Pt@TiO₂ Nanocomposite Electrocatalysts with Enhanced Methanol Oxidation by Hydrophobic Nanoreactor Templating

Supporting Information

Tobias Unmüssig^{a,b}, Julia Melke^{a,b}, and Anna Fischer^{a,b,c*}

* corresponding author: anna.fischer@ac.uni-freiburg.de

^a Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstraβe 21, 79104 Freiburg, Germany

^b FMF - Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19,

79104 Freiburg, Germany

^c FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany

$$2 \text{ CH}_3\text{OH} + 3 \text{ O}_2 \rightarrow 2 \text{ CO}_2 + 4 \text{ H}_2\text{O} \quad (E^0_{\text{cell}} = 1.19 \text{ V})$$
 (S1)

$$\Delta G^0 = - nFE_{cell}^{\ 0} \tag{S2}$$

The theoretical cell voltage E^0_{cell} for methanol oxidation according to Equation (S1) is calculated from the change of Gibbs energy ΔG^0 based on Equation (S2). The other parameters in the equation are the number of transferred electrons n = 6 and the Faraday constant F = 96485 C/mol. ΔG^0 is calculated according to Equation (S3). The standard reaction enthalpy ΔH^0 is calculated by the difference of the sum of the product and educt standard molar enthalpies of formation $H^0_{\rm f}$ (Equation (S4)). The standard reaction entropy ΔS^0 is calculated by the difference of the sum of the product and educt standard molar entropies S^0 (Equation (S5)).

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \tag{S3}$$

$$\Delta H^0 = \sum H_{f,Products}^0 - \sum H_{f,Educts}^0$$
(S4)

$$\Delta S^0 = \sum S_{Products}^0 - \sum S_{Educts}^0$$
(S5)

The standard molar enthalpies of formation and standard molar entropies for the products end educts of methanol oxidation to CO₂ according to Equation (S1) are listed in Table S1. From this, the theoretical cell voltage E^{0}_{cell} can be calculated to $E^{0}_{cell} = 1.19$ V at T = 298.15 K if all products and educts are in gaseous state.

Table S1: Standard molar enthalpies of formation and standard molar entropies at 298.15 K for the products and educts of methanol oxidation.^[1]

Compound	<i>H</i> ⁰ _f in kJ/mol	S⁰ in J/mol*K
CH₃OH	-201 (aq:-239.2)	239.9 (aq: 126.8)
O ₂	0	205.2
CO ₂	-393.5	213.8
H ₂ O	-241.8 (aq:-285.8)	188.8 (aq: 70)

EDX Quantification of loaded PS₁₁₁-b-P4VP₉₆ micelles and Pt@TiO₂

Figure S1: STEM micrograph of PS_{111} -*b*-P4VP₉₆ micelles after loading with TiCl₄ and H₂PtCl₆·6H₂O (a,c). HAADF-STEM micrograph of Pt@TiO₂ structures after calcination at 500 °C under air and reduction at 400 °C in 10 vol.% H₂ in N₂ (b,d). Comparison of Ti:Pt atomic ratio and mass ratio based on the EDX quantification (e). The circles in the micrographs mark the regions, which were used for EDX quantification.

Figure S2: HR-STEM micrograph of Pt@TiO₂ nanocomposites after calcination at 500 °C under air and reduction at 400 °C in 10 vol.% H_2 in N_2 . The red markings show the small platinum nanoparticles in the space between the Pt@TiO₂ structures (a). Particle size distribution of the small platinum nanoparticles in the space between the Pt@TiO₂ structures (b).

Figure S3: HR-STEM micrographs of Pt@TiO₂ nanocomposites after calcination at 500 °C under air (a,b) and subsequent reduction at 400 °C in 10 vol.% H_2 in N_2 (c,d).

HAADF-STEM Characterization of Pt/XC72

Figure S4: HAADF-STEM micrographs of the Pt/XC72 reference catalyst (a-c). Particle size distribution of the platinum nanoparticles (d).

XPS results of Pt@TiO₂ and Pt/XC72

		• •		
Material	Species	Binding energies of Pt4f _{7/2} (eV)	FWHM (eV)	Relative intensities (%)
Pt@TiO ₂	Pt ⁰	70.9	1.3	89.6
	Pt ²⁺	72.3	1.3	7.4
	Pt ⁴⁺	73.5	1.3	3
Pt/XC72	Pt ⁰	71.7	1.6	77.3
	Pt ²⁺	73.7	1.8	16.2
	Pt ⁴⁺	75.4	1.8	6.5

Table S2: Binding energies, full width at half maximum (FWHM) and relative intensities of the different platinum species from the Pt4f XPS signal of $Pt@TiO_2$ and Pt/XC72.

