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S1. Calibration of potential vs Ag/AgCl to RHE.1

the relation between Ag/AgCl and RHE potential can be calibrated in 

the high purity H2 saturated 0.5 M H2SO4 electrolyte with a Pt wire as the 

working electrode. With a scan rate of 1 mV/s, the average potential, 

where the current density started to came across X axis (becoming zero) 

in CV curves, was regarded as the thermodynamic potential for the 

hydrogen electrode reactions (Figure S2).

S2. Calculation of jECSA and TOF (Figure S9).2,3 

    (1);
𝐸𝐶𝑆𝐴=

𝐶𝑑𝑙
𝐶𝑠

   (2);
𝑗𝐸𝐶𝑆𝐴=

𝑗 × 𝑆
𝐸𝐶𝑆𝐴

    (3).
𝑇𝑂𝐹=

𝑗 × 𝑆
2𝑛𝐹

ECSA is short for electrochemical active surface area; 

Cdl and Cs is double layer capacitance and specific capacitance of samples, 

and Cs is assumed to 35 μC/cm2 according to previous report3.

j, S, F and n is the current density under given overpotential, the surface 

area of the electrode, Faraday constant and the mole number of active 

metal atoms for the electrode.
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Figure S1. LSV curves in 0.5 M H2SO4 for FeP@NC synthesized under 

different temperatures.
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Figure S2. CV curve of Pt wire in 0.5 M H2SO4 electrolyte.

Figure S3. Details of the device in in-situ XAS measurement.
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Figure S4. SEM and HRTEM images of FeP particles.
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Figure S5. Chronopotentiometric measurements with an initial current 

density of 10 mA/cm2 for FeP@NC at -0.135 VRHE and for FeP particles 

at -0.495 VRHE.
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Figure S6. Nyquist plots of FeP particles and FeP@NC at -0.15 VRHE in a 

large scale.
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Figure S7. Deconvolution of N 1s XPS spectra for FeP@NC.
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Figure S8. Cyclic voltammetry curves of (a) FeP particles and (b) 

FeP@NC.
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Figure S9. (a) JECSA, and (b) TOF comparison of FeP@NC and FeP 

particles under different overpotentials in 0.5 M H2SO4.
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Figure S10. Working condition of work electrode during in-situ XAS 

measurement.
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Figure S11. (a) XANES and (b) 2nd derivative curves of pre-edge region.
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Figure S12. DOS calculation of 3dz2 orbits in different surface structure.
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Figure S13. (a) TEM, (b) HRTEM images and XRD patterns of 

FeP@NC after long-time HER measurement.
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Figure S14. XPS comparison of O 1s for FeP@NC.

Table S1. The EXAFS fitted results for structure parameters around Fe 

atoms.

Paths N σ2 (10-3) ΔE(eV) ΔR(Å)

Before 
HER

Fe-P 5.6 6.4 -1.84 0.024

Fe-O <0.05

During 
HER

Fe-P 5.8 5.3 -1.55 0.039

Fe-O 0.85 5.5 -2.12 -0.04

After 
HER

Fe-P 5.6 6.3 -1.84 0.024

Fe-O 0.23 5.0 -3.25 -0.04
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Table S2. The ratio of different bonds according to Figure S14.

Fe-O P-O C-O H2O/OH

Before HER 12.0 % 32.9 % 52.7 % 2.4 %

After HER 22.1 % 24.9 % 49.7 % 3.3 %

Table S3. Summary of HER performance for recent typical TMP 
electrocatalysts in 0.5 M H2SO4 electrolyte. 
(Stability is defined as the time when current density decays to its’ 90 %) 

η@10 
mA/cm2

(mV)

Tafel 
slope

(mV/dec)
Stability Ref.

FeP@NC 135 78 >15 h This work

FeP 240 67 - Chem. Commun., 2013, 
49, 6656.

FeP/NCNSs 114 64 - ACS Sustain. Chem. 
Eng., 2018, 6, 11587-

11594.

FeP nanowires 96 39 < 1 h Chem. Commun., 2016, 
52, 2819–2822.

CoP nanorod 
bundle arrays/Ti 

203 40 ~10 h Electrochem. Commun., 
2015, 56, 56–60. 

CoP@BCN-1 87 46 < 10 h
Adv. Energy Mater., 
2017, 7, 1601671. 

Ni-P@Carbon 
fiber paper

98 58.8 - Adv. Funct. Mater., 
2016, 26, 4067–4077. 

Ni3P porous 
hollow

85 50 > 11 h J. Mater. Chem. A, 2016, 
4, 10925–10932.

Ni2P 
nanoparticles 

172 62 < 6 h RSC Adv., 2015, 10290–
10295.

MoP2 
nanoparticles/Mo

143 57 - Nanoscale, 2016, 8,
8500–8504 .

MoP nanosheet 
array

124 58 < 10 h Appl. Catal. B: Environ., 
2016, 196, 193–198
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