibration in the hydrogel **H1**. The hydrogel **H2** exhibits the most prominent C=O dimers vibrations at 1733 cm^{-1} and 1703 cm^{-1} , while **H3** shows peaks at 1714 cm^{-1} and 1660 cm^{-1} .

4. Spectral overlaps for FRET measurements (magnetogels/drugs)

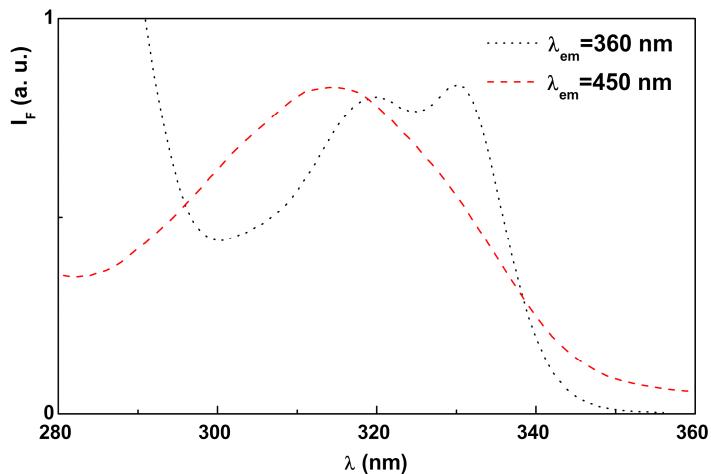
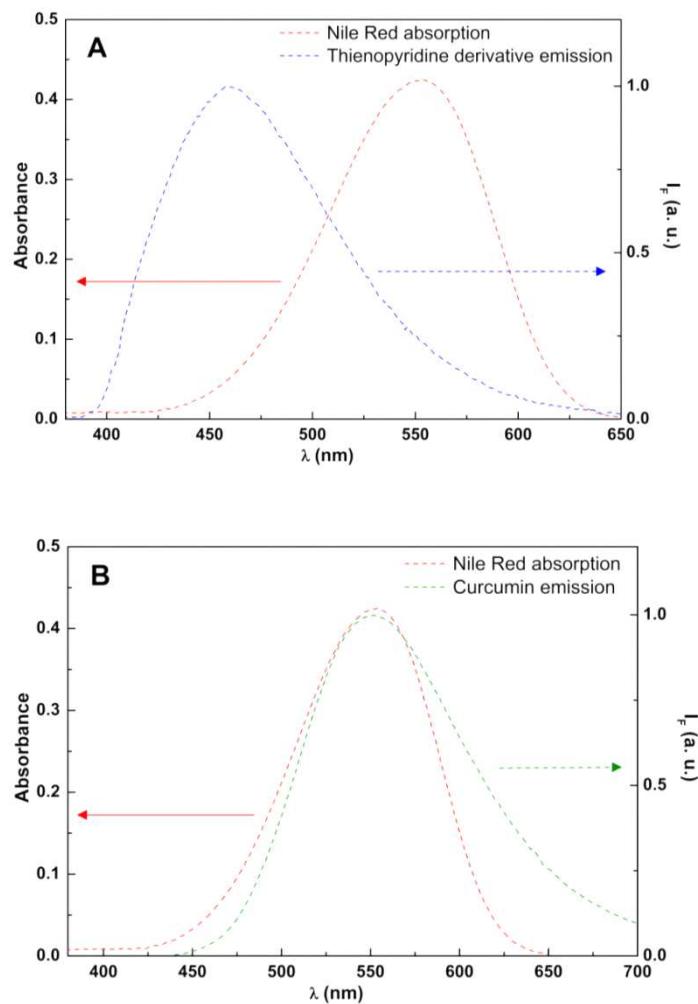


Figure S3. Spectral overlap (spectra are normalized) between magnetogels fluorescence emission, **H1**: Npx-L-Phe-Z- Δ Abu-OH; **H2**: Npx-L-Trp-Z- Δ Phe-OH; **H3**: Npx-L-Ala-Z- Δ Phe-Gly-L-Arg-Gly-L-Asp-Gly-OH, and thienopyridine derivative absorption.


Figure S4. Spectral overlap (spectra are normalized) between magnetogels fluorescence emission, **H1**: Npx-*L*-Phe-*Z*- Δ Abu-OH; **H2**: Npx-*L*-Trp-*Z*- Δ Phe-OH; **H3**: Npx-*L*-Ala-*Z*- Δ Phe-Gly-*L*-Arg-Gly-*L*-Asp-Gly-OH, and curcumin absorption.

5. Excitation spectra of hydrogel H1

Figure S5. Excitation spectra of hydrogel H1, at two emission wavelengths: 360 nm (Npx monomer) and 450 nm (aggregate).

6. Spectral overlaps for FRET measurements (drugs/Nile Red)

Figure S6. Spectral overlap (spectra are normalized) between antitumor drug emission and Nile Red absorption. **A:** Thienopyridine derivative; **B:** Curcumin.