SUPPLEMENTARY INFORMATION

Which Type of Clay Minerals Fix Cesium IonEffectively? -Cavity-Charge MatchingEffect-

Takahiro Yamamoto,¹ Tomoaki Takigawa,² Takuya Fujimura,³ Tetsuya Shimada,^{2,4}

Tamao Ishida,^{2,4,5} Haruo Inoue,^{2,4} Shinsuke Takagi ^{2,4}*

¹ Japan Atomic Energy Agency, 765-1 Funaishikawa, Tokai-mura, Naka-gun, Ibaraki 319-1184, Japan.

² Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan.

³ Department of Physics and Materials Science, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishi-kawatsu-cho, Matsue, Shimane 690-8504, Japan.

- ⁴ Research Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiohji-shi, Tokyo 192-0397, Japan
- ⁵ Research Center for Gold Chemistry, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji-shi, Tokyo 192-0397, Japan

Ion exchange of clay minerals by NaTPB (Artificial weathering)

To uniform the weathering degree, an ion exchange from K⁺ to Na⁺ by NaTPB was carried out for vermiculite, phlogopite G325, phlogopite N and biotite, according to the procedure shown in experimental section. Since Na⁺ is the original counter cation for Saponite, the ion exchange is not necessary. The time course of replacement ratio from K⁺ to Na⁺ is shown in Figure S1. By the artificial weathering treatment for 1000hrs, the replacement ratio reached up to 97.6, 87.7, 90.7, 86.6 % for Vermiculite, Phlogopite G325, Phlogopite N and Biotite, respectively.

□XRD patterns were examined for the Na⁺ substituted clay minerals. The patterns for Phlogopite G325 before and after NaTPB treatment as the typical cases are shown in Figure S2. While untreated K⁺- Phlogopite G325 exhibits clear peak at 8.82° (Fig. S2 (i)), Na⁺ substituted one shows peak at 7.28° (Fig. S2 (ii)) under the ambient conditions. These observations indicate that interlayer distance (d) was enlarged from 0.07 nm to 0.26 nm by the Na⁺ substitution. This expansion can be explained by the hydration behavior of Na⁺. In fact, the peak was shifted to 6.0° (d = 0.52 nm) and 9.1° (d = 0.01 nm) under the wet and dry condition, respectively. These changes were reversible. On the other hand, XRD pattern for K⁺- Phlogopite G325 did not show any dependence on the humidity change.

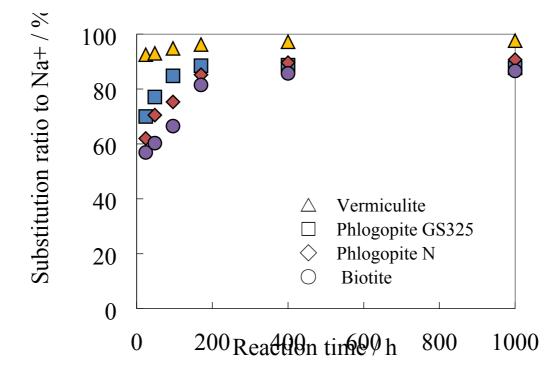


Figure S1. Time-course of substitution ratio from K⁺ to Na⁺ for vermiculite, phlogopite G325, phologopite N and biotite.

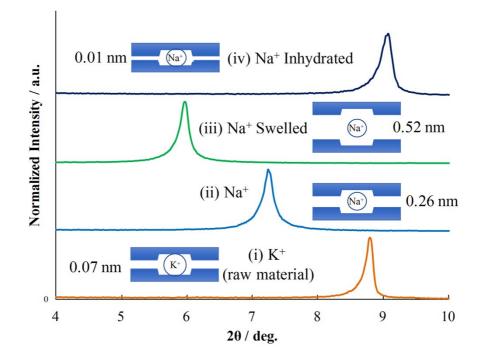


Figure S2. XRD patterns for K⁺ (i) and Na⁺ (ii) - Phlogopite G325. The patterns

for swelled (iii) and unhydrated condition (iv) are shown for Na⁺ - Phlogopite G325.

