Conformational equilibria in *o*-anisic acid and its monohydrated complex, the prevalence of the *trans*-COOH form

Electronic Supplementary Information

Contents:

Figures S1 and S2. Predicted o-anisic acid and o-anisic acid-water conformers.

Figure S3. Calculated Potential Energy Function connecting T2 and T1 *o*-anisic acid conformers.

Figure S4. ESI-TOF results for the pure commercial sample of o-anisic acid.

Figure S5. GS-MS results for the sample residuals after heating and recording the rotational spectra.

Figure S6. CP-FTMW spectra showing all the species observed.

Table S1 and S2. Predicted MP2/6311++G(d,p) rotational parameters of the stable *o*-anisic acid and *o*-anisic acid-water conformers.

Table S3 and S4. Comparison of the rotational parameters experimentally observed for T1, C1 and C2(0^+) conformers of the monomer and T1-w-1, C1-w-1 and C2-w-1 of the water complex with the predicted parameters at different levels of theory.

Table S5. Spectroscopic parameters determined for the observed conformations of T1, C1, C2(0^+) and C2(0^-) of *o*-anisic acid.

Table S6. Spectroscopic parameters determined for the observed isotopomers ¹³C, ²D and ¹⁸O for T1 and ²D for C2(0⁺) conformers of *o*-anisic acid.

Table S7. Spectroscopic parameters determined for the T1-w-1 and C2-w-1 conformations of *o*-anisic acid-water complexes.

Table S8. Experimental rotational parameters for the observed isotopologues of *o*-anisic acid-water complex T1-w-1.

Table S9-S31. Transition frequencies of all the observed species of *o*-anisic acid and its water complexes.

Table S32. Structure coordinates $r_s,\,r_e,\,and\,r_m^{(1L)}$ of the T1 $\emph{o}\text{-anisic}$ acid conformer.

Table S33. r_s coordinates of the -COOD specie of C2 form compared to the B3LYP-D3/6-311++G(d,p) predicted r_e coordinates from the H₁₅ atom of C1 and C2 conformers, which allows the confirmation of the C2 form identification.

Table S34. Structure coordinates $r_{s}, \ r_{e}, \ and \ r_{m}^{(1L)}$ of the T1-w-1 $\mathit{o}\text{-anisic}$ acid-water conformer.

Table S35. $r_{s},\,r_{e},$ and $r_{m}^{(1L)}$ distances and angles determined for the T1 $\emph{o}\text{-anisic}$ acid conformer.

Table S36. r_s , r_e , and $r_m^{(1L)}$ distances and angles determined for the T1-w-1 *o*-anisic acid water complex.

Table S37. B3LYP-D3/6-311++G(d,p) predicted structural relaxation parameters (distances in Å and angles in degree) for some selected bond distances and angles along the coordinate τ .

Figure S1. Predicted conformers for *o*-anisic acid. The corresponding spectroscopy parameters are given in Table S1. The conformers were labelled as Tn or Cn, where T or C refer to the *trans* or *cis* arrangement of the –COOH group and *n* to the order of increasing MP2/6-311G++(d,p) energy.

Figure S2. Predicted conformers for *o*-anisic acid-water complexes. The corresponding parameters are given in Table S2. The complexes were labeled as Tn-w-*m* or Cn-w-*m* where Tn or Cn refer to the monomer conformer and *m* to the order of increasing MP2/6-311++G(d,p) energy for each series of Tn-w or Cn-w complexes.

Figure S3. Predicted MP2/6-311++G(d,p) energy profile for the methoxy group torsion interconverting the T2 into the T1 conformer of *o*-anisic acid through a very small barrier. See Figure 3 for atom labeling.

Figure S4. ESI-TOF results for the pure commercial sample of ortho-anisic acid.

6

Figure S5. GS-MS results for the sample residuals after heating and recording the rotational spectra. (a) solid residues in glass fiber. (b) Solid residues in the surface of the nozzle.

Figure S6. CP-FTMW spectra showing all the species observed: methyl-2-methoxybenzoate (M2M), methyl salicylate (MSal), salicylic acid (Sal) and all the conformers of the *ortho*-anisic acid monomer and its T1-w-1 water complex.

Parameter ^a	T1	T2	C1	C2	C3
A/MHz	1385.37	1434.78	1394.07	1391.70	1449.93
<i>B</i> /MHz	1169.37	1157.33	1132.35	1135.91	1150.50
C/MHz	638.84	672.42	649.72	655.61	680.73
$P_{ m aa}/ m u \AA^2$	429.24	418.01	430.81	426.31	416.56
$P_{ m bb}/ m u \AA^2$	361.85	333.57	347.03	344.54	325.85
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	2.94	18.66	15.49	18.60	22.71
$\mu_{ m a}/ m D$	-6.57	-4.43	-2.12	-2.71	-1.48
$\mu_{ m b}/{ m D}$	1.41	3.79	0.70	1.54	0.55
$\mu_{\rm c}/{ m D}$	0.40	0.69	0.66	0.72	0.90
<i>E</i> /h	-534.036897	-534.0362975	-534.034988	-534.034939	-534.0346267
$\Delta E_{\rm MP2}/\rm cm^{-1}$	0.0	131.6	419.0	429.6	498.3
$\Delta E_{\rm MP2}$ +ZPE/cm ⁻¹	0.0	178.6	332.5	336.9	424.2
$\Delta G_{298\mathrm{K}}/\mathrm{cm}^{-1}$	0.0	205.9	256.3	215.7	399.9
Parameter	C4	C5	C6	Т3	T4
A/MHz	1452.80	1555.94	1585.25	1382.96	1613.30
<i>B</i> /MHz	1147.07	1094.29	1091.80	1107.73	1062.21
C/MHz	681.70	704.07	694.61	674.32	705.23
$P_{ m aa}/ m u \AA^2$	417.03	427.41	435.83	420.13	438.90
$P_{ m bb}/ m u \AA^2$	324.32	290.38	291.74	329.33	277.72
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	23.55	34.42	27.06	36.10	35.54
$\mu_{ m a}/ m D$	-1.17	-0.68	-0.50	4.76	2.82
$\mu_{ m b}/{ m D}$	1.86	1.09	0.88	-0.93	0.17
$\mu_{\rm c}/{ m D}$	1.83	0.53	1.64	2.03	2.92
<i>E</i> /h	-534.0340551	-534.032886	-534.0328471	-534.0279495	-534.0254981
$\Delta E_{\rm MP2}/\rm cm^{-1}$	623.6	880.3	888.6	1963.7	2501.8
$\Delta E_{\rm MP2}$ +ZPE/cm ⁻¹	556.1	841.0	890.6	1808.9	2470.2
$\Delta G_{298\rm K}/\rm{cm}^{-1}$	522.8	822.6	955.1	1620.2	2528.6

Table S1. Rotational parameters predicted at MP2/6-311++G(d,p) level of theory for the *o*-anisic acid conformers shown in Figure S1.

^a *A*, *B* and *C* are the rotational constants. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$. $\mu_{a,}$ μ_{b} and μ_{c} are the components of the electric dipole moment. *E* is the calculated energy and ΔE the energy relative to conformer T1. ZPE is the zero point correction energy. ΔG is the Gibbs energy relative to that of the most stable form calculated at 298K.

Parameter ^a	C1-w-1	C1-w-2	C2-w-1	C2-w-2
A/MHz	1382.56	1382.62	1381.50	1382.11
<i>B</i> /MHz	605.39	605.99	609.03	609.66
C/MHz	433.04	433.20	436.39	436.60
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	16.64	16.44	18.77	18.54
$\mu_{\rm a}/{ m D}$	1.65	1.53	1.62	0.60
$\mu_{\rm b}/{ m D}$	1.64	0.37	1.72	1.00
$\mu_{\rm c}/{\rm D}$	0.97	-1.01	1.00	2.00
<i>E</i> /h	-610.326934	-610.3268464	-610.3266674	-610.3266013
$\Delta E/cm^{-1}$	0.0	19.2	58.5	73.0
Parameter	C1-w-3	C1-w-4	T2-w-1	T1-w-1
A/MHz	978.64	1102.57	1073.98	1245.93
<i>B</i> /MHz	901.88	792.80	827.57	663.23
C/MHz	566.10	489.77	655.10	435.70
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	92.02	31.98	154.90	3.85
$\mu_{ m a}/{ m D}$	1.51	-2.27	1.28	6.03
$\mu_{ m b}/{ m D}$	-0.06	0.03	-4.91	1.70
$\mu_{\rm c}/{ m D}$	-0.01	0.29	0.30	-0.49
<i>E</i> /h	-610.3245965	-610.3244976	-610.3236414	-610.3234613
$\Delta E/cm^{-1}$	513.0	534.7	722.6	762.2
Parameter	T1-w-2	T1-w-3	T1-w-4	C2-w-3
A/MHz	1169.70	1359.58	991.19	963.28
<i>B</i> /MHz	786.10	575.85	922.36	900.34
C/MHz	570.78	409.97	621.21	574.51
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	94.77	8.31	122.12	103.15
$\mu_{\rm a}/{ m D}$	-3.26	-9.19	5.21	0.02
$\mu_{ m b}/ m D$	2.59	2.97	-0.89	-1.34
$\mu_{\rm c}/{ m D}$	1.03	0.19	1.28	0.79
<i>E/</i> h	-610.3232456	-610.322576	-610.3224562	-610.3223874
$\Delta E/cm^{-1}$	809.5	956.5	982.8	997.9
Parameter	T1-w-5	T2-w-2	C2-w-4	T1-w-6
A/MHz	1216.92	998.84	1220.49	1327.40
<i>B</i> /MHz	714.64	900.94	667.79	588.19
C/MHz	454.04	644.12	448.44	413.69
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	4.70	141.15	21.95	9.15
$\mu_{ m a}/{ m D}$	0.02	-5.62	3.40	9.35
$\mu_{ m b}/ m D$	-5.04	2.54	-0.41	1.01
$\mu_{ m c}/{ m D}$	1.21	3.72	-0.98	0.52
<i>E</i> /h	-610.3219863	-610.3218824	-610.3203868	-610.3196538
$\Delta E/cm^{-1}$	1085.9	1108.7	1436.9	1597.8

Table S2. Rotational parameters predicted at MP2/6-311++G(d,p) level of theory for the stable *o*-anisic acid water complex conformations shown in Figure S2.

^a A, B and C are the rotational constants. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$. $\mu_{a,}$ μ_{b} and μ_{c} are the components of the electric dipole moment. E is the calculated energy and ΔE the energy relative to conformer C1-w-1.

Parameter ^a	T1 Exp.	T1 DFT/6-G	T1 MP2/6-G	T1 MP2/aug	T1 CCSD/6-G
A/MHz	1387.631149(48) ^b	1379.74	1385.37	1373.50	1384.98
<i>B</i> /MHz	1172.426068(43)	1171.38	1169.37	1155.06	1165.75
C/MHz	638.664972(40)	636.11	638.84	630.00	635.56
$P_{ m cc}/{ m u}{ m \AA}^2$	1.975701(39)	1.62	2.94	1.65	1.62
$\mu_{ m a}/{ m D}$		-6.92	-6.57	-6.56	-6.60
$\mu_{ m b}/{ m D}$		1.42	1.41	1.27	1.41
$\mu_{ m c}/{ m D}$		0.00	0.40	0.00	0.36
$\Delta E/\mathrm{cm}^{-1}$		0.0	0.0	0.0	0.0
Parameter ^a	C2(0 ⁺) Exp.	C2 DFT/6-G	C2 MP2/6-G	T1 MP2/aug	C2 CCSD/6-G
A/MHz	1397.17908(17)	1390.58	1391.70	1381.79	1391.70
<i>B</i> /MHz	1155.97828(11)	1153.40	1135.91	1135.97	1135.91
C/MHz	640.89394(10)	638.60	655.61	637.11	655.61
$P_{ m cc}/{ m u}{ m \AA}^2$	5.17393(10)	5.10	18.60	8.70	18.60
$\mu_{ m a}/{ m D}$		-3.36	-2.71	2.97	-2.81
$\mu_{ m b}/{ m D}$		1.57	1.54	1.48	1.51
$\mu_{ m c}/{ m D}$		0.35	0.72	-0.49	0.73
$\Delta E/cm^{-1}$		768.6	429.6	708.8	346.5
Parameter ^a	C1 Exp.	C1 DFT/6-G	C1 MP2/6-G	C1 MP2/aug	C1 CCSD/6-G
A/MHz	1404.22981(39)	1398.41	1394.07	1385.85	1394.90
<i>B</i> /MHz	1145.60774(30)	1142.68	1132.35	1126.43	1131.61
C/MHz	638.99426(13)	635.68	649.72	636.11	646.76
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	5.07249(19)	4.32	15.49	9.42	13.75
$\mu_{ m a}/{ m D}$		-2.39	-2.12	-2.15	-2.14
$\mu_{ m b}/{ m D}$		1.18	0.70	0.93	0.90
$\mu_{ m c}/{ m D}$		0.28	0.66	0.50	0.63
$\Delta E/cm^{-1}$		850.7	419.0	737.2	386.5

Table S3. Comparison of the experimental rotational parameters of T1, $C2(0^+)$ and C1 conformers of *o*-anisic acid with the predicted at the MP2 and CCSD and DFT B3LYP-D3 methods with the 6-311++G(d,p) (6-G) and aug-cc-pVDZ (aug) basis sets.

^a A, B and C are the rotational constants. P_{cc} is the planar moment of inertia in the *ab* plane, derived from $P_{cc}=(I_a+I_b-I_c)/2$. μ_a , μ_b and μ_c are the components of the electric dipole moment. ΔE is the predicted energy relative to *o*-anisic acid T1 conformer.

^b Standard error is given in parentheses in units of the last digits.

Parameter ^a	T1-w-1 Exp.	T1-w-1 DFT	T1-w-1 MP2
A/MHz	1255.08080(16) ^b	1249.45	1245.93
<i>B</i> /MHz	656.263660(55)	665.56	663.23
C/MHz	432.826830(49)	435.63	435.70
$P_{\rm cc}/{ m u}{ m \AA}^2$	2.56390(12)	1.85	3.85
$\mu_{\rm a}/{ m D}$		-6.70	6.03
$\mu_{ m b}/ m D$		1.52	1.70
$\mu_{\rm c}/{ m D}$		0.84	-0.49
$\Delta E/\mathrm{cm}^{-1}$		523.3	722.6
Parameter ^a	C2-w-1 Exp.	C2-w-1 DFT	C2-w-1 MP2
A/MHz	1384.48829(73)	1377.57	1381.50
<i>B</i> /MHz	610.48530(30)	612.78	609.03
C/MHz	428.58680(12)	427.72	436.39
$P_{\rm cc}/{ m u}{ m \AA}^2$	6.84282(46)	5.01	18.77
$\mu_{\rm a}/{ m D}$		2.40	1.62
$\mu_{\rm b}/{ m D}$		1.42	1.72
$\mu_{ m c}/{ m D}$		1.22	1.00
$\Delta E/cm^{-1}$		0.0	58.5
Parameter ^a		C1-w-1 DFT	C1-w-1 MP2
A/MHz		1377.58	1382.56
<i>B</i> /MHz		610.57	605.39
C/MHz		426.38	433.04
$P_{ m cc}/{ m u}{ m \AA}^2$		4.65	16.64
$\mu_{ m a}/{ m D}$		2.37	1.65
$\mu_{ m b}/{ m D}$		0.61	1.64
$\mu_{\rm c}/{ m D}$		-1.26	0.97
$\Delta E/\mathrm{cm}^{-1}$		54.8	0.0

Table S4. Comparison of the experimental rotational parameters of T1-w-1 and C2-w-1 conformers of *o*-anisic acid water complexes with the predicted at MP2 and DFT B3LYP-D3 methods with the 6-311++G(d,p) basis set.

