ESI: ELECTRONIC SUPPLEMENTARY INFORMATION

An Analytical Model for the Bending of Radial Nanowire Heterostructures†

Hang Zang,¹ Huadong Chen,¹ Xinlei Li,¹ and Yanping Zhao¹

¹Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics,

South China Normal University, Guangzhou 510631, China

1. The calculation of the total strain energy

The inserting Eqs. (3) and (4) into Eq. (5) in the main body, calculation of the total strain is as follows:

$$E_{\text{str}} = \int_{-r-h_2}^{r+h_1} \left[\frac{c_{11}}{2} (\epsilon_x^2 + \epsilon_z^2) + c_{12} \epsilon_x \epsilon_z \right] dy$$

$$= \int_{-r-h_2}^{-r} \left[\frac{c_{11}}{2} (\epsilon_x^2 + \epsilon_z^2) + c_{12} \epsilon_x \epsilon_z \right] dy + \int_{-r}^{r} \left[\frac{c_{11}}{2} \epsilon_z^2 \right] dy + \int_{r}^{r+h_1} \left[\frac{c_{11}}{2} (\epsilon_x^2 + \epsilon_z^2) + c_{12} \epsilon_x \epsilon_z \right] dy$$
(S1)

In different positions of NW heterostructures, ϵ_x and ϵ_z are expressed differently, which can be divided into the following three types:

when $h_1 \ge r_0 - r$ and $h_2 \ge r_0 - r$

$$\begin{split} E_{\text{str}} &= \int_{-r-h_{2}}^{r+h_{1}} \left[\frac{c_{11}}{2} \left(\epsilon_{x}^{2} + \epsilon_{z}^{2} \right) + c_{12} \epsilon_{x} \epsilon_{z} \right] dy \\ &= \int_{-r-h_{2}}^{-r_{0}} \frac{c_{11}}{2} \left(\epsilon_{m} + \epsilon_{1} + Ky \right)^{2} dy + \int_{-r_{0}}^{-r} \frac{c_{11}}{2} \left[\epsilon_{x}^{2} + \left(\epsilon_{m} + \epsilon_{1} + Ky \right)^{2} \right] + c_{12} \epsilon_{x} \left(\epsilon_{m} + \epsilon_{1} + Ky \right) dy \\ &+ \int_{-r_{1}}^{r} \frac{c_{11}}{2} \left(\epsilon_{1} + Ky \right)^{2} dy + \int_{r}^{r_{0}} \frac{c_{11}}{2} \left[\epsilon_{x}^{2} + \left(\epsilon_{m} + \epsilon_{1} + Ky \right)^{2} \right] + c_{12} \epsilon_{x} \left(\epsilon_{m} + \epsilon_{1} + Ky \right) dy \\ &+ \int_{r_{0}}^{r+h_{1}} \frac{c_{11}}{2} \left(\epsilon_{m} + \epsilon_{1} + Ky \right)^{2} dy \\ &= c_{11} \epsilon_{1}^{2} r + \frac{c_{11} \left(\epsilon_{0} + \epsilon_{1} \right)^{2}}{2} \left(h_{1} + h_{2} \right) + \frac{c_{11} \left(\epsilon_{0} + \epsilon_{1} \right) K}{2} \left(2r + h_{1} + h_{2} \right) \left(h_{1} - h_{2} \right) \\ &+ \frac{c_{11} K^{2}}{6} \left[\left(r + h_{1} \right)^{3} + \left(r + h_{2} \right)^{3} \right] + c_{11} A - 2c_{12} \left(\epsilon_{0} + \epsilon_{1} \right) A + c_{12} \left(\epsilon_{0} + 1 \right) \left(\epsilon_{0} + \epsilon_{1} \right) B \\ &- c_{11} \left(\epsilon_{0} + 1 \right) B + \frac{c_{11} \left(\epsilon_{0} + 1 \right)^{2}}{3} C + \frac{c_{12} K}{2} D + \frac{c_{12} \left(\epsilon_{0} + 1 \right) K}{3} E \\ &\text{In this formula, } A = \left(r_{0} - r \right), \quad B = \frac{r_{0}^{2} r^{2}}{r}, \quad C = \frac{r_{0}^{3} r^{3}}{r^{2}}, \quad D = 0, \quad E = 0. \end{split}$$

when $h_1 \ge r_0$ -r and $h_2 \le r_0$ -r

$$E_{\text{str}} = \int_{-r-h_2}^{r+h_1} \left[\frac{c_{11}}{2} (\epsilon_x^2 + \epsilon_z^2) + c_{12} \epsilon_x \epsilon_z \right] dy$$

$$= \int_{-r-h_{2}}^{-r_{0}} \frac{c_{11}}{2} (\epsilon_{m} + \epsilon_{1} + Ky)^{2} dy + \int_{-r_{0}}^{-r} \frac{c_{11}}{2} [\epsilon_{x}^{2} + (\epsilon_{m} + \epsilon_{1} + Ky)^{2}] + c_{12}\epsilon_{x}(\epsilon_{m} + \epsilon_{1} + Ky) dy$$

