Supplementary information

Direct evidence for the influence of lithium ion vacancies on polaron transport in nanoscale LiFePO₄

Azeem Banday¹, Mahboob Ali¹, Raghvendra Pandey² and Sevi Murugavel¹*

¹Department of Physics & Astrophysics, University of Delhi, Delhi-110007, India ²Department of Physics, ARSD College, University of Delhi, Delhi-110007, India

 Table S1. The temperature and time duration used to synthesize different crystallite sized LFP samples

Crystallite size (nm)	Temperature (K)	Time period (hrs.)
40	1023	6
36	1023	4
34	1023	2
30	823	8
27	823	6

Table S2:- List of important parameters related to polaronic dc conduction in LFP for various crystallite sizes estimated from Mott fitting and Rietveld refinement. θ_D is the Debye temperature, v_{ph} is the optical phonon frequency, R is the long-range polaron hopping distance, E_a^{Lt} and E_a^{Ht} are the activation energy at intermediate and high temperatures, and lithium ion vacancy concentration determined by the XRD Rietveld refinement analysis.

Crystallite	ΘD	v (Hz)	$\mathbf{R}(\mathbf{A}) \pm \mathbf{E}_{\mathbf{r}}$	E _a ^{Lt} (eV)	E _a ^{Ht} (eV)	Polaron	LIV
Size (nm)	(K)	×10 ¹³				concentration	concentration
± 2 nm						$(\%) \pm E_{r}$	(%)
27	567	1.18	$2.79\pm\!\!0.05$	0.571	0.651	17.0 ± 0.12	17
30	574	1.19	2.80 ± 0.03	0.587	0.655	11.0 ± 0.2	14.65
34	596	1.24	2.93 ±0.01	0.595	0.659	8.4 ±0.31	13.03
36	605	1.26	3.12 ±0.02	0.601	0.665	7.0 ± 0.12	10.54
40	615	1.29	3.42 ±0.05	0.645	0.677	6.5 ± 0.11	10.15

Wavelength (Å)			0.78799				
Space group			Pnma				
a (Å)			10.3153				
b (Å)			6.0012				
c (Å)			4.7011				
V (Å ³)			291.022				
R _p (%)			3.42				
R _{wp} (%)			4.55				
$GOF(\chi^2)$			6.538				
Site	Wyck.	x/a	y/b	z/c	Occupancy		
Li	4a	0 0.0000	0 0.0000	0 0.0000	0.8300		
Fe	4c	0 0.2820	0 0.2500	0 0.9731	0.9964		
Р	4c	0 0.0953	0 0.2500	0 0.4193	1.0000		
0	4c	0 0.0962	0 0.2500	0 0.7404	1.0000		
0	4c	0 0.4579	0 0.2500	0 0.2056	1.0000		
0	8d	0 0.1653	0 0.0491	0 0.2828	1.0000		
Fe	4a	0 0.0000	0 0.0000	0 0.0000	0.0050		

Table S3: Structure related parameters obtained from the Rietveld refinement for LFP sample

 with 27 nm crystallite size

Fig. S1. Nyquist plot for LFP sample with 30 nm crystallite size.

Fig. S2. The article size distribution histogram of representative 27 nm and 40 nm crystallite size of LFP sample obtained by dynamic light scattering method.