^a A, B and C are the rotational constants. P_{cc} is the planar moment of inertia in the *ab* plane, derived from $P_{cc} = (I_a + I_b - I_c)/2$. μ_a , μ_b and μ_c are the components of the electric dipole moment. ΔE is the predicted energy relative to *o*-anisic acid-water most stable complex.

^b Standard error is given in parentheses in units of the last digits.

Fitted	T1		<u>C1</u>		
Parameters ^a	11	$C2(0^{\circ})$	CI	C2(0)	
A/MHz	1387.631149(48) ^b	1397.17908(17)	1404.22981(39)	1396.55339(66)	
<i>B</i> /MHz	1172.426068(43)	1155.97828(11)	1145.60774(30)	1154.40677(30)	
C/MHz	638.664972(40)	640.89394(10)	638.99426(13)	642.75248(17)	
$\varDelta_{\rm J}/{\rm KHz}$	0.05698(43)	0.0670(16)	0.0467(25)	0.0211(19)	
$\Delta_{\rm JK}/{\rm KHz}$	-0.08210(37)	-0.0396(18)	-	-	
$\varDelta_{\rm K}/{\rm KHz}$	0.03139(52)	-	-	-	
$\delta_{ m J}/ m KHz$	-0.001822(52)	0.00141(37)	0.0111(14)	-	
$\delta_{ m K}/ m KHz$	-0.02248(57)	-0.02185(27)	0.0875(72)	-0.103(19)	
N σ/KHz	256 4.5	105 4.7	48 4.6	25 4.1	
Derived Parameters	·				
$P_{\rm aa}/{\rm u}{\rm \AA}^2$	429.078352(39)	432.01336(10)	436.07241(19)	431.08984(25)	
$P_{ m bb}/ m u Å^2$	362.226997(39)	356.53991(10)	354.82516(19)	355.18330(25)	
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	1.975701(39)	5.17393(10)	5.07249(19)	6.69260(25)	

Table S5. Experimental rotational parameters for the parent o-anisic acid conformers.

^a A, B and C are the rotational constants. Δ_J , Δ_{JK} , Δ_K , δ_J and δ_K are the quartic centrifugal distortion constants. N is the number of rotational transitions fitted. σ is the rms deviations of the fit. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$. ^b Standard error is given in parentheses in units of the last digits.

Fitted Parameters ^a	T1 ¹³ C ₁	T1 ¹³ C ₂	T1 ¹³ C ₃	T1 ¹³ C ₄	T1 ¹³ C ₅	T1 ¹³ C ₆
A/MHz	1386.83142(30) ^b	1387.00859(34)	1387.64670(33)	1380.47188(33)	1367.75951(40)	1374.88581(32)
<i>B</i> /MHz	1172.04484(10)	1171.18408(11)	1161.72917(11)	1158.70791(17)	1168.44063(16)	1172.39140(11)
C/MHz	638.383574(42)	638.165371(49)	635.482020(47)	633.070981(36)	633.253841(57)	635.941960(46)
⊿J/KHz	[0.05698]°	[0.05698]	[0.05698]	[0.05698]	[0.05698]	[0.05698]
$\Delta_{\rm JK}/{\rm KHz}$	[-0.08210]	[-0.08210]	[-0.08210]	[-0.08210]	[-0.08210]	[-0.08210]
$\Delta_{\rm K}/{\rm KHz}$	[0.03139]	[0.03139]	[0.03139]	[0.03139]	[0.03139]	[0.03139]
$\delta_{ m J}/ m KHz$	[-0.001822]	[-0.001822]	[-0.001822]	[-0.001822]	[-0.001822]	[-0.001822]
$\delta_{\rm K}/{ m KHz}$	[-0.02248]	[-0.02248]	[-0.02248]	[-0.02248]	[-0.02248]	[-0.02248]
Ν σ/KHz	32 4.4	30 4.9	34 4.2	37 4.2	32 2.4	31 3.2
Derived Para	meters					
$P_{\rm aa}/{ m u}{ m \AA}^2$	429.217849(84)	429.53492(10)	433.046623(93)	434.18162(10)	430.54865(12)	429.090754(92)
$P_{ m bb}/ m u Å^2$	362.436307(84)	362.38992(10)	362.222154(93)	364.11592(10)	367.51837(12)	365.602851(92)
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	1.976413(84)	1.97625(10)	1.976463(93)	1.97576(10)	1.97568(12)	1.976046(92)

Table S6. Experimental rotational parameters for the observed isotopologues of the *o*-anisic acid conformers. See Figure 3 for atom labeling.

^a A, B and C are the rotational constants. Δ_J , Δ_{JK} , Δ_K , δ_J and δ_K are the quartic centrifugal distortion constants. N is the number of rotational transitions fitted. σ is the rms deviations of the fit. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$. ^b Standard error is given in parentheses in units of the last digits.

^c Parameters in square brackets were kept fixed as those given for the parent species in the fit.

Table S6 (Continued).

Fitted Parameters ^a	T1 ¹³ C ₁₁	T1 ¹³ C ₁₆	T1 ² D ₁₅	T1 ¹⁸ O ₁₂	$C2(0^+)^2D_{15}$
A/MHz	1387.62832(31)	1361.37965(34)	1376.42981(20)	1364.67665(47)	1391.3870(11)
<i>B</i> /MHz	1163.15603(10)	1165.97364(15)	1167.36958(19)	1171.49441(38)	1131.33991(65)
C/MHz	635.903443(42)	631.161638(51)	634.79547(18)	633.494683(99)	631.74216(22)
⊿」/KHz	[0.05698]°	[0.05698]	[0.05698]	[0.05698]	[0.0670]
$\Delta_{\rm JK}/{\rm KHz}$	[-0.08210]	[-0.08210]	[-0.08210]	[-0.08210]	[-0.0396]
⊿ _K /KHz	[0.03139]	[0.03139]	[0.03139]	[0.03139]	-
$\delta_{ m J}/ m KHz$	[-0.001822]	[-0.001822]	[-0.001822]	[-0.001822]	[0.00141]
$\delta_{ m K}/ m KHz$	[-0.02248]	[-0.02248]	[-0.02248]	[-0.02248]	[-0.2185]
Ν	33	33	83	17	20
σ/KHz	4.1	3.3	6.7	7.9	6.6
Derived Parameters					
$P_{\rm aa}/{ m u}{ m \AA}^2$	432.513868(86)	431.46318(11)	430.94175(17)	429.41586(20)	441.73274(41)
$P_{ m bb}/ m u m \AA^2$	362.227872(86)	369.24932(11)	365.18714(17)	368.34776(20)	358.24396(41)
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	1.975569(86)	1.97631(11)	1.97943(17)	1.98100(20)	4.97563(41)

^a A, B and C are the rotational constants. Δ_J , Δ_J , Δ_K , δ_J and δ_K are the quartic centrifugal distortion constants. N is the number of rotational transitions fitted. σ is the rms deviations of the fit. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$.

^b Standard error is given in parentheses in units of the last digits.
 ^c Parameters in square brackets were kept fixed as those given for the parent species in the fit.

Fitted Parameters ^a	T1-w-1	C2-w-1
A/MHz	1255.08080(16) ^b	1384.48829(73)
<i>B</i> /MHz	656.263660(55)	610.48530(30)
C/MHz	432.826830(49)	428.58680(12)
⊿」/KHz	0.0868(29)	0.0475(27)
$\Delta_{ m JK}/ m KHz$	-0.1493(91)	-
$\Delta_{\rm K}/{\rm KHz}$	0.0787(61)	-0.0352(27)
$\delta_{ m J}/ m KHz$	0.0071(16)	-
$\delta_{\rm K}/{ m KHz}$	0.0236(43)	-0.0204(46)
Ν	149	46
σ/KHz	4.0	5.5
Derived Parameters		
$P_{\rm aa}/{\rm u}{\rm \AA}^2$	767.52142(12)	820.98876(46)
$P_{\rm bb}/{\rm u}{\rm \AA}^2$	400.10261(12)	358.18664(46)
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	2.56390(12)	6.84282(46)

Table S7. Spectroscopic parameters determined for the parent T1-w-1 and C2-w-1 conformations of oanisic acid-water complex.

^a A, B and C are the rotational constants. Δ_J , Δ_{JK} , Δ_K , δ_J and δ_K are the quartic centrifugal distortion constants. N is the number of rotational transitions fitted. σ is the rms deviations of the fit. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$. ^b Standard error is given in parentheses in units of the last digits.

Fitted Parameterrs ^a	² D ₁₅	² D ₂₀	¹⁸ O ₂₁	$^{2}D_{15}-^{2}D_{20}$	$^{2}D_{20}-^{2}D_{22}$	${}^{2}\mathbf{D}_{15}$ - ${}^{2}\mathbf{D}_{20}$ - ${}^{2}\mathbf{D}_{22}$
A/MHz	1240.05696(96) ^b	1254.75992(37)	1253.9057(11)	1239.79159(58)	1254.28123(47)	1239.27646(44)
<i>B</i> /MHz	655.70387(21)	645.56458(18)	626.72729(15)	645.00403(17)	625.48016(16)	624.90712(16)
C/MHz	430.78530(16)	428.11656(14)	419.652182(38)	426.10839(13)	419.19797(11)	417.25576(12)
⊿J/KHz	[0.0868(29)] ^c	[0.0868(29)]	[0.0868(29)]	[0.0868(29)]	[0.0868(29)]	[0.0868(29)]
$\Delta_{\rm JK}/{ m KHz}$	[-0.1493(91)]	[-0.1493(91)]	[-0.1493(91)]	[-0.1493(91)]	[-0.1493(91)]	[-0.1493(91)]
$\Delta_{\rm K}/{\rm KHz}$	[0.0787(61)]	[0.0787(61)]	[0.0787(61)]	[0.0787(61)]	[0.0787(61)]	[0.0787(61)]
$\delta_{ m J}/ m KHz$	[0.0071(16)]	[0.0071(16)]	[0.0071(16)]	[0.0071(16)]	[0.0071(16)]	[0.0071(16)]
$\delta_{ m K}/ m KHz$	[0.0236(43)]	[0.0236(43)]	[0.0236(43)]	[0.0236(43)]	[0.0236(43)]	[0.0236(43)]
Ν	33	45	21	41	46	37
σ/KHz	7.8	5.4	1.4	7.7	6.8	7.6
Derived Parameters						
$P_{ m aa}/ m u \AA^2$	768.17763(50)	780.27461(36)	803.80732(33)	780.96508(38)	805.32400(34)	806.06042(35)
$P_{\rm bb}/{\rm u}{\rm \AA}^2$	404.97987(34)	400.19599(30)	400.47334(15)	405.06885(28)	400.26153(26)	405.13678(28)
$P_{\rm cc}/{\rm u}{\rm \AA}^2$	2.56512(22)	2.57350(19)	2.570532(54)	2.56337(18)	2.66167(16)	2.66488(17)

Table S8. Experimental rotational	parameters for the observed isotopologues	of the o-anisic acid-water complex T1-	w-1. See Figure 3 for atom labeling.

^a A, B and C are the rotational constants. Δ_J , Δ_{JK} , Δ_K , δ_J and δ_K are the quartic centrifugal distortion constants. N is the number of rotational transitions fitted. σ is the rms deviations of the fit. $P_{\alpha\alpha}$ (α = a, b or c) are the planar moments of inertia derived from the moments of inertia as for example $P_{cc}=(I_a+I_b-I_c)/2$. ^b Standard error is given in parentheses in units of the last digits. ^c Parameters in square brackets were kept fixed as those given for the parent species in the fit.

J	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
2	1	2	1	1	1	3088.4211	0.0005
2	0	2	1	0	1	3250.5653	0.0001
2	1	1	1	1	0	4155.9417	-0.0002
2	2	0	1	0	1	5922.1360	-0.0030
3	1	3	2	1	2	4443.4419	0.0002
3	0	3	2	0	2	4488.0203	-0.0001
3	1	2	2	1	1	5831.8774	-0.0006
3	2	1	2	0	2	9050.0919	-0.0018
3	2	1	2	2	0	6378.5193	-0.0005
3	2	2	2	2	1	5433.2719	0.0017
3	3	0	2	1	1	8891.3432	0.0001
3	3	0	3	1	3	6049.1819	-0.0020
3	2	1	2	1	2	8997.0310	-0.0022
3	2	2	2	1	1	6078.8823	-0.0026
3	3	0	2	2	1	8245.7295	0.0013
3	3	1	2	2	0	7661.2676	-0.0001
3	3	0	3	0	3	6057.6559	-0.0095
4	1	4	3	1	3	5738.6966	-0.0002
4	0	4	3	0	3	5746.0623	0.0018
4	1	3	3	1	2	7107.8641	-0.0006
4	2	2	3	2	1	8312.8849	-0.0005
4	2	3	3	2	2	6918.0302	-0.0006
4	3	1	3	3	0	8448.3680	-0.0001
4	3	2	3	3	1	7682.4973	-0.0003
4	1	3	4	1	4	4358.8872	0.0003
4	2	2	4	2	3	2711.7200	-0.0004
4	2	3	4	0	4	4417.1786	0.0008
4	3	2	4	1	3	3421.2526	-0.0009
4	4	0	4	2	3	6541.1110	-0.0015
4	0	4	3	1	3	5737.5784	-0.0005
4	1	4	3	0	3	5747.1778	-0.0006
4	1	3	3	2	2	6860.8573	-0.0005
4	2	2	3	3	1	7030.1343	-0.0032
4	2	3	3	1	2	7165.0377	0.0000
4	3	2	3	2	1	8965.2464	0.0008
4	4	0	4	1	3	6598.2873	0.0016
5	1	5	4	1	4	7018.8171	-0.0002

Table S9. Observed rotational transitions and residuals (in MHz) for the T1 conformer of *o*-anisic acid in the ground vibrational state.

Table S9 (Continued).