$$+ \int_{-r_{1}}^{r} \frac{c_{11}}{2} (\epsilon_{1} + Ky)^{2} dy + \int_{r}^{r_{0}} \frac{c_{11}}{2} [\epsilon_{x}^{2} + (\epsilon_{m} + \epsilon_{1} + Ky)^{2}] + c_{12}\epsilon_{x}(\epsilon_{m} + \epsilon_{1} + Ky) dy$$

$$+ \int_{r_{0}}^{r+h_{1}} \frac{c_{11}}{2} (\epsilon_{m} + \epsilon_{1} + Ky)^{2} dy$$

$$= c_{11}\epsilon_{1}^{2}r + \frac{c_{11}(\epsilon_{0} + \epsilon_{1})^{2}}{2} (h_{1} + h_{2}) + \frac{c_{11}(\epsilon_{0} + \epsilon_{1})K}{2} (2r + h_{1} + h_{2})(h_{1} - h_{2})$$

$$+ \frac{c_{11}K^{2}}{6} [(r + h_{1})^{3} + (r + h_{2})^{3}] + c_{11}A - 2c_{12}(\epsilon_{0} + \epsilon_{1})A + c_{12}(\epsilon_{0} + 1)(\epsilon_{0} + \epsilon_{1})B$$

$$- c_{11}(\epsilon_{0} + 1)B + \frac{c_{11}(\epsilon_{0} + 1)^{2}}{3}C + \frac{c_{12}K}{2}D + \frac{c_{12}(\epsilon_{0} + 1)K}{3}E$$
(S3)

In this formula, $A = (h_2 + r_0 - r)$, $B = \frac{(r + h_2)^2 + r_0^2 - 2r^2}{2r}$, $C = \frac{(r + h_2)^3 + r_0^3 - 2r^3}{2r^2}$, $D = (r + h_2)^2 - r_0^2$, $E = \frac{r_0^3 - (r + h_2)^3}{r}$.

when $h_1 \leq r_0$ -r and $h_2 \leq r_0$ -r

$$E_{str} = \int_{-r-h_2}^{r+h_1} \left[\frac{c_{11}}{2} (\epsilon_x^2 + \epsilon_z^2) + c_{12} \epsilon_x \epsilon_z \right] dy$$

$$= \int_{-r-h_2}^{-r} \frac{c_{11}}{2} [\epsilon_x^2 + (\epsilon_m + \epsilon_1 + Ky)^2] + c_{12} \epsilon_x (\epsilon_m + \epsilon_1 + Ky) dy + \int_{-r}^{r} \frac{c_{11}}{2} (\epsilon_1 + Ky)^2 dy$$

$$+ \int_{r}^{r+h_1} \frac{c_{11}}{2} (\epsilon_m + \epsilon_1 + Ky)^2 + c_{12} \epsilon_x (\epsilon_m + \epsilon_1 + Ky) dy$$

$$= c_{11} \epsilon_1^2 r + \frac{c_{11} (\epsilon_0 + \epsilon_1)^2}{2} (h_1 + h_2) + \frac{c_{11} (\epsilon_0 + \epsilon_1) K}{2} (2r + h_1 + h_2) (h_1 - h_2)$$

$$+ \frac{c_{11} K^2}{6} [(r + h_1)^3 + (r + h_2)^3] + c_{11} A - 2c_{12} (\epsilon_0 + \epsilon_1) A + c_{12} (\epsilon_0 + 1) (\epsilon_0 + \epsilon_1) B$$

$$- c_{11} (\epsilon_0 + 1) B + \frac{c_{11} (\epsilon_0 + 1)^2}{3} C + \frac{c_{12} K}{2} D + \frac{c_{12} (\epsilon_0 + 1) K}{3} E$$
(S4)

In this formula, $A = (h_1 + h_2)$, $B = \frac{(r + h_1)^2 + (r + h_2)^2 - 2r^2}{2r}$, $C = \frac{(r + h_1)^3 + (r + h_2)^3 - 2r^3}{2r^2}$, $D = (r + h_2)^2 - (r + h_1)^2$, $E = \frac{(r + h_1)^3 - (r + h_2)^3}{r}$.

2. Theoretical analysis of the InAs/GaAs systems.

We use the following parameters to perform a theoretical calculation of the InAs/GaAs system. In our calculations, $c_{11}=8.34\times10^{11}$ dyn/cm², $c_{12}=4.54\times10^{11}$ dyn/cm²,

 $\varepsilon_{\rm m}$ =6.7%, $\gamma_{\rm InAs}$ =13.75eV/nm², γ_{GaAs} =8.75eV/nm². ¹ Based on the theoretical calculation of InAs/GaAs, it was found that the InAs/GaAs system is easier to bend (that is, the *K* is larger) than Ge/Si system under the same radius and the same deposition amount.

Fig. S1 The relation between the curvature of NWs (GaAs NWs or Si NWs). Red line indicates

InAs/GaAs system, black line indicates Ge/Si systems.

References

1 X. L. Li, Y. Y. Cao and G. W. Yang, *Physical Chemistry Chemical Physics*, 2010, **12**, 4768.