Table S3: Binding energies and FWHM of Ti^{4+} species from the Ti2p XPS signal of Pt@TiO₂. No Ti^{3+} species were detected.

Material	Peak	Binding energy of Ti ⁴⁺ (eV)	FWHM (eV)
Pt@TiO ₂	Ti2p _{3/2}	458.8	1.4
	Ti2p _{1/2}	464.5	2.2

XPS of Pt-NA

Figure S5 (a) shows a platinum nanoarray (Pt-NA) on ITO coated glass, which was processed in the same way like the Pt@TiO₂ nanocomposites with the exception that no TiCl₄ was used in the synthesis. After dip-coating on ITO coated glass, the sample was calcined at 500 °C under air, followed by reduction at 400 °C in 10 vol.% H₂ in N₂. Figure S5 (b) shows the XPS measurement of the Pt4f signal and the peak deconvolution of Pt-NA on a silicon wafer. Based on the fitting result, platinum is only present as Pt⁰ (98.4 at.%) with a binding energy of 71.2 eV.

Figure S5: HR-SEM micrograph of Pt-NA on ITO coated glass after calcination at 500 °C under air and reduction at 400 °C in 10 vol.% H₂ in N₂ (a). XPS measurement and peak deconvolution of the Pt4f signal of Pt-NA on a silicon wafer after calcination at 500 °C under air and reduction at 400 °C in 10 vol.% H₂ in N₂ (b).

Pt@TiO₂ on ITO coated glass

Figure S6: HR-SEM micrographs of Pt@TiO₂ structures coated as monolayers on ITO coated glass after calcination at 500 °C under air and reduction in 10 vol.% H_2 in N_2 : as-synthesized (a), after electrochemical measurements (Conditioning: 0.03-1.2 V vs. RHE, 0.1 M HCIO₄, 200 cycles; Methanol oxidation: 0.03-1.2 V vs. RHE, 0.1 M HCIO₄ + 1 M MeOH, 20 cycles (b).

Mechanism of formic acid and formaldehyde oxidation

Similar as for the oxidation of methanol on platinum, a dual-pathway mechanism is proposed for formic acid and formaldehyde oxidation.^[2–4] A non-CO pathway, leading to weakly adsorbed intermediates, and the CO-pathway leading to strongly adsorbed CO.^[2,4]

In case of formic acid the non-CO pathway leads to formate (HCOO⁻) as shown in Equation (S6) and (S7).^[2,3] The CO pathway is shown in equation (S8), which then proceeds further as mentioned for methanol oxidation in Equation (6).

$$HCOOH + Pt \rightarrow Pt-HCOO + H^+ + e^-$$
(S6)

$$Pt-HCOO \rightarrow Pt + CO_2 + H^+ + e^-$$
(S7)

$$HCOOH + Pt \rightarrow Pt-CO + H_2O$$
(S8)

In case of formaldehyde, which is hydrated to methylene glycol in aqueous solution (Equation (S9)), formate is a possible intermediate for the non-CO pathway (Equation (S10) and (S11).^[4] As mentioned for methanol and formic acid oxidation, there is a CO-pathway as shown in Equation (S12).

$$HCOH + H_2O \rightarrow H_2C(OH)_2$$
(S9)

$$H_2C(OH)_2 \rightarrow Pt-HCOO + 3 H^+ + 3 e^-$$
(S10)

$$Pt-HCOO \rightarrow Pt + CO_2 + H^+ + e^-$$
(S11)

$$H_2C(OH)_2$$
 → Pt-CO + H_2O + 2 H⁺ + 2 e⁻ (S12)

REFERENCES

- [1] D. R. Lide, *CRC Handbook of Chemistry and Physics*, CRC Press, Boca Raton, **2008**.
- [2] E. Gyenge, in *PEM Fuel Cell Electrocatal. Catal. Layers* (Ed.: J. Zhang), Springer, London,
 2008, pp. 165–270.
- [3] H. Okamoto, W. Kon, Y. Mukouyama, J. Phys. Chem. B 2005, 109, 15659–15666.
- [4] A. Miki, S. Ye, T. Senzaki, M. Osawa, J. Electroanal. Chem. 2004, 563, 23–31.