J	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
5	0	5	4	0	4	7019.8028	0.0005
5	1	4	4	1	3	8314.2809	0.0011
5	2	3	4	2	2	9765.2089	-0.0009
5	2	3	4	4	0	5935.8289	0.0110
5	2	4	4	2	3	8266.9245	-0.0006
5	3	2	4	3	1	10652.9157	-0.0006
5	3	3	4	3	2	9324.4857	-0.0004
5	4	1	4	4	0	10381.3086	-0.0014
5	4	2	4	4	1	9843.9564	0.0000
5	1	4	5	1	5	5654.3508	0.0016
5	2	3	5	2	4	4210.0047	-0.0005
5	2	4	5	0	5	5664.3012	0.0006
5	3	2	5	3	3	2307.1427	-0.0024
5	3	3	5	1	4	4431.4600	0.0000
5	4	2	5	2	3	3804.7003	0.0034
5	5	0	5	3	3	7295.0572	-0.0021
5	0	5	4	1	4	7018.6856	0.0012
5	1	5	4	0	4	7019.9352	0.0000
5	1	4	4	2	3	8257.1066	-0.0001
5	2	3	4	3	2	9112.8527	0.0028
5	2	4	4	1	3	8324.0998	0.0017
5	3	3	4	2	2	9976.8487	0.0024
5	3	3	4	4	0	6147.4408	-0.0133
6	1	6	5	1	5	8296.4203	0.0012
6	0	6	5	0	5	8296.5359	-0.0013
6	1	5	5	1	4	9568.6048	0.0002
6	2	4	5	2	3	10934.0879	-0.0001
6	2	4	5	4	1	6488.5931	-0.0027
6	2	5	5	2	4	9560.2217	0.0001
6	3	3	5	3	2	12379.3247	-0.0015
6	3	3	5	5	0	7391.4074	-0.0046
6	3	4	5	3	3	10769.4284	0.0004
6	4	2	5	4	1	12826.2081	-0.0017
6	4	3	5	4	2	11648.2233	0.0022
6	5	2	5	5	1	11932.4422	-0.0006
6	5	1	5	5	0	12252.9038	-0.0016
6	1	5	6	1	6	6926.5305	-0.0041
6	2	4	6	2	5	5583.8716	-0.0001

Table S9 (Continued).

J	K-1'	K+1′	J″	K-1″	K+1''	Obs.	ObsCal.
6	3	3	6	3	4	3917.0432	-0.0001
6	3	4	6	1	5	5632.2801	-0.0033
6	4	3	6	2	4	4518.8296	-0.0003
6	5	1	6	3	4	8778.5375	0.0007
6	5	2	6	3	3	4496.1310	0.0013
6	6	0	6	4	3	8287.8629	-0.0014
6	6	1	6	4	2	6450.9504	-0.0013
6	1	5	5	2	4	9558.7872	0.0009
6	2	5	5	1	4	9570.0400	0.0000
6	3	4	5	4	1	6535.5661	-0.0059
7	1	7	6	1	6	9573.7191	-0.0003
7	0	7	6	0	6	9573.7337	0.0009
7	1	6	6	1	5	10840.8648	-0.0005
7	2	5	6	2	4	12136.8690	0.0017
7	2	6	6	2	5	10839.6192	-0.0006
7	3	4	6	5	1	8759.0289	0.0001
7	3	5	6	3	4	12098.2416	0.0000
7	1	6	7	1	7	8193.6828	0.0022
7	2	6	7	0	7	8193.8695	-0.0025
7	3	4	7	3	5	5439.3236	-0.0003
7	3	5	7	1	6	6889.6600	0.0003
7	4	3	7	4	4	3459.3255	0.0007
7	4	4	7	2	5	5607.4743	-0.0024
7	5	3	7	3	4	4759.2674	-0.0007
7	6	2	7	4	3	5552.5553	0.0008
7	1	6	6	2	5	10839.4303	0.0003
7	2	5	6	3	4	12089.8923	0.0013
7	2	6	6	1	5	10841.0557	0.0004
7	4	4	6	5	1	8918.8289	-0.0020
7	2	5	7	1	6	6881.3096	0.0006
7	3	4	7	2	5	5447.6770	0.0024
7	3	5	7	2	6	6889.4689	-0.0008
7	4	4	7	3	5	5599.1273	0.0012
8	1	8	7	1	7	10851.0080	0.0012
8	0	8	7	0	7	10851.0080	0.0012
8	1	7	7	1	6	12116.9243	0.0004
8	2	7	7	2	6	12116.7577	0.0002
8	3	5	7	5	2	8684.2961	-0.0021

Table S9 (Continued).

J	K-1′	K+1'	J″	K-1″	K+1″	Obs.	ObsCal.
8	1	7	8	1	8	9459.5959	-0.0024
8	2	6	8	2	7	8156.5006	0.0020
8	2	7	8	0	8	9459.6223	0.0003
8	3	5	8	3	6	6803.0630	-0.0022
8	3	6	8	1	7	8157.8200	0.0010
8	4	4	8	4	5	5165.8326	0.0000
8	4	5	8	2	6	6838.8607	-0.0015
8	5	3	8	5	4	2867.9297	0.0002
8	5	4	8	3	5	5624.8977	0.0092
8	6	3	8	4	4	5257.6567	0.0016
8	7	1	8	5	4	9913.2139	0.0030
8	7	2	8	5	3	6960.5965	0.0000
8	3	5	8	2	6	6804.3590	-0.0031
8	4	4	8	3	5	5200.3297	-0.0030
8	4	5	8	3	6	6837.5640	-0.0013
8	5	4	8	4	5	5590.3735	-0.0148
8	6	3	8	5	4	4833.0989	-0.0004
8	7	2	8	6	3	4995.4263	-0.0002
9	1	9	8	1	8	12128.3024	-0.0006
9	0	9	8	0	8	12128.3024	-0.0006
9	3	6	8	5	3	7467.3193	0.0007
9	2	7	9	2	8	9426.2367	0.0007
9	3	6	9	3	7	8100.8333	0.0004
9	3	7	9	1	8	9426.4226	0.0001
9	4	5	9	4	6	6665.5141	-0.0024
9	4	6	9	2	7	8107.2735	-0.0020
9	5	4	9	5	5	4714.6741	0.0031
9	5	5	9	3	6	6784.1220	-0.0016
9	6	3	9	6	4	2205.5120	0.0097
9	6	4	9	4	5	5747.3631	0.0006
9	7	3	9	5	4	6110.3530	0.0000
9	4	5	9	3	6	6671.7740	-0.0015
9	4	6	9	3	7	8107.0927	0.0008
9	5	4	9	4	5	4827.0086	-0.0104
9	5	5	9	4	6	6777.8624	-0.0022
9	6	4	9	5	5	5635.0113	-0.0030
9	7	3	9	6	4	5190.0051	-0.0045
9	8	1	9	7	2	5227.4268	0.0077

Table S9 (Continued).

J´	K-1′	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
9	8	2	9	7	3	5668.4916	0.0018
9	9	0	9	8	1	6588.0896	-0.0059
9	9	1	9	8	2	6623.6298	-0.0103
10	3	7	10	3	8	9379.5887	0.0005
10	4	6	10	4	7	8016.6051	0.0001
10	4	7	10	2	8	9380.6237	-0.0004
10	5	5	10	5	6	6422.4741	-0.0010
10	5	6	10	3	7	8041.4286	0.0001
10	6	4	10	6	5	4082.3504	-0.0001
10	6	5	10	4	6	6748.8641	-0.0014
10	7	4	10	5	5	6068.4945	-0.0009
10	8	3	10	6	4	7355.9234	0.0006
10	4	6	10	3	7	8017.6109	-0.0056
10	5	5	10	4	6	6446.2875	0.0004
10	5	6	10	4	7	8040.4102	-0.0065
10	6	5	10	5	6	6725.0518	-0.0018
10	7	3	10	6	4	3232.8140	0.0134
10	7	4	10	6	5	5765.9115	-0.0053
10	8	2	10	7	3	4368.6943	0.0159
10	8	3	10	7	4	5672.3548	-0.0017
10	9	1	10	8	2	6174.7204	-0.0007
10	9	2	10	8	3	6405.2745	-0.0021
10	10	1	10	9	2	7424.5228	0.0045
11	4	7	11	4	8	9315.1313	0.0014
11	5	6	11	5	7	7884.6304	-0.0002
11	5	7	11	3	8	9319.6591	0.0001
11	6	5	11	6	6	6015.0909	-0.0014
11	6	6	11	4	7	7964.4930	-0.0008
11	7	4	11	7	5	3318.7105	0.0149
11	7	5	11	5	6	6779.4479	-0.0010
11	8	4	11	6	5	6699.2074	-0.0007
11	4	7	11	3	8	9315.2826	0.0024
11	5	6	11	4	7	7889.0044	-0.0050
11	5	7	11	4	8	9319.5088	0.0003
11	6	5	11	5	6	6090.5750	-0.0017
11	6	6	11	5	7	7960.1201	0.0049
11	7	4	11	6	5	4007.5794	0.0117
11	7	5	11	6	6	6703.9664	0.0019

Table S9 (Continued).

J	K-1′	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
11	8	4	11	7	5	6010.3348	-0.0012
11	9	2	11	8	3	5403.5323	0.0032
11	9	3	11	8	4	6267.5782	-0.0009
11	10	1	11	9	2	7070.9304	0.0060
11	10	2	11	9	3	7181.5936	-0.0052
12	5	7	12	5	8	9225.3726	-0.0006
12	6	6	12	6	7	7669.9186	-0.0016
12	6	7	12	4	8	9241.8995	0.0003
12	7	5	12	7	6	5403.3382	-0.0069
12	7	6	12	5	7	7891.0818	0.0009
12	8	5	12	6	6	6951.9595	0.0000
12	9	4	12	7	5	7726.4137	0.0004
12	5	7	12	4	8	9226.1022	0.0010
12	6	6	12	5	7	7685.7131	-0.0050
12	6	7	12	5	8	9241.1710	-0.0001
12	7	5	12	6	6	5608.6881	-0.0197
12	7	6	12	6	7	7875.2782	-0.0047
12	8	5	12	7	6	6746.6020	0.0053
12	9	3	12	8	4	4438.3696	-0.0036
12	9	4	12	8	5	6383.1728	0.0111
12	10	2	12	9	3	6446.1640	-0.0141
12	10	3	12	9	4	6952.7076	0.0122
12	11	1	12	10	2	7929.3498	-0.0061
12	11	2	12	10	3	7979.3111	-0.0088
13	6	7	13	6	8	9096.6488	0.0006
13	7	6	13	7	7	7318.2383	-0.0011
13	7	7	13	5	8	9148.7504	0.0008
13	8	5	13	8	6	4601.8111	-0.0026
13	8	6	13	6	7	7853.4666	0.0008
13	9	5	13	7	6	7371.5122	-0.0007
13	10	4	13	8	5	9167.4631	-0.0034
13	8	5	13	7	6	5087.8786	0.0067
13	8	6	13	7	7	7804.3094	0.0117
13	9	4	13	8	5	4012.4610	-0.0011
13	9	5	13	8	6	6885.4500	-0.0048
13	10	3	13	9	4	5445.7811	0.0182
13	10	4	13	9	5	6883.8134	-0.0120

Table S9 (Continued).

J	K-1′	K+1′	J″	K-1''	K+1″	Obs.	ObsCal.
13	11	2	13	10	3	7432.6277	-0.0044
13	11	3	13	10	4	7700.9726	0.0020
14	7	7	14	7	8	8903.6149	-0.0018
14	8	6	14	8	7	6769.6929	0.0022
14	8	7	14	6	8	9048.5166	-0.0001
14	9	6	14	7	7	7909.5076	-0.0038
14	9	5	14	8	6	4683.5346	-0.0134
14	9	6	14	8	7	7774.8101	0.0006
14	10	4	14	9	5	4549.4123	-0.0085
14	10	5	14	9	6	7145.7499	0.0098
14	11	3	14	10	4	6556.3678	-0.0057
14	11	4	14	10	5	7497.4193	-0.0088
15	8	7	15	8	8	8602.8965	0.0010
15	9	6	15	9	7	5996.0453	-0.0061
15	9	7	15	7	8	8962.3563	0.0011
15	11	5	15	9	6	9363.2135	0.0011
15	8	7	15	7	8	8634.2116	-0.0006
15	9	6	15	8	7	6324.1962	0.0018
15	10	6	15	9	7	7819.9170	0.0060
15	11	5	15	10	6	7539.3520	-0.0007
15	12	3	15	11	4	7649.1372	0.0003
16	11	6	16	9	7	8683.5005	-0.0022
16	11	6	16	10	7	7971.2520	0.0054
16	12	4	16	11	5	6529.3722	0.0012
17	10	7	17	10	8	7437.4185	-0.0018
17	11	7	17	10	8	9026.5826	0.0025
17	9	8	17	10	8	9883.4599	-0.0025
17	10	7	17	9	8	7651.9241	0.0025
17	14	4	17	13	5	9763.9258	0.0009
18	11	7	18	11	8	6501.5385	-0.0094

J	K-1'	K+1'	J″	K-1″	K+1″	Obs.	ObsCal.
3	1	2	2	1	1	5829.4269	0.0092
3	2	1	2	2	0	6376.5783	-0.0030
4	1	4	3	1	3	5736.1795	-0.0025
4	0	4	3	0	3	5743.5093	-0.0022
4	1	3	3	1	2	7104.5340	0.0012
4	2	2	3	2	1	8309.7372	0.0001
4	2	3	3	2	2	6915.2100	-0.0010
4	3	1	3	3	0	8446.1985	-0.0010
4	3	2	3	3	1	7679.9118	0.0006
5	1	5	4	1	4	7015.7273	0.0002
5	0	5	4	0	4	7016.7050	-0.0009
5	1	4	4	1	3	8310.5032	-0.0002
5	2	3	4	2	2	9760.6899	-0.0007
5	2	4	4	2	3	8263.3573	-0.0006
5	3	3	4	3	2	9320.9233	0.0000
5	4	2	4	4	1	9840.8988	0.0016
5	1	5	4	0	4	7016.8483	0.0103
6	1	6	5	1	5	8292.7642	0.0001
6	0	6	5	0	5	8292.8811	-0.0001
6	1	5	5	1	4	9564.3564	0.0006
6	2	5	5	2	4	9556.0222	-0.0009
6	1	5	6	1	6	6923.5759	-0.0028
6	2	5	6	0	6	6925.0291	0.0114
7	1	7	6	1	6	9569.4995	-0.0019
7	0	7	6	0	6	9569.5160	0.0013
7	1	6	6	1	5	10836.0819	0.0022
7	3	5	7	1	6	6886.8011	-0.0106
8	1	8	7	1	7	10846.2257	-0.0004
8	0	8	7	0	7	10846.2257	-0.0004
8	1	7	7	1	6	12111.5832	0.0012
8	2	7	7	2	6	12111.4178	0.0007
8	4	5	8	2	6	6836.1330	-0.0105