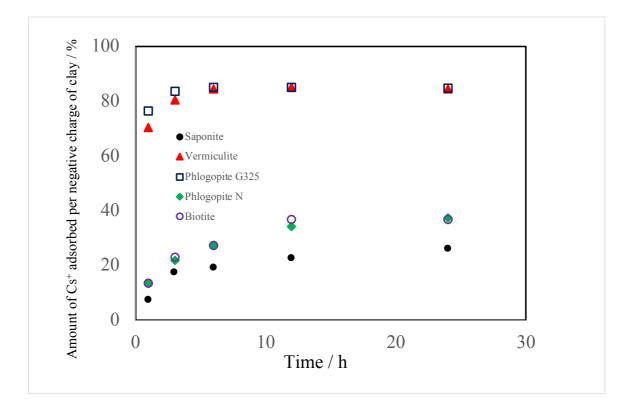


Figure S3. Time-course for Cs⁺ adsorption by Na⁺ substituted clay minerals.

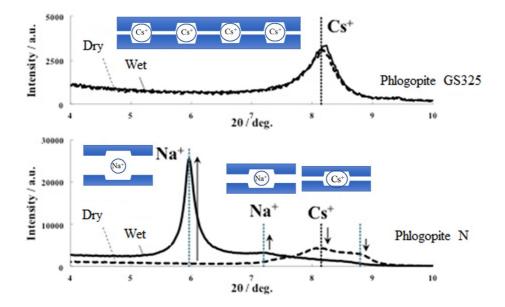


Figure S4. XRD pattern for Phlogopite GS325 (top) and Phlogopite N (bottom) under

dry (broken line) and wet (solid line) conditions.

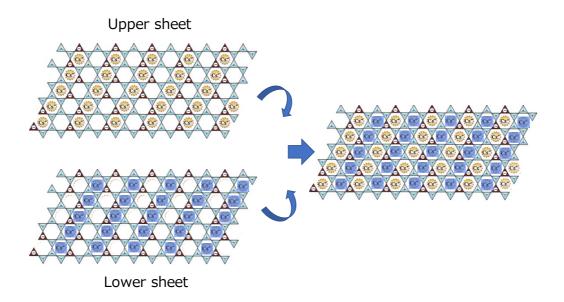


Figure S5. Two clay sheets, where (number of negative charge / number of SDC cavity of the clay) = 0.5, can form interlocking structure.

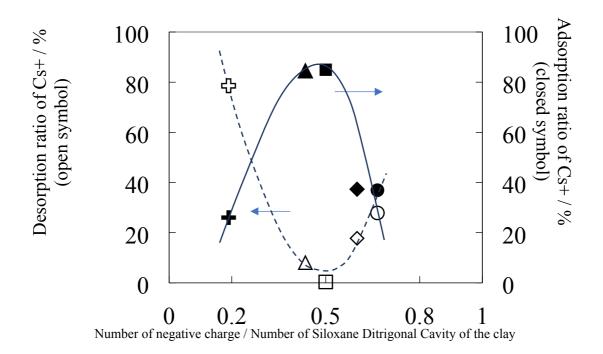


Figure S6. The relationship between (number of negative charge / number of SDC cavity of the clay) and the desorption ratio. Open symbols and dotted line: desorption behavior, closed symbols and bold line: adsorption behavior.

ruble 51. Humber of negative enarge and 52 c per ant			
Clay	Number of negative charge	Number of SDC	(a)/(b)
	per unit (a)	per unit (b)	
Saponite	0.4	2	0.20
Vermiculite	0.9	2	0.45
Phlogopite G325	1.0	2	0.50
Phlogopite N	1.2	2	0.60
Biotite	1.3	2	0.65

Table S1. Number of negative charge and SDC per unit