Supporting Information

Theoretical Study on the Light-emitting Mechanism of Circularly Polarized Luminescence Molecules with both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission

Xiu Yin¹, Jianzhong Fan², Jie Liu², Lei Cai², Hao Sun¹, Yuping Sun¹*, Chuan-Kui Wang²*, Lili Lin²*

 School of Physics and Optoelectronic Engineering, Shandong University of Technology, 250049 Zibo, China

 Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China *Author to whom correspondence should be addressed. E-mail: sunyuping@sdut.edu.cn, linll@sdnu.edu.cn and ckwang@sdnu.edu.cn.

Fig. S1 Visible geometry changes between S_1 (black) and two triplet excited states (red) in toluene and solid phase for S-BN-AF respectively.

Fig. S2 Visible geometry changes between S_1 (black) and five triplet excited states

(red) in toluene and solid phase for R-BN-CF respectively.

Fig. S3 ECD spectra for R-BN-AF (black) and S-BN-AF (red) (a) as well as R-BN-CF (black) and S-BN-CF (red) (b) in toluene. The rotatory strength is also illustrated.

Fig. S4 Transition characteristics for S_1 , T_1 , T_2 , T_3 , T_4 and T_5 sates of R-BN-CF in toluene. The value above every arrow represents the ratio of depicted NTOs in the

corresponding transition.

Table S1. The local excitation (LE) ratio for each singlet and triplet excited state for S-BN-AF respectively.

	\mathbf{S}_1	T_1	Τ2
toluene	16.31%	40.70%	19.32%
solid	20.56%	39.06%	38.90%

Table S2. The local excitation (LE) ratio for each singlet and triplet excited state for R-BN-CF respectively.

	S ₁	T ₁	T ₂	T ₃	T_4	T ₅
toluene	21.33%	90.53%	86.06%	59.80%	80.98%	32.98%
solid	34.69%	90.23%	85.78%	65.16%	82.27%	74.55%