Table S10. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_1$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1′	K+1′	J″	K-1''	K+1″	Obs.	ObsCal.
3	1	2	2	1	1	5827.0813	0.0186
3	2	1	2	2	0	6371.4301	-0.0006
4	1	4	3	1	3	5734.1800	0.0011
4	0	4	3	0	3	5741.6135	0.0015
4	1	3	3	1	2	7102.8072	0.0027
4	2	2	3	2	1	8305.1522	-0.0001
4	2	3	3	2	2	6912.0764	0.0001
4	3	1	3	3	0	8438.0120	0.0009
4	3	2	3	3	1	7674.5627	-0.0050
4	1	3	3	2	2	6854.3646	0.0159
5	1	5	4	1	4	7013.3252	-0.0005
5	0	5	4	0	4	7014.3227	-0.0009
5	1	4	4	1	3	8308.0640	-0.0007
5	2	3	4	2	2	9758.1140	-0.0018
5	2	4	4	2	3	8260.2876	0.0000
5	3	3	4	3	2	9315.8862	-0.0001
5	4	2	4	4	1	9833.1766	-0.0012
6	1	6	5	1	5	8289.9329	0.0001
6	0	6	5	0	5	8290.0513	-0.0015
6	1	5	5	1	4	9561.2101	-0.0030
6	2	5	5	2	4	9552.7233	0.0007
6	1	5	6	1	6	6920.9370	0.0055
6	2	5	6	0	6	6922.4066	0.0000
7	1	7	6	1	6	9566.2338	-0.0004
7	0	7	6	0	6	9566.2478	0.0000
7	1	6	6	1	5	10832.4206	0.0000
8	1	8	7	1	7	10842.5224	0.0002
8	0	8	7	0	7	10842.5224	0.0002
8	1	7	7	1	6	12107.4673	0.0010
8	2	7	7	2	6	12107.2981	0.0016

Table S11. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_2$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K-1''	K+1''	Obs.	ObsCal.
3	1	2	2	1	1	5798.6222	-0.0059
3	2	1	2	2	0	6315.3521	-0.0027
4	1	4	3	1	3	5709.6205	-0.0028
4	0	4	3	0	3	5718.1253	0.0008
4	1	3	3	1	2	7079.7519	-0.0006
4	2	2	3	2	1	8252.4385	-0.0011
4	2	3	3	2	2	6875.2611	-0.0017
4	3	1	3	3	0	8350.4121	-0.0015
4	3	2	3	3	1	7615.5511	-0.0092
4	1	3	3	2	2	6808.9875	-0.0103
5	1	5	4	1	4	6983.8001	0.0035
5	0	5	4	0	4	6984.9962	-0.0005
5	1	4	4	1	3	8277.2463	-0.0003
5	2	3	4	2	2	9723.8325	0.0005
5	2	4	4	2	3	8223.0008	0.0000
5	4	2	4	4	1	9749.0853	0.0030
5	0	5	4	1	4	6983.6147	-0.0096
5	1	5	4	0	4	6985.1691	0.0002
5	1	4	4	2	3	8210.9821	0.0003
6	1	6	5	1	5	8255.1045	-0.0008
6	0	6	5	0	5	8255.2570	-0.0002
6	1	5	5	1	4	9522.3318	-0.0006
6	2	5	5	2	4	9512.1670	-0.0001
6	1	5	6	1	6	6888.9388	-0.0013
6	2	5	6	0	6	6890.8073	-0.0067
7	1	7	6	1	6	9526.0433	-0.0023
7	0	7	6	0	6	9526.0636	0.0000
7	1	6	6	1	5	10787.3387	0.0021
7	2	5	7	2	6	6837.9044	-0.0016
8	1	8	7	1	7	10796.9658	0.0012
8	0	8	7	0	7	10796.9658	0.0012
8	1	7	7	1	6	12056.8007	0.0002
8	2	7	7	2	6	12056.5759	0.0003
9	5	5	9	3	6	6739.5997	0.0125

Table S12. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_3$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K-1″	K+1''	Obs.	ObsCal.
3	1	2	2	1	1	5777.9807	-0.0022
3	2	1	2	2	0	6300.3117	-0.0019
3	3	1	2	2	0	7621.4854	0.0082
4	1	4	3	1	3	5688.1324	-0.0004
4	0	4	3	0	3	5696.2622	0.0002
4	1	3	3	1	2	7050.9727	-0.0006
4	2	2	3	2	1	8226.7476	-0.0015
4	2	3	3	2	2	6851.6298	0.0025
4	3	2	3	3	1	7594.8108	-0.0019
4	1	3	3	2	2	6788.3266	-0.0045
4	2	3	3	1	2	7114.2768	0.0072
5	1	5	4	1	4	6957.3487	0.0016
5	0	5	4	0	4	6958.4778	0.0000
5	1	4	4	1	3	8244.6818	-0.0007
5	2	3	4	2	2	9685.2450	0.0010
5	2	4	4	2	3	8192.6942	-0.0004
5	3	3	4	3	2	9228.8341	0.0018
5	0	5	4	1	4	6957.1824	-0.0052
5	1	5	4	0	4	6958.6289	-0.0083
5	2	4	4	1	3	8255.9908	0.0000
6	1	6	5	1	5	8223.8096	-0.0009
6	0	6	5	0	5	8223.9509	-0.0005
6	1	5	5	1	4	9485.8945	-0.0011
6	2	5	5	2	4	9476.3058	0.0000
6	2	5	6	0	6	6865.7879	-0.0151
6	2	5	5	1	4	9487.6135	-0.0006
7	1	7	6	1	6	9489.9265	-0.0004
7	0	7	6	0	6	9489.9435	0.0000
7	1	6	6	1	5	10746.3677	0.0001
7	2	5	7	2	6	6814.9030	-0.0099
7	3	5	7	1	6	6825.1221	0.0006
8	1	8	7	1	7	10756.0235	-0.0012
8	0	8	7	0	7	10756.0235	-0.0012
8	1	7	7	1	6	12011.0848	0.0005
8	2	7	7	2	6	12010.8797	0.0013
8	3	5	8	3	6	6729.4082	-0.0002
8	4	5	8	2	6	6772.0562	0.0068

Table S13. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_4$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J´	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
3	2	1	2	2	0	6362.7042	0.0035
4	1	4	3	1	3	5690.6656	-0.0015
4	0	4	3	0	3	5696.6980	-0.0030
4	1	3	3	1	2	7038.9007	0.0021
4	2	2	3	2	1	8264.1416	0.0001
4	2	3	3	2	2	6869.2650	0.0041
4	3	1	3	3	0	8445.0106	-0.0026
4	3	2	3	3	1	7652.5103	0.0069
4	1	3	3	2	2	6822.6400	-0.0040
5	1	5	4	1	4	6959.4692	-0.0008
5	0	5	4	0	4	6960.2221	-0.0012
5	1	4	4	1	3	8239.2287	0.0003
5	2	3	4	2	2	9672.1016	-0.0048
5	2	4	4	2	3	8200.0808	0.0013
5	3	3	4	3	2	9269.0362	0.0036
6	1	6	5	1	5	8226.1721	-0.0006
6	0	6	5	0	5	8226.2548	-0.0023
6	1	5	5	1	4	9486.2996	0.0000
6	2	5	5	2	4	9479.8524	0.0009
6	1	5	6	1	6	6872.2124	-0.0017
6	2	5	6	0	6	6873.2413	-0.0023
6	1	5	5	2	4	9478.8313	-0.0004
6	2	5	5	1	4	9487.3179	-0.0014
7	1	7	6	1	6	9492.6457	-0.0012
7	0	7	6	0	6	9492.6573	0.0015
7	1	6	6	1	5	10748.7447	0.0006
7	2	5	7	2	6	6833.5509	-0.0002
7	3	5	7	1	6	6839.6339	0.0004
8	1	8	7	1	7	10759.1164	0.0006
8	0	8	7	0	7	10759.1164	0.0006
8	1	7	7	1	6	12014.2321	0.0010
8	2	7	7	2	6	12014.1212	0.0016

Table S14. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_5$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K-1''	K+1″	Obs.	ObsCal.
3	1	2	2	1	1	5810.6387	-0.0080
3	2	1	2	2	0	6383.2495	-0.0095
4	1	4	3	1	3	5714.7110	-0.0001
4	0	4	3	0	3	5720.9688	-0.0020
4	1	3	3	1	2	7070.1898	0.0015
4	2	2	3	2	1	8295.6458	-0.0006
4	2	3	3	2	2	6896.7565	-0.0003
4	3	1	3	3	0	8469.3600	0.0000
4	3	2	3	3	1	7679.0414	-0.0038
5	1	5	4	1	4	6988.9733	-0.0015
5	0	5	4	0	4	6989.7690	0.0034
5	1	4	4	1	3	8274.8806	-0.0005
5	2	3	4	2	2	9714.9413	0.0008
5	2	4	4	2	3	8234.3244	-0.0009
5	3	3	4	3	2	9304.4242	-0.0013
5	4	2	4	4	1	9848.9808	0.0015
6	1	6	5	1	5	8261.0656	-0.0003
6	0	6	5	0	5	8261.1555	0.0000
6	1	5	5	1	4	9526.7006	-0.0018
6	2	5	5	2	4	9519.9396	-0.0007
6	1	5	6	1	6	6900.4694	-0.0053
6	2	5	6	0	6	6901.5699	0.0007
7	1	7	6	1	6	9532.9150	-0.0017
7	0	7	6	0	6	9532.9253	-0.0009
7	1	6	6	1	5	10794.3598	0.0041
7	2	5	7	2	6	6860.6327	-0.0029
7	3	5	7	1	6	6867.0923	-0.0058
8	1	8	7	1	7	10804.7608	-0.0004
8	0	8	7	0	7	10804.7608	-0.0004
8	1	7	7	1	6	12065.1794	0.0017
8	2	7	7	2	6	12065.0579	0.0000

Table S15. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_6$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K-1″	K+1″	Obs.	ObsCal.
3	1	2	2	1	1	5803.0881	-0.0015
3	2	1	2	2	0	6323.7851	-0.0016
4	1	4	3	1	3	5713.4760	-0.0032
4	0	4	3	0	3	5721.8201	-0.0007
4	1	3	3	1	2	7083.4826	0.0022
4	2	2	3	2	1	8260.5624	0.0000
4	2	3	3	2	2	6880.9669	0.0009
4	3	1	3	3	0	8363.4851	0.0020
4	3	2	3	3	1	7624.4745	-0.0053
5	1	5	4	1	4	6988.4355	-0.0012
5	0	5	4	0	4	6989.6059	-0.0002
5	1	4	4	1	3	8282.1291	-0.0014
5	2	3	4	2	2	9729.4053	0.0013
5	2	4	4	2	3	8228.8449	-0.0001
5	3	3	4	3	2	9267.0526	-0.0002
5	4	2	4	4	1	9761.7198	-0.0010
6	1	6	5	1	5	8260.5775	-0.0004
6	0	6	5	0	5	8260.7241	-0.0007
6	1	5	5	1	4	9528.4554	0.0009
6	2	5	5	2	4	9518.5442	0.0000
6	1	5	6	1	6	6893.9640	-0.0021
6	2	5	6	0	6	6895.7748	-0.0029
7	1	7	6	1	6	9532.3596	-0.0005
7	0	7	6	0	6	9532.3766	-0.0008
7	1	6	6	1	5	10794.4260	-0.0015
7	3	5	7	1	6	6854.3646	0.0037
8	1	8	7	1	7	10804.1248	0.0026
8	0	8	7	0	7	10804.1248	0.0026
8	1	7	7	1	6	12064.7676	0.0005
8	2	7	7	2	6	12064.5525	0.0015
8	3	5	8	3	6	6756.0949	0.0030
8	4	5	8	2	6	6800.5015	-0.0120
9	4	5	9	4	6	6599.2741	-0.0168

Table S16. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_{11}$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	- K+1'	J″	K-1''	K+1″	Obs.	ObsCal.
3	2	1	2	2	0	6381.9252	0.0133
4	1	3	3	1	2	7037.5114	-0.0022
4	2	3	3	2	2	6875.9745	0.0046
4	3	2	3	3	1	7670.8587	-0.0142
5	1	5	4	1	4	6962.1135	-0.0082
5	0	5	4	0	4	6962.7947	0.0050
6	1	6	5	1	5	8229.2790	0.0010
6	0	6	5	0	5	8229.3514	0.0008
6	2	5	6	0	6	6877.0848	0.0177
6	2	5	6	1	6	6877.0848	0.0177
7	1	7	6	1	6	9496.2315	-0.0013
7	0	7	6	0	6	9496.2397	-0.0005
8	1	8	7	1	7	10763.1850	-0.0001
8	0	8	7	0	7	10763.1850	-0.0001
8	4	5	8	2	6	6801.8755	-0.0049
9	3	6	8	5	3	7172.0213	0.0099
9	5	4	8	8	1	7061.1582	0.0022

Table S17. Observed rotational transitions and residuals (in MHz) for ${}^{18}O_{12}$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K-1″	K+1"	Obs.	ObsCal.
2	0	2	1	0	1	3230.3556	-0.0080
2	2	0	1	0	1	5879.6983	0.0146
2	2	1	2	0	2	2275.3630	0.0087
2	1	2	1	0	1	3280.8098	-0.0059
2	2	0	1	1	1	5670.6393	0.0158
2	2	1	1	1	0	4764.0910	0.0073
3	1	3	2	1	2	4417.3858	0.0015
3	0	3	2	0	2	4459.9575	0.0025
3	1	2	2	1	1	5798.1799	0.0005
3	1	2	3	1	3	2978.5221	0.0052
3	2	2	3	0	3	3221.8902	-0.0014
3	1	3	2	0	2	4467.8464	0.0100
3	2	2	2	1	1	6033.6725	-0.0002
3	3	1	2	2	0	7599.5077	-0.0010
4	1	4	3	1	3	5704.1499	0.0028
4	0	4	3	0	3	5711.0160	0.0030
4	1	3	3	1	2	7061.8459	0.0020
4	2	3	3	2	2	6879.5696	-0.0012
4	1	3	4	1	4	4336.2058	-0.0079
4	2	2	4	2	3	2711.1699	0.0119
4	2	3	4	0	4	4390.4517	0.0021
4	0	4	3	1	3	5703.1349	0.0033
4	1	4	3	0	3	5712.0311	0.0025
4	1	3	3	2	2	6826.3492	-0.0013
4	2	2	3	3	1	7023.7383	-0.0082
4	2	3	3	1	2	7115.0641	0.0000
4	1	3	4	0	4	4337.2251	-0.0041
5	1	5	4	1	4	6976.3497	0.0060
5	0	5	4	0	4	6977.2458	0.0047
5	3	2	5	3	3	2319.2882	-0.0001
5	4	2	5	2	3	3752.0186	0.0075
5	5	0	5	3	3	7195.3063	0.0050
5	5	1	5	3	2	4828.8852	0.0103
5	0	5	4	1	4	6976.2136	-0.0119
6	2	4	5	4	1	6454.8857	-0.0037
6	3	3	5	5	0	7430.6329	-0.0118
6	2	4	6	2	5	5556.0646	0.0055

Table S18. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{15}$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

Table S18 (Continued).

J	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
6	3	3	6	3	4	3918.1609	-0.0003
6	3	4	6	1	5	5600.1523	0.0106
6	4	3	6	2	4	4482.1845	0.0082
6	6	1	6	4	2	6292.6453	0.0041
6	3	3	6	2	4	3960.9628	-0.0056
6	3	4	6	2	5	5598.8615	-0.0045
7	2	5	7	2	6	6843.3350	0.0153
7	3	4	7	3	5	5421.0481	-0.0015
7	3	5	7	1	6	6850.9284	0.0117
7	4	3	7	4	4	3479.8845	0.0018
7	4	4	7	2	5	5574.6401	-0.0021
7	5	3	7	3	4	4704.2026	0.0039
7	6	2	7	4	3	5419.6905	0.0067
7	2	5	7	1	6	6843.4818	-0.0028
7	4	4	7	3	5	5567.2032	-0.0070
8	3	5	8	3	6	6770.1358	-0.0005
8	4	4	8	4	5	5165.1959	-0.0042
8	4	5	8	2	6	6802.0386	-0.0003
8	5	3	8	5	4	2907.7347	0.0085
8	5	4	8	3	5	5586.6405	-0.0050
8	6	3	8	4	4	5168.3340	-0.0037
8	7	2	8	5	3	6774.6325	-0.0054
8	3	5	8	2	6	6771.2548	-0.0094
8	4	4	8	3	5	5195.9685	-0.0063
8	4	5	8	3	6	6800.9117	0.0006
8	5	4	8	4	5	5555.8699	-0.0010
8	6	3	8	5	4	4777.6702	0.0032
9	4	5	9	4	6	6642.1510	-0.0020
9	5	4	9	5	5	4739.5534	0.0023
9	5	5	9	3	6	6748.1845	-0.0018
9	6	4	9	4	5	5694.0320	-0.0035
9	7	3	9	5	4	5969.8237	-0.0137
10	4	6	10	4	7	7978.6640	-0.0056
10	5	5	10	5	6	6416.9429	-0.0009
10	6	4	10	6	5	4135.4771	-0.0023
10	6	5	10	4	6	6710.1805	-0.0067
10	7	4	10	5	5	5984.0892	-0.0061
10	8	3	10	6	4	7152.5203	0.0044

Table S18 (Continued).

J	K-1′	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
10	4	6	10	3	7	7979.5319	0.0012
11	5	6	11	5	7	7855.8678	-0.0073
11	6	5	11	6	6	6038.1807	-0.0030
11	6	6	11	4	7	7925.7572	0.0043
11	7	4	11	7	5	3396.3453	0.0098
11	7	5	11	5	6	6729.8976	0.0007
12	10	2	12	9	3	6265.6997	-0.0032
13	9	5	13	7	6	7249.1763	-0.0138

J	K-1'	K+1'	J″	K-1''	K+1″	Obs.	ObsCal.
2	2	0	1	0	1	5829.4269	0.0110
3	2	1	2	2	0	6350.6088	0.0005
4	1	4	3	1	3	5671.9981	-0.0014
4	0	4	3	0	3	5677.7408	0.0000
4	1	3	3	1	2	7013.6036	-0.0001
4	2	2	3	2	1	8241.6330	-0.0013
4	2	3	3	2	2	6848.8090	-0.0003
4	3	1	3	3	0	8433.0848	0.0000
4	3	2	3	3	1	7635.4475	0.0005
5	1	5	4	1	4	6936.5071	-0.0011
5	0	5	4	0	4	6937.2120	-0.0012
5	1	4	4	1	3	8211.0200	-0.0005
5	2	3	4	2	2	9637.4689	0.0029
5	2	4	4	2	3	8173.6931	-0.0029
5	3	3	4	3	2	9243.7949	0.0006
6	1	6	5	1	5	8199.0098	-0.0009
6	0	6	5	0	5	8199.0899	0.0014
6	1	5	5	1	4	9454.7206	0.0013
6	2	4	5	2	3	10787.5241	-0.0039
6	2	5	5	2	4	9448.6781	0.0004
7	1	7	6	1	6	9461.2958	-0.0042
7	0	7	6	0	6	9461.3086	0.0005
7	1	6	6	1	5	10713.1953	-0.0005
7	2	5	7	2	6	6813.3903	-0.0036
7	3	5	7	1	6	6818.9874	-0.0003
8	1	8	7	1	7	10723.5859	0.0003
8	0	8	7	0	7	10723.5859	0.0003
8	1	7	7	1	6	11974.5520	0.0004
8	2	7	7	2	6	11974.4547	0.0041
8	3	5	8	3	6	6751.0746	0.0082
8	4	5	8	2	6	6774.6720	0.0065
9	1	9	8	1	8	11985.8825	0.0028
9	0	9	8	0	8	11985.8825	0.0028

Table S19. Observed rotational transitions and residuals (in MHz) for ${}^{13}C_{16}$ isotopomer of the T1 *o*-anisic acid conformer in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K-1''	K+1''	Obs.	ObsCal.
2	1	2	1	1	1	3078.6587	-0.0005
2	1	1	1	1	0	4108.8244	-0.0037
2	2	0	1	0	1	5929.4683	-0.0088
3	1	3	2	1	2	4443.7300	0.0007
3	0	3	2	0	2	4498.4733	0.0031
3	1	2	2	1	1	5807.9128	-0.0009
3	2	1	2	2	0	6282.7553	0.0003
3	2	2	2	2	1	5390.6133	0.0009
3	2	2	2	1	1	6114.2106	-0.0016
3	3	0	2	2	1	8239.6486	0.0007
3	3	1	2	2	0	7717.8148	-0.0010
4	0	4	3	0	3	5757.4504	-0.0024
4	1	3	3	1	2	7117.1646	0.0000
4	2	2	3	2	1	8241.0031	0.0003
4	2	3	3	2	2	6891.7784	-0.0024
4	3	1	3	3	0	8287.9606	0.0032
4	3	2	3	3	1	7597.6650	0.0049
4	0	4	3	1	3	5745.3051	-0.0086
4	1	4	3	0	3	5759.2698	0.0025
4	1	3	3	2	2	6810.8517	-0.0144
4	2	2	3	3	1	6805.9386	-0.0033
4	2	3	3	1	2	7198.0793	-0.0001
4	3	2	3	2	1	9032.7217	0.0008
5	1	5	4	1	4	7032.7813	-0.0026
5	0	5	4	0	4	7034.3513	-0.0024
5	1	4	4	1	3	8322.8479	-0.0012
5	2	3	4	2	2	9758.5440	0.0002
5	2	4	4	2	3	8257.7567	0.0006
5	3	2	4	3	1	10512.7964	0.0013
5	3	3	4	3	2	9259.6331	0.0008
5	4	2	4	4	1	9710.9193	0.0005
5	2	3	5	2	4	4082.9214	0.0047
5	2	4	5	0	5	5585.6099	0.0038
5	0	5	4	1	4	7032.5293	-0.0099
5	1	5	4	0	4	7034.6036	0.0051
5	1	4	4	2	3	8241.9338	-0.0006

Table S20. Observed rotational transitions and residuals (in MHz) for the C2 conformer of o-anisic acid in the ground vibrational state (0⁺).

Table S20 (Continued).

J	K-1′	K+1′	J″	K-1″	K+1''	Obs.	ObsCal.
5	2	3	4	3	2	8966.8252	-0.0004
5	2	4	4	1	3	8338.6712	0.0004
6	1	6	5	1	5	8315.0367	0.0001
6	0	6	5	0	5	8315.2522	0.0019
6	1	5	5	1	4	9574.4070	0.0008
6	2	4	5	2	3	10951.4597	-0.0006
6	2	5	5	2	4	9561.2105	0.0000
6	3	4	5	3	3	10733.3279	-0.0005
6	2	4	6	2	5	5473.1633	-0.0032
6	2	5	6	0	6	6831.5710	0.0047
6	0	6	5	1	5	8315.0092	0.0036
6	1	6	5	0	5	8315.2815	0.0003
6	1	5	5	2	4	9558.5841	-0.0003
6	2	4	5	3	3	10658.6531	-0.0007
6	2	5	5	1	4	9577.0304	-0.0018
6	3	4	5	4	1	6549.5908	0.0005
6	4	3	5	5	0	7645.9998	0.0011
7	1	7	6	1	6	9596.8060	0.0014
7	0	7	6	0	6	9596.8315	-0.0002
7	1	6	6	1	5	10848.7594	-0.0003
7	2	6	6	2	5	10846.5276	0.0000
7	3	5	6	3	4	12082.7133	-0.0024
7	1	6	7	1	7	8080.8793	0.0149
7	2	5	7	2	6	6768.8859	-0.0051
7	3	4	7	3	5	5271.8841	0.0069
7	3	5	7	1	6	6784.4175	-0.0058
7	6	2	7	4	3	6093.9205	-0.0100
7	3	5	6	4	2	6035.4157	-0.0004
7	2	5	7	1	6	6769.2779	-0.0071
8	1	8	7	1	7	10878.5302	-0.0003
8	0	8	7	0	7	10878.5342	0.0003
8	3	5	8	3	6	6661.3384	-0.0033
8	4	5	8	2	6	6725.6243	-0.0032
8	7	2	8	5	3	7741.0255	0.0046
8	3	5	8	2	6	6664.0091	-0.0048
8	4	5	8	3	6	6722.9513	-0.0041
8	8	0	8	7	1	6177.9741	0.0105

Table S20 (Continued).

J	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
8	8	1	8	7	2	6229.7283	0.0009
9	3	6	9	3	7	7959.5553	-0.0031
9	4	5	9	4	6	6464.0121	-0.0024
9	4	6	9	2	7	7972.7426	-0.0044
9	5	5	9	3	6	6672.5900	0.0006
9	7	3	9	5	4	6701.8934	-0.0002
9	3	6	9	2	7	7959.9863	-0.0017
9	4	5	9	3	6	6476.7780	0.0045
9	4	6	9	3	7	7972.3178	0.0003
9	5	5	9	4	6	6659.8317	0.0013
9	8	2	9	7	3	6052.6578	-0.0082
9	9	0	9	8	1	7057.6270	-0.0064
10	4	6	10	4	7	7843.8230	-0.0007
10	5	5	10	5	6	6111.5443	-0.0009
10	5	6	10	3	7	7893.9419	-0.0070
10	6	5	10	4	6	6666.7749	0.0085
10	7	4	10	5	5	6339.6168	-0.0075
10	5	5	10	4	6	6159.3322	0.0074
10	6	5	10	5	6	6618.9861	-0.0008
11	5	6	11	5	7	7652.7525	-0.0010
11	6	6	11	4	7	7810.6937	-0.0026
11	8	4	11	6	5	7275.5560	0.0076
11	7	5	11	6	6	6636.1870	-0.0010
11	8	4	11	7	5	6181.4635	-0.0008
11	9	2	11	8	3	6092.3831	-0.0029
11	9	3	11	8	4	6683.1190	0.0004
11	10	1	11	9	2	7645.6698	0.0133
12	6	6	12	6	7	7329.4481	0.0083
12	7	6	12	5	7	7753.1505	-0.0042
12	8	5	12	7	6	6751.3194	0.0093
13	7	6	13	6	7	6909.9496	0.0047
13	9	5	13	8	6	6997.8451	-0.0090

J	K-1'	K+1'	J″	K-1″	K+1″	Obs.	ObsCal.
2	1	1	1	1	0	4025.7488	-0.0124
3	1	3	2	1	2	4376.7964	-0.0030
3	0	3	2	0	2	4439.4350	-0.0044
3	1	2	2	1	1	5716.1642	0.0070
3	2	1	2	2	0	6139.0453	0.0005
3	1	3	2	0	2	4454.9371	0.0086
3	3	1	2	2	0	7683.8287	-0.0045
4	1	4	3	1	3	5664.6909	0.0080
4	1	3	3	1	2	7029.9308	-0.0059
4	0	4	3	1	3	5662.1561	-0.0003
4	1	4	3	0	3	5680.1743	0.0024
4	1	3	3	2	2	6676.7082	-0.0051
5	1	5	4	1	4	6932.9846	0.0082
5	0	5	4	0	4	6935.1383	0.0071
5	2	4	4	2	3	8135.7121	-0.0046
5	0	5	4	1	4	6932.6107	0.0059
5	1	5	4	0	4	6935.5100	0.0072
6	1	6	5	1	5	8197.1169	-0.0093
6	0	6	5	0	5	8197.4387	-0.0079
7	2	5	7	2	6	6659.8930	0.0053

Table S21. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{15}$ isotopologue of the C2 *o*-anisic acid conformer in the ground vibrational state (0⁺). See Figure 3 for atom labeling.

J	K-1'	K+1'	J″	K -1″	K+1″	Obs.	ObsCal.
2	1	1	1	1	0	4075.8266	0.0113
3	1	3	2	1	2	4427.4172	-0.0003
3	0	3	2	0	2	4489.0453	-0.0112
3	1	2	2	1	1	5782.6022	-0.0018
3	2	1	2	2	0	6218.5445	-0.0008
3	2	2	2	2	1	5353.8042	0.0032
3	2	2	2	1	1	6129.6671	-0.0009
3	3	1	2	2	0	7755.3493	0.0078
4	1	4	3	1	3	5729.4716	-0.0044
4	0	4	3	0	3	5742.0153	-0.0015
4	1	3	3	1	2	7106.9404	-0.0001
4	2	2	3	2	1	8185.2685	-0.0007
4	2	3	3	2	2	6858.6784	-0.0027
4	3	2	3	3	1	7534.0899	-0.0027
4	1	3	3	3	0	3869.1254	0.0084
4	1	3	3	2	2	6759.8662	-0.0102
4	2	3	3	1	2	7205.7535	0.0082
5	1	5	4	1	4	7012.1263	-0.0007
5	0	5	4	0	4	7014.1757	-0.0022
5	1	4	4	1	3	8307.0074	0.0005
5	2	3	4	2	2	9735.4021	0.0021
5	2	4	4	2	3	8229.0091	0.0002
5	3	3	4	3	2	9201.8834	-0.0022
5	0	5	4	1	4	7011.7820	0.0021
5	1	5	4	0	4	7014.5195	-0.0057
5	2	3	4	3	2	8849.7824	0.0019
6	1	6	5	1	5	8290.7460	0.0000
6	0	6	5	0	5	8291.0460	0.0000
6	1	5	5	1	4	9549.8207	-0.0004
6	2	4	5	2	3	10941.7661	0.0026
6	2	5	5	2	4	9532.7261	-0.0005
6	1	5	6	1	6	6806.4429	-0.0017
6	2	5	6	0	6	6810.1952	-0.0088
7	1	6	6	1	5	10818.5434	-0.0016
7	2	6	6	2	5	10815.4292	-0.0019
7	2	5	7	2	6	6735.4158	-0.0012
7	3	5	7	1	6	6757.2716	-0.0054

Table S22. Observed rotational transitions and residuals (in MHz) for the C1 conformer of *o*-anisic acid in the ground vibrational state.

Table S22 (Continued).

J	K-1′	K +1′	J″	K-1″	K+1″	Obs.	ObsCal.
7	2	5	7	1	6	6736.0250	0.0097
7	3	5	7	2	6	6756.6765	-0.0022
8	1	8	7	1	7	10846.6623	0.0002
8	0	8	7	0	7	10846.6695	0.0020
8	2	6	8	2	7	8000.5440	0.0086
8	3	5	8	3	6	6604.7594	-0.0040
8	3	6	8	1	7	8004.6628	0.0001
8	4	5	8	2	6	6694.4106	-0.0049
9	1	9	8	1	8	12124.5924	-0.0005
9	0	9	8	0	8	12124.5924	-0.0005
9	4	5	9	4	6	6360.3575	0.0002

J	K-1'	K+1′	J″	K-1''	K+1''	Obs.	ObsCal.
3	2	1	2	2	0	6276.1529	-0.0045
3	2	2	2	1	1	6117.9130	-0.0016
4	1	3	3	1	2	7123.3436	-0.0049
4	2	3	3	2	2	6896.2776	0.0044
4	3	2	3	3	1	7595.1499	0.0005
4	1	3	3	2	2	6813.7283	0.0104
5	1	5	4	1	4	7048.2504	-0.0027
5	0	5	4	0	4	7049.8660	-0.0023
5	1	4	4	1	3	8332.8189	0.0029
5	2	3	4	2	2	9761.1584	-0.0001
5	0	5	4	1	4	7048.0006	0.0016
5	1	5	4	0	4	7050.1086	-0.0140
6	1	6	5	1	5	8334.2402	-0.0008
6	0	6	5	0	5	8334.4623	-0.0005
6	1	5	5	1	4	9587.6562	0.0007
6	2	5	5	2	4	9574.0919	-0.0009
7	1	7	6	1	6	9619.7325	0.0010
7	0	7	6	0	6	9619.7587	-0.0012
7	1	6	6	1	5	10865.5601	0.0000
7	2	5	7	2	6	6733.3039	-0.0015
7	2	5	7	1	6	6733.7176	-0.0008
8	1	8	7	1	7	10905.1818	0.0014
8	0	8	7	0	7	10905.1818	0.0014
8	1	7	7	1	6	12149.1218	-0.0010
9	4	6	8	5	3	7956.8263	0.0002

Table S23. Observed rotational transitions and residuals (in MHz) for the C2 conformer of *o*-anisic acid in the first vibrational state (0⁻).

J	K-1'	K +1′	J″	K-1″	K+1"	Obs.	ObsCal.
2	1	1	1	1	0	2401.6088	-0.0066
3	1	3	2	1	2	2902.7839	-0.0035
3	0	3	2	0	2	3076.2787	0.0071
3	1	2	2	1	1	3565.3525	-0.0020
3	2	1	2	0	2	6403.9012	-0.0096
3	2	1	2	2	0	3458.2661	0.0056
3	2	2	2	2	1	3267.2680	0.0012
3	2	1	2	1	2	5976.7832	0.0078
3	2	2	2	1	1	5063.7160	-0.0029
3	3	0	2	2	1	6856.9990	-0.0079
3	3	1	2	2	0	6797.5146	0.0001
4	1	4	3	1	3	3825.1008	-0.0003
4	0	4	3	0	3	3950.1770	-0.0015
4	1	3	3	1	2	4674.1589	-0.0011
4	2	2	3	2	1	4720.7719	-0.0015
4	2	3	3	2	2	4315.5585	-0.0010
4	3	1	3	3	0	4485.4074	0.0002
4	3	2	3	3	1	4440.7290	-0.0011
4	2	3	3	1	2	5813.9194	-0.0045
4	4	0	3	3	1	9342.5171	0.0026
4	4	1	3	3	0	9333.8219	0.0005
5	1	5	4	1	4	4724.8828	-0.0012
5	0	5	4	0	4	4795.1990	-0.0006
5	1	4	4	1	3	5698.3988	-0.0009
5	2	3	4	2	2	5973.7251	-0.0026
5	2	4	4	2	3	5330.9591	-0.0007
5	3	2	4	3	1	5701.2560	-0.0013
5	3	3	4	3	2	5557.7159	-0.0012
5	4	1	4	4	0	5567.3530	-0.0024
5	4	2	4	4	1	5559.9007	0.0010
5	1	4	5	1	5	3155.4464	-0.0039
5	2	4	5	0	5	3986.0350	0.0021
5	2	4	4	1	3	6470.7198	-0.0039
5	3	2	4	2	3	9460.8495	0.0043
5	3	3	4	2	2	8616.9271	-0.0007
6	1	6	5	1	5	5608.6684	-0.0011
6	0	6	5	0	5	5642.3879	-0.0012

Table S24. Observed rotational transitions and residuals (in MHz) for the T1-w-1 conformer of *o*-anisic acid-water complex in the ground vibrational state.

Table S24 (Continued).

J	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
6	1	5	5	1	4	6622.2772	-0.0003
6	2	4	5	2	3	7169.9131	-0.0028
6	2	5	5	2	4	6309.8836	-0.0013
6	3	3	5	3	2	6983.7396	-0.0021
6	3	4	5	3	3	6657.8084	-0.0015
6	4	2	5	4	1	6732.8446	-0.0041
6	4	3	5	4	2	6700.7866	-0.0010
6	5	1	5	5	0	6667.7718	-0.0053
6	2	5	6	0	6	4653.5229	-0.0056
6	3	4	6	1	5	4741.7852	-0.0008
6	0	6	5	1	5	5584.1361	0.0054
6	1	6	5	0	5	5666.9262	-0.0018
6	1	5	5	2	4	5849.9537	0.0001
6	3	4	5	2	3	9301.0068	-0.0033
6	5	2	6	4	3	6255.1718	0.0030
7	1	7	6	1	6	6482.9256	-0.0016
7	0	7	6	0	6	6497.6207	-0.0008
7	1	6	6	1	5	7470.3523	0.0000
7	2	5	6	2	4	8280.6060	0.0005
7	2	6	6	2	5	7253.4245	-0.0003
7	3	4	6	3	3	8299.8231	0.0014
7	3	5	6	3	4	7728.8146	-0.0022
7	4	3	6	4	2	7943.8087	-0.0006
7	4	4	6	4	3	7845.1876	-0.0020
7	5	2	6	5	1	7815.4939	-0.0043
7	5	3	6	5	2	7809.9304	-0.0003
7	1	6	7	1	7	5156.4798	-0.0036
7	2	5	7	2	6	3177.9407	-0.0005
7	2	6	7	0	7	5409.3279	-0.0039
7	3	5	7	1	6	5000.2438	-0.0067
7	4	4	7	2	5	6641.6698	0.0015
7	0	7	6	1	6	6473.0813	-0.0013
7	1	7	6	0	6	6507.4754	0.0092
7	3	5	6	2	4	9859.9106	-0.0003
7	2	6	7	1	7	5399.4783	-0.0089
7	4	3	7	3	4	4108.5701	0.0084
7	4	4	7	3	5	5062.3520	-0.0107
8	1	8	7	1	7	7352.2642	-0.0007

Table S24 (Continued).

8 0 8 7 0 7 7358.2930 -0.000 8 1 7 7 1 6 8293.2540 0.000 8 2 6 7 2 5 9284.0064 -0.000 8 2 7 7 2 6 8167.2305 -0.000 8 3 5 7 3 4 9587.3140 -0.001 8 3 6 7 3 5 8762.1246 0.000 8 4 4 7 4 3 9218.8303 -0.011 8 4 5 7 4 4 8982.1313 0.000 8 5 3 7 5 2 8985.9455 0.000 8 6 2 7 6 1 8913.5958 -0.001 8 1 7 8 1 8 6097.4696 -0.002 8<	J´	K-1′	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
8 1 7 7 1 6 8293.2540 0.000 8 2 6 7 2 5 9284.0064 -0.000 8 2 7 7 2 6 8167.2305 -0.000 8 3 5 7 3 4 9887.3140 -0.001 8 3 6 7 3 5 8762.1246 0.000 8 4 4 7 4 4 8982.1313 0.000 8 4 5 7 4 4 8982.4332 0.000 8 5 3 7 5 2 8985.9455 0.000 8 5 4 7 5 3 896.47352 0.000 8 6 2 7 6 1 8913.5958 -0.001 8 1 7 8 1 8 6097.4696 -0.002 8 2 7 8 1 8 611.82645 -0.004	8	0	8	7	0	7	7358.2930	-0.0009
8 2 6 7 2 5 9284.0064 -0.000 8 3 5 7 3 4 9587.3140 -0.001 8 3 6 7 3 5 8762.1246 0.000 8 4 4 7 4 3 9218.8303 -0.001 8 4 5 7 4 4 8982.1313 0.000 8 5 3 7 5 2 8985.9455 0.000 8 6 2 7 6 1 8913.5958 0.001 8 6 3 7 6 2 8913.7956 0.002 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 3 6 8 1 7 7469.1151 -0.005 8 2 7 7 1 6 6418.02.39720 -0.000 <td< td=""><td>8</td><td>1</td><td>7</td><td>7</td><td>1</td><td>6</td><td>8293.2540</td><td>0.0001</td></td<>	8	1	7	7	1	6	8293.2540	0.0001
8 2 7 7 2 6 8167.2305 -0.000 8 3 5 7 3 4 9587.3140 -0.011 8 3 6 7 3 5 8762.1246 0.000 8 4 4 7 4 3 9218.8303 -0.001 8 4 5 7 4 4 8985.9455 0.000 8 5 3 7 5 2 8985.9455 0.000 8 6 2 7 6 1 8913.5958 -0.011 8 6 3 7 6 2 8912.7646 0.000 8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6007.4696 -0.000 8 2 7 8 0 8 6218.2645 -0.000 8 3 6 8 1 7 7348.4473 <t< td=""><td>8</td><td>2</td><td>6</td><td>7</td><td>2</td><td>5</td><td>9284.0064</td><td>-0.0008</td></t<>	8	2	6	7	2	5	9284.0064	-0.0008
8 3 5 7 3 4 9587.3140 -0.001 8 3 6 7 3 5 8762.1246 0.000 8 4 5 7 4 4 8982.1313 0.000 8 4 5 7 4 4 8982.9455 0.000 8 5 3 7 5 2 8985.9455 0.000 8 6 2 7 6 1 8913.5958 0.001 8 6 3 7 6 2 8912.7646 0.002 8 1 7 8 1 8 6074.696 -0.002 8 2 6 839.720 -0.000 8 6218.2645 -0.000 8 3 6 8 1 7 7348.4733 -0.000 8 4 5 8 2 6 6339.7920 -0.000 8 1 8 7 7 7364.4733 -0	8	2	7	7	2	6	8167.2305	-0.0006
8 3 6 7 3 5 8762.1246 0.000 8 4 7 4 3 9218.8303 -0.01 8 4 5 7 4 4 8982.1313 0.000 8 5 3 7 5 2 8985.9455 0.000 8 5 4 7 5 3 8964.7352 0.000 8 6 2 7 6 1 8913.5958 -0.001 8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.044 8 3 6 8 1 7 5469.1151 -0.000 8 4 5 8 2 6 6339.7920 -0.000 8 1 8 7 7 1 6 8410.2369 0.002	8	3	5	7	3	4	9587.3140	-0.0019
8 4 4 7 4 3 9218.8303 -0.001 8 4 5 7 4 4 8982.1313 0.000 8 5 3 7 5 2 8985.9455 0.000 8 5 4 7 5 3 8964.7352 0.000 8 6 2 7 6 1 8913.955 0.001 8 6 2 7 6 1 8913.956 0.002 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4 0.8 60002 8 2 7 8 0 8 6218.2645 -0.000 8 3 6 8 1 7 5469.1151 -0.005 8 4 5 8 2 6 6339.7920 -0.000 8 1 8 7 1 7 7348.4473 -0.012	8	3	6	7	3	5	8762.1246	0.0009
8 4 5 7 4 4 8982.1313 0.000 8 5 3 7 5 2 8985.9455 0.000 8 5 4 7 5 3 8964.7352 0.000 8 6 2 7 6 1 8913.5958 -0.001 8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 3 6 8 1 7 5469.1151 -0.005 8 4 5 8 2 6 6339.7920 -0.000 8 5 4 8 3 5 9566.7984 -0.000 8 1 8 7 1 7 7348.4473 -0.012 8 1 8 7 7 1 6 8410.2369 </td <td>8</td> <td>4</td> <td>4</td> <td>7</td> <td>4</td> <td>3</td> <td>9218.8303</td> <td>-0.0015</td>	8	4	4	7	4	3	9218.8303	-0.0015
8 5 3 7 5 2 8985.9455 0.000 8 5 4 7 5 3 8964.7352 0.000 8 6 2 7 6 1 8913.5958 -0.011 8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 2 7 8 0 8 6218.2645 -0.004 8 3 6 8 1 7 7348.4473 -0.000 8 4 5 8 2 7 7 1 6 8410.2369 0.002 8 1 8 7 0 7 7362.1046 -0.005 8 2 7 7 1 6 8410.2369 0.002 9 1 9 8 1 8 821.7072	8	4	5	7	4	4	8982.1313	0.0000
8 5 4 7 5 3 8964.7352 0.000 8 6 2 7 6 1 8913.5958 -0.001 8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 2 7 8 0 8 66139.720 -0.000 8 3 6 8 1 7 7348.4473 -0.000 8 5 4 8 3 5 9566.7984 -0.000 8 0 8 7 1 7 7348.4473 -0.010 8 1 8 7 0 7 7362.1046 -0.002 8 2 7 7 1 6 8410.2369 0.002 9 1 9 8 1 8219.3326 -0.000 9 1	8	5	3	7	5	2	8985.9455	0.0006
8 6 2 7 6 1 8913.5958 -0.001 8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 2 7 8 0 8 6218.2645 -0.004 8 3 6 8 1 7 5469.1151 -0.005 8 4 5 8 2 6 6339.7920 -0.000 8 5 4 8 3 5 9566.7984 -0.000 8 0 8 7 1 7 7348.4473 -0.001 8 1 8 7 7 1 6 8410.2369 0.002 8 2 7 8 1 8 821.0326 -0.000 9 1 9 8 1 8 821.0000 -0.010	8	5	4	7	5	3	8964.7352	0.0005
8 6 3 7 6 2 8912.7646 0.000 8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 2 7 8 0 8 6218.2645 -0.004 8 3 6 8 1 7 5469.1151 -0.005 8 4 5 8 2 6 6339.7920 -0.000 8 5 4 8 3 5 9566.7984 -0.000 8 0 8 7 1 7 7348.4473 -0.001 8 1 8 7 0 7 7362.1046 -0.005 8 2 7 8 1 8 8214.413 -0.012 9 1 9 8 1 8 8214.413 -0.012 9 1 9 8 1 8 821.7072 -0.000 9<	8	6	2	7	6	1	8913.5958	-0.0014
8 1 7 8 1 8 6097.4696 -0.002 8 2 6 8 2 7 4294.7133 -0.004 8 2 7 8 0 8 6218.2645 -0.004 8 3 6 8 1 7 5469.1151 -0.005 8 4 5 8 2 6 6339.7920 -0.000 8 5 4 8 3 5 9566.7984 -0.000 8 0 8 7 1 7 7348.4473 -0.001 8 1 8 7 0 7 7362.1046 -0.005 8 2 7 7 1 6 8410.2369 0.002 8 2 7 8 1 8 8219.3326 -0.000 9 1 9 8 1 7 9123.7820 0.000 9 2 7 8 2 6 10177.6648 0.000 <	8	6	3	7	6	2	8912.7646	0.0005
8 2 6 8 2 7 4294.7133 -0.004 8 2 7 8 0 8 6218.2645 -0.004 8 3 6 8 1 7 5469.1151 -0.005 8 4 5 8 2 6 6339.7920 -0.000 8 5 4 8 3 5 9566.7984 -0.000 8 0 8 7 1 7 7348.4473 -0.001 8 1 8 7 0 7 7362.1046 -0.002 8 2 7 7 1 6 8410.2369 0.002 8 2 7 8 1 8 821.0326 -0.000 9 1 9 8 1 7 9123.7820 0.000 9 2 7 8 2 6 10177.6648 0.000 9 2 7 8 3 5 10796.4832 0.000	8	1	7	8	1	8	6097.4696	-0.0027
827808 6218.2645 -0.004 836817 5469.1151 -0.005 845826 6339.7920 -0.000 854835 9566.7984 -0.000 808717 7348.4473 -0.001 818707 7362.1046 -0.005 827716 8410.2369 0.002 827818 6214.4413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927836 9754.1676 0.000 936835 10796.4832 0.000 937836 9754.1676 0.000 98181 9983.5517 0.002 98181 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 93791 </td <td>8</td> <td>2</td> <td>6</td> <td>8</td> <td>2</td> <td>7</td> <td>4294.7133</td> <td>-0.0041</td>	8	2	6	8	2	7	4294.7133	-0.0041
836817 5469.1151 -0.005 845826 6339.7920 -0.000 854835 9566.7984 -0.000 808717 7348.4473 -0.001 818707 7362.1046 -0.005 827716 8410.2369 0.002 827818 6214.4413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927835 10796.4832 -0.000 936835 10796.4832 0.000 937836 9754.1676 0.000 972871 10015.8744 -0.001 981880 9983.5517 0.002 982881 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 93	8	2	7	8	0	8	6218.2645	-0.0045
845826 6339.7920 -0.000 854835 9566.7984 -0.000 808717 7348.4473 -0.001 818707 7362.1046 -0.005 827716 8410.2369 0.002 827818 6214.4413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927827 9059.4882 -0.000 936835 10796.4832 0.000 937836 9754.1676 0.002 98180 9983.5517 0.002 98181 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 927928 5412.8938 0.001 937918 6099.5056 -0.000 93791 </td <td>8</td> <td>3</td> <td>6</td> <td>8</td> <td>1</td> <td>7</td> <td>5469.1151</td> <td>-0.0051</td>	8	3	6	8	1	7	5469.1151	-0.0051
8548359566.7984 -0.000 808717 7348.4473 -0.001 818707 7362.1046 -0.005 827716 8410.2369 0.002 919818 6214.4413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927827 9059.4882 -0.000 936835 10796.4832 0.000 937836 9754.1676 0.002 981880 9983.5517 0.002 981880 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 937918 6099.5056 -0.000 937918 6099.5056 -0.000 937918 6099.5056 -0.000 937 <td>8</td> <td>4</td> <td>5</td> <td>8</td> <td>2</td> <td>6</td> <td>6339.7920</td> <td>-0.0002</td>	8	4	5	8	2	6	6339.7920	-0.0002
808717 7348.4473 -0.001 818707 7362.1046 -0.005 827716 8410.2369 0.002 827818 6214.4413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927844 3462.0690 -0.010 927835 10796.4832 0.000 936835 10796.4832 0.000 972871 10015.8744 -0.001 981880 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 928909 7056.0408 -0.009 937918 6099.5056 -0.000 937918 6099.5056 -0.000 937918 6099.5056 -0.000 93 <td< td=""><td>8</td><td>5</td><td>4</td><td>8</td><td>3</td><td>5</td><td>9566.7984</td><td>-0.0006</td></td<>	8	5	4	8	3	5	9566.7984	-0.0006
8187077362.1046 -0.005 827716 8410.2369 0.002 827818 6214.4413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927844 3462.0690 -0.010 928827 9059.4882 -0.000 936835 10796.4832 0.000 937836 9754.1676 0.000 972871 10015.8744 -0.001 981880 9983.5517 0.002 982881 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 937918 6099.5056 -0.000 937918 6099.5056 -0.000 946927 6260.5068 0.003	8	0	8	7	1	7	7348.4473	-0.0019
827716 8410.2369 0.002 827818 6214.413 -0.012 919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927844 3462.0690 -0.010 928827 9059.4882 -0.000 936835 10796.4832 0.000 937836 9754.1676 0.002 981880 9983.5517 0.002 981881 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 928909 7056.0408 -0.009 937918 6099.5056 -0.000 937918 6099.5056 -0.000 937918 6099.5056 -0.000 946927 6260.5068 0.003	8	1	8	7	0	7	7362.1046	-0.0050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	2	7	7	1	6	8410.2369	0.0020
919818 8219.3326 -0.000 909808 8221.7072 -0.000 918817 9123.7820 0.000 927826 10177.6648 0.000 927844 3462.0690 -0.010 928827 9059.4882 -0.000 936835 10796.4832 0.000 937836 9754.1676 0.000 972871 10015.8744 -0.001 981880 9983.5517 0.002 918919 7001.9210 0.000 927928 5412.8938 0.001 928918 6099.5056 -0.000 937918 6099.5056 -0.000 937918 6099.5056 -0.000 937918 6099.5056 -0.000 946927 6260.5068 0.003	8	2	7	8	1	8	6214.4413	-0.0120
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1	9	8	1	8	8219.3326	-0.0005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0	9	8	0	8	8221.7072	-0.0003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1	8	8	1	7	9123.7820	0.0005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2	7	8	2	6	10177.6648	0.0008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2	7	8	4	4	3462.0690	-0.0109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2	8	8	2	7	9059.4882	-0.0005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	3	6	8	3	5	10796.4832	0.0000
9 7 2 8 7 1 10015.8744 -0.001 9 8 1 8 8 0 9983.5517 0.002 9 8 2 8 8 1 9983.5517 0.002 9 1 8 9 1 9 7001.9210 0.000 9 1 8 9 1 9 7001.9210 0.000 9 2 7 9 2 8 5412.8938 0.001 9 2 8 9 0 9 7056.0408 -0.009 9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	3	7	8	3	6	9754.1676	0.0001
9 8 1 8 8 0 9983.5517 0.002 9 8 2 8 8 1 9983.5517 0.002 9 8 2 8 8 1 9983.5517 0.002 9 1 8 9 1 9 7001.9210 0.000 9 2 7 9 2 8 5412.8938 0.001 9 2 8 9 0 9 7056.0408 -0.009 9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	7	2	8	7	1	10015.8744	-0.0012
9 8 2 8 8 1 9983.5517 0.002 9 1 8 9 1 9 7001.9210 0.000 9 2 7 9 2 8 5412.8938 0.001 9 2 8 9 0 9 7056.0408 -0.009 9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	8	1	8	8	0	9983.5517	0.0022
9 1 8 9 1 9 7001.9210 0.000 9 2 7 9 2 8 5412.8938 0.001 9 2 8 9 0 9 7056.0408 -0.009 9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	8	2	8	8	1	9983.5517	0.0022
9 2 7 9 2 8 5412.8938 0.001 9 2 8 9 0 9 7056.0408 -0.009 9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	1	8	9	1	9	7001.9210	0.0004
9 2 8 9 0 9 7056.0408 -0.009 9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	2	7	9	2	8	5412.8938	0.0010
9 3 7 9 1 8 6099.5056 -0.000 9 4 6 9 2 7 6260.5068 0.003	9	2	8	9	0	9	7056.0408	-0.0094
9 4 6 9 2 7 6260.5068 0.003	9	3	7	9	1	8	6099.5056	-0.0007
	9	4	6	9	2	7	6260.5068	0.0032

Table S24 (Continued).

J	K-1′	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
9	0	9	8	1	8	8217.8920	0.0001
9	1	9	8	0	8	8223.1466	-0.0022
9	1	8	8	2	7	9006.8011	0.0006
9	2	7	8	3	6	9120.2413	-0.0009
9	2	8	8	1	7	9176.4701	0.0003
9	3	7	9	2	8	6046.8154	-0.0026
9	4	6	9	3	7	5626.5640	-0.0142
9	5	5	9	4	6	6231.6333	-0.0150
9	6	3	9	5	4	7453.1635	0.0028
10	1	10	9	1	9	9085.4449	-0.0007
10	0	10	9	0	9	9086.3527	-0.0005
10	1	9	9	1	8	9968.2750	0.0008
10	2	9	9	2	8	9938.2064	-0.0008
10	2	8	10	2	9	6472.3457	-0.0090
10	2	9	10	0	10	7907.9049	0.0007
10	3	8	10	1	9	6838.0599	-0.0060
10	4	7	10	2	8	6444.5619	0.0003
10	0	10	9	1	9	9084.9114	-0.0004
10	1	10	9	0	9	9086.8881	0.0011
10	1	9	9	2	8	9915.5858	0.0000
10	2	9	9	1	8	9990.8974	0.0018
11	1	11	10	1	10	9951.1864	-0.0008
11	0	11	10	0	10	9951.5277	0.0012
11	1	10	11	1	11	8756.2725	-0.0003
11	2	9	11	2	10	7461.4295	0.0122
11	0	11	10	1	10	9950.9929	0.0001
11	1	11	10	0	10	9951.7208	-0.0001
12	1	11	12	1	12	9622.1216	-0.0001
12	2	10	12	2	11	8397.3473	-0.0003
12	2	11	12	0	12	9625.9659	0.0007
12	3	10	12	1	11	8481.4602	-0.0006
13	3	11	13	1	12	9338.4408	0.0007
13	4	10	13	2	11	8209.6701	-0.0017
14	3	11	14	3	12	8779.6097	0.0016
14	4	11	14	2	12	9014.8143	0.0039
15	4	12	15	2	13	9860.4032	-0.0033

J	K-1'	K+1'	J″	K-1''	K+1''	Obs.	ObsCal.
2	2	0	1	1	1	4429.3138	0.0162
3	0	3	2	0	2	3063.0281	-0.0097
3	1	2	2	1	1	3558.4376	0.0158
4	1	4	3	1	3	3809.4276	0.0004
4	0	4	3	0	3	3930.6403	0.0007
4	1	3	3	1	2	4661.8191	-0.0002
4	3	1	3	3	0	4479.8900	-0.0114
4	3	2	3	3	1	4432.6411	0.0106
5	1	5	4	1	4	4704.2564	-0.0007
5	0	5	4	0	4	4771.0799	0.0060
5	2	3	4	2	2	5967.5124	-0.0085
5	2	4	4	2	3	5314.2818	-0.0041
5	2	4	4	1	3	6410.3724	-0.0027
6	1	6	5	1	5	5583.2076	-0.0009
6	0	6	5	0	5	5614.6493	-0.0006
6	1	5	5	1	4	6591.2574	-0.0034
6	2	4	5	2	3	7156.8824	-0.0016
6	2	5	5	2	4	6287.4386	0.0026
6	3	3	5	3	2	6983.4485	-0.0060
6	3	4	5	3	3	6643.1869	-0.0113
6	1	5	5	2	4	5858.4839	0.0186
7	1	7	6	1	6	6452.8800	0.0048
7	0	7	6	0	6	6466.3289	-0.0042
7	1	6	6	1	5	7431.2474	-0.0004
7	2	6	6	2	5	7224.7448	0.0000
7	3	5	6	3	4	7708.9158	0.0000
7	4	3	6	4	2	7938.8892	-0.0048
7	4	4	6	4	3	7832.4565	-0.0038
8	1	8	7	1	7	7317.8448	0.0042
8	0	8	7	0	7	7323.2721	0.0045
8	3	6	8	1	7	5424.0504	-0.0152
8	2	6	7	3	5	7750.2258	0.0005
10	2	9	10	1	10	7878.4492	0.0105

Table S25. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{15}$ isotopomer of the T1-w-1 *o*-anisic acid-water complex in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1′	J″	K-1''	K+1''	Obs.	ObsCal.
3	1	3	2	1	2	2867.2579	-0.0060
3	0	3	2	0	2	3040.8615	0.0064
3	1	2	2	1	1	3512.6178	0.0034
3	2	1	2	2	0	3401.2152	-0.0060
3	2	2	2	2	1	3221.0344	-0.0045
4	1	4	3	1	3	3780.0872	0.0001
4	0	4	3	0	3	3908.4125	0.0035
4	1	3	3	1	2	4609.4074	0.0067
4	2	2	3	2	1	4641.9373	0.0025
4	2	3	3	2	2	4256.4620	-0.0018
4	3	1	3	3	0	4414.9148	0.0001
4	3	2	3	3	1	4374.4357	-0.0117
5	1	5	4	1	4	4671.0633	-0.0021
5	0	5	4	0	4	4745.2328	0.0006
5	1	4	4	1	3	5627.3216	0.0025
5	2	3	4	2	2	5877.5634	0.0017
5	2	4	4	2	3	5260.9116	0.0014
5	3	2	4	3	1	5606.4132	-0.0050
5	3	3	4	3	2	5475.5427	0.0001
5	4	1	4	4	0	5482.3493	-0.0001
5	4	2	4	4	1	5475.8471	-0.0092
5	5	0	5	4	1	6354.8495	0.0035
6	1	6	5	1	5	5546.1858	-0.0010
6	0	6	5	0	5	5582.7211	0.0019
6	1	5	5	1	4	6549.3275	0.0131
6	2	4	5	2	3	7062.0096	0.0042
6	2	5	5	2	4	6230.7202	0.0030
6	3	3	5	3	2	6862.2925	-0.0025
6	3	4	5	3	3	6561.6507	0.0043
6	4	2	5	4	1	6626.7384	-0.0036
6	4	3	5	4	2	6598.7240	0.0022
6	5	1	5	5	0	6566.8498	-0.0033
7	1	7	6	1	6	6411.6129	-0.0056
7	0	7	6	0	6	6427.9464	-0.0015
7	1	6	6	1	5	7394.3987	0.0163
7	2	6	6	2	5	7166.4514	0.0057
7	3	5	6	3	4	7621.1398	0.0055

Table S26. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{20}$ isotopomer of the T1-w-1 *o*-anisic acid-water complex in the ground vibrational state. See Figure 3 for atom labeling.

Table S26 (Continued).

J	K-1′	K+1′	J″	K-1″	K+1''	Obs.	ObsCal.
7	4	3	6	4	2	7812.5583	-0.0060
7	4	4	6	4	3	7725.8059	0.0027
7	5	2	6	5	1	7695.1858	-0.0044
7	5	3	6	5	2	7690.5085	-0.0053
7	4	4	7	2	5	6770.7805	-0.0012
8	1	8	7	1	7	7271.9009	-0.0053
8	0	8	7	0	7	7278.7664	-0.0056
9	5	4	9	4	5	5622.9606	-0.0059

J	K-1'	K+1'	J″	K-1″	K+1"	Obs.	ObsCal.
7	1	7	6	1	6	6283.3876	0.0003
7	0	7	6	0	6	6302.8977	0.0013
7	1	6	6	1	5	7256.2682	-0.0001
7	2	5	6	2	4	7962.7376	0.0006
7	2	6	6	2	5	7010.0393	0.0001
7	0	7	6	1	6	6268.8090	-0.0015
7	1	7	6	0	6	6317.4745	0.0014
8	1	8	7	1	7	7127.4436	0.0000
8	0	8	7	0	7	7136.0011	0.0001
8	1	7	7	1	6	8059.0690	-0.0010
8	2	6	7	2	5	8967.2147	-0.0005
8	2	7	7	2	6	7903.1443	-0.0002
8	0	8	7	1	7	7121.4197	-0.0045
8	1	8	7	0	7	7142.0217	0.0014
9	1	9	8	1	8	7968.7487	-0.0017
9	0	9	8	0	8	7972.3479	-0.0001
9	1	8	8	1	7	8860.7494	0.0001
9	2	7	8	2	6	9872.2067	0.0000
9	2	8	8	2	7	8774.4322	0.0011
9	0	9	8	1	8	7966.3314	0.0026
9	1	9	8	0	8	7974.7704	0.0005

Table S27. Observed rotational transitions and residuals (in MHz) for ${}^{18}O_{21}$ isotopomer of the T1-w-1 *o*-anisic acid-water complex in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1′	J″	K-1″	K+1"	Obs.	ObsCal.
3	0	3	2	0	2	3027.9903	-0.0163
3	1	2	2	1	1	3505.8284	-0.0017
4	1	4	3	1	3	3764.7409	0.0054
4	0	4	3	0	3	3889.3147	-0.0047
4	1	3	3	1	2	4597.4999	0.0004
4	2	2	3	2	1	4639.1435	-0.0028
5	1	5	4	1	4	4650.8647	0.0003
5	0	5	4	0	4	4721.5064	-0.0049
5	2	3	4	2	2	5871.6091	0.0086
5	2	4	4	2	3	5244.6334	-0.0024
5	3	2	4	3	1	5602.7049	-0.0035
5	3	3	4	3	2	5464.8726	-0.0145
5	4	1	4	4	0	5473.5060	0.0055
5	4	2	4	4	1	5466.4469	0.0035
5	2	4	5	1	5	3871.7778	-0.0106
6	1	6	5	1	5	5521.2291	0.0011
6	0	6	5	0	5	5555.3890	-0.0016
6	2	4	5	2	3	7049.7124	0.0000
6	2	5	5	2	4	6208.8700	-0.0003
6	3	4	5	3	3	6547.3276	-0.0015
6	4	2	5	4	1	6618.2886	-0.0125
6	4	3	5	4	2	6587.9064	-0.0136
6	1	5	6	1	6	4093.5025	-0.0165
6	6	1	6	5	2	7626.8961	0.0059
6	2	5	5	1	4	6985.3977	-0.0025
7	1	7	6	1	6	6382.1269	0.0007
7	0	7	6	0	6	6397.1324	0.0005
7	2	6	6	2	5	7138.5389	-0.0054
7	3	5	6	3	4	7601.8109	0.0028
7	4	4	6	4	3	7713.1120	0.0134
7	5	2	6	5	1	7683.4479	0.0099
7	5	3	6	5	2	7678.2205	-0.0062
8	1	8	7	1	7	7238.1004	0.0062
8	0	8	7	0	7	7244.3040	0.0059
8	2	7	7	2	6	8038.9795	-0.0124
8	0	8	7	1	7	7234.1236	0.0028
8	1	8	7	0	7	7248.2746	0.0031

Table S28. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{15}$ - ${}^{2}D_{20}$ isotopomers of the T1-w-1 *o*-anisic acid-water complex in the ground vibrational state. See Figure 3 for atom labeling.

Table S28 (Continued).

J	K-1′	K+1′	J″	K-1''	K+1″	Obs.	ObsCal.
8	2	6	8	1	7	4322.8495	0.0129
9	1	9	8	1	8	8091.7717	0.0044
9	0	9	8	0	8	8094.2390	0.0100
10	3	7	10	2	8	4396.8731	0.0094

J	K-1'	K+1′	J″	K-1″	K+1"	Obs.	ObsCal.
3	0	3	2	0	2	2973.1788	-0.0017
3	1	2	2	1	1	3413.1533	-0.0006
3	2	1	2	2	0	3294.8880	0.0102
3	2	2	2	2	1	3134.0401	0.0101
3	2	2	2	1	1	5020.4467	0.0160
4	1	4	3	1	3	3694.7140	-0.0041
4	0	4	3	0	3	3828.6743	0.0007
4	1	3	3	1	2	4486.4042	-0.0121
4	3	2	4	1	3	5055.2375	-0.0036
5	1	5	4	1	4	4568.8964	0.0124
5	0	5	4	0	4	4650.3987	-0.0032
5	1	4	4	1	3	5490.9001	0.0004
5	2	3	4	2	2	5696.2082	-0.0154
5	2	4	4	2	3	5128.2351	-0.0031
5	3	2	4	3	1	5430.3952	-0.0097
5	3	3	4	3	2	5321.0864	-0.0077
6	1	6	5	1	5	5427.5629	0.0029
6	0	6	5	0	5	5469.7869	0.0036
6	1	5	5	1	4	6408.3179	-0.0008
6	2	4	5	2	3	6856.9126	-0.0050
6	2	5	5	2	4	6080.2829	-0.0006
6	3	3	5	3	2	6636.5735	-0.0043
6	3	4	5	3	3	6380.2962	-0.0065
6	4	3	5	4	2	6407.5641	-0.0041
7	1	7	6	1	6	6276.3185	0.0055
7	0	7	6	0	6	6296.1122	0.0058
7	1	6	6	1	5	7248.5162	-0.0024
7	2	5	6	2	4	7949.6715	-0.0003
7	2	6	6	2	5	7000.7957	0.0009
7	3	4	6	3	3	7885.6024	0.0034
7	3	5	6	3	4	7417.2273	-0.0020
7	4	3	6	4	2	7569.4453	-0.0007
7	4	4	6	4	3	7501.8321	-0.0002
7	5	2	6	5	1	7470.4893	-0.0036
7	5	3	6	5	2	7467.1630	0.0112
7	0	7	6	1	6	6261.4272	-0.0114
7	2	6	7	1	7	5225.9802	-0.0007

Table S29. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{20}-{}^{2}D_{22}$ isotopomers of the T1-w-1 *o*-anisic acid-water complex in the ground vibrational state. See Figure 3 for atom labeling.

Table S29 (Continued).

J	K-1'	K+1′	J″	K-1″	K+1″	Obs.	ObsCal.
7	6	1	7	5	2	7913.4357	-0.0051
8	1	8	7	1	7	7119.5287	0.0068
8	0	8	7	0	7	7128.2384	0.0044
8	1	7	7	1	6	8050.8516	0.0004
8	2	7	7	2	6	7893.2903	0.0082
8	1	7	8	1	8	5829.9644	0.0125
8	1	8	7	0	7	7134.3871	-0.0090
9	1	9	8	1	8	7959.9612	0.0056
9	0	9	8	0	8	7963.6308	0.0002

J	K-1'	K+1′	J″	K-1″	K+1"	Obs.	ObsCal.
2	1	1	1	1	0	2291.9909	0.0127
3	1	2	2	1	1	3406.5869	-0.0027
4	1	4	3	1	3	3679.9584	-0.0002
4	0	4	3	0	3	3810.3998	-0.0105
4	1	3	3	1	2	4475.2046	-0.0108
4	3	2	4	2	3	3724.5205	-0.0024
4	4	0	4	3	1	4922.8342	0.0115
5	1	4	4	1	3	5472.4796	-0.0031
5	1	4	5	0	5	3029.4369	-0.0070
5	4	1	5	3	2	4811.4426	0.0148
5	5	1	5	4	2	6373.1031	-0.0128
6	1	6	5	1	5	5403.5416	0.0018
6	0	6	5	0	5	5443.2188	0.0025
6	1	5	5	1	4	6380.6076	0.0039
6	2	4	5	2	3	6845.7872	0.0046
6	2	5	5	2	4	6059.4830	0.0044
6	3	3	5	3	2	6634.5620	-0.0091
6	3	4	5	3	3	6366.4372	-0.0139
6	4	2	6	3	3	4596.8656	-0.0089
7	1	7	6	1	6	6247.8746	-0.0003
7	0	7	6	0	6	6266.1665	0.0006
7	1	6	6	1	5	7212.2776	-0.0014
7	2	5	6	2	4	7930.0826	0.0091
7	2	6	6	2	5	6974.2663	0.0029
7	3	4	6	3	3	7884.2421	0.0135
7	3	5	6	3	4	7398.8446	0.0004
7	4	3	6	4	2	7562.1211	-0.0041
7	4	4	6	4	3	7489.1083	-0.0057
8	1	8	7	1	7	7086.8695	0.0011
8	0	8	7	0	7	7094.7902	-0.0006
8	1	7	7	1	6	8009.2014	-0.0072
8	2	7	7	2	6	7860.9189	0.0032
8	2	7	8	1	8	5976.1924	0.0125
9	1	9	8	1	8	7923.2400	0.0029
9	0	9	8	0	8	7926.5285	0.0016
9	2	8	9	1	9	6778.9400	-0.0119
13	4	10	13	3	11	7827.6462	0.0040

Table S30. Observed rotational transitions and residuals (in MHz) for ${}^{2}D_{15} {}^{2}D_{20} {}^{2}D_{22}$ isotopomers of the T1-w-1 *o*-anisic acid-water complex in the ground vibrational state. See Figure 3 for atom labeling.

J	K-1'	K+1′	J″	K-1''	K+1"	Obs.	ObsCal.
3	1	2	2	1	1	3370.6501	-0.0024
4	1	3	3	1	2	4453.9898	-0.0019
4	0	4	3	0	3	3905.6980	0.0082
4	3	2	3	3	1	4205.7064	0.0077
4	1	4	3	0	3	4183.6796	-0.0061
4	2	3	3	1	2	6202.5827	0.0021
5	1	5	4	1	4	4641.8060	0.0047
5	0	5	4	0	4	4760.9951	0.0116
5	1	4	4	1	3	5495.0099	-0.0084
5	2	3	4	2	2	5564.7618	-0.0084
5	3	3	4	3	2	5267.1679	0.0021
6	1	6	5	1	5	5526.2069	-0.0025
6	0	6	5	0	5	5600.7279	0.0028
6	1	5	5	1	4	6477.4962	0.0060
6	4	2	5	4	1	6336.7564	-0.0007
6	4	3	5	4	2	6328.6504	0.0048
6	1	6	5	0	5	5685.0233	0.0072
6	1	5	5	2	4	5091.6973	-0.0150
7	1	7	6	1	6	6399.7739	0.0056
7	0	7	6	0	6	6441.6045	-0.0013
7	1	6	6	1	5	7392.5115	-0.0057
7	2	6	6	2	5	7060.9079	-0.0143
7	3	5	6	3	4	7372.2648	-0.0078
7	4	4	6	4	3	7405.4164	0.0033
7	0	7	6	1	6	6357.3141	-0.0072
7	1	7	6	0	6	6484.0697	-0.0015
7	2	6	7	1	7	5281.9444	0.0012
8	1	8	7	1	7	7266.1241	0.0013
8	0	8	7	0	7	7287.9681	0.0000
8	2	6	7	2	5	8946.0078	0.0069
8	2	7	7	2	6	7989.6599	0.0001
8	3	5	7	3	4	8869.9069	-0.0066
8	1	8	7	0	7	7308.5943	-0.0024

Table S31. Observed rotational transitions and residuals (in MHz) for the C2-w-1 conformer of *o*-anisic acid-water complex in the ground vibrational state.

Table S31 (Continued).

J	K-1′	K+1′	J″	K-1″	K+1''	Obs.	ObsCal.
8	2	7	8	1	8	6005.4745	-0.0015
9	1	9	8	1	8	8128.0632	0.0012
9	0	9	8	0	8	8138.9417	0.0001
9	1	8	8	1	7	9076.5102	-0.0025
9	2	8	8	2	7	8897.0210	0.0015
9	3	7	8	3	6	9409.2969	-0.0005
9	3	7	9	1	8	6246.1231	0.0081
9	2	7	8	3	6	7679.0457	0.0010
10	1	10	9	1	9	8987.5488	0.0004
10	0	10	9	0	9	8992.7869	0.0000
10	1	9	9	1	8	9898.2407	0.0013
10	1	10	9	0	9	8997.3019	-0.0009
11	1	11	10	1	10	9845.7564	0.0001
11	0	11	10	0	10	9848.2152	-0.0006

Table S32. Principal inertial axis coordinates for the atoms of the T1 conformer of *o*-anisic acid. The table compares the theoretical coordinates calculated at the MP2, CCSD and B3LYP-D3 methods with the 6- $311^{++}G(d,p)$ basis set with the experimental r_s and r_m coordinates. The r_s method^{34,35} uses the inertial moments of the monosubstituted isotopologues to obtain directly, trough Kraitchman equations, the absolute values of the Cartesian coordinates of the substituted atoms in the principal axis system of the parent molecule. The signs of the r_s coordinates can be taken from any reasonable structure, i.e., one calculated from *ab initio* methods. This method has drawbacks for the determination of atoms near the inertial axes or for light atoms. The mass dependence r_m structure³⁶ gives equilibrium-quality coordinates and has been used by a least-square fit of the all obtained parameters and implemented in program STRFIT.[i] The $r_m^{(1L)}$ definition was employed. The parameter δ_H for all r_m -r(C-H) bonds was fixed to 0.01 Å. [ii] The different c_α constants of the $r_m^{(1L)}$ method were estimated to have similar values in both cases so in the final fits these were assumed to be equal. In the final fit for T1 conformer the parameters for all the C-H bonds were fixed to the values calculated with the CCSD/6-311++G(d,p) method. See Figure 3 for atom labeling.

 [i] Kisiel, Z. Least-Squares Mass-Dependence Molecular Structures for Selected Weakly Bound Intermolecular Clusters. J. Mol. Spectrosc. 2003, 218, 58-67.

[ii] Laurie, V. W. Note on the Determination of Molecular Structure from Spectroscopic Data. J. Chem. Phys. 1958, 28, 704.

atom	method	a	b	c ^a
C ₁	r _e ^{MP2}	-0.4064	0.4689	[0.0000]
	reccsd	-0.4020	0.4707	[0.0000]
	r _e ^{DFT}	-0.3997	0.4775	[0.0000]
	$r_{m}^{(1L)}$	-0.3994(59) ^b	0.4641 (54)	[0.0000]
	r _s	-0.3745 (40)	0.4595 (33)	[0.0000]
C2	r _e ^{MP2}	0.6869	-0.4273	[0.0000]
	reccsd	0.6865	-0.4310	[0.0000]
	r_e^{DFT}	0.6860	-0.4247	[0.0000]
	$r_{m}^{(1L)}$	0.6841 (22)	-0.4237 (25)	[0.0000]
	r _s	0.6764 (22)	-0.4064 (37)	[0.0000]
Сз	r _e ^{MP2}	2.0009	0.0576	[0.0000]
	reccsd	2.0026	0.0458	[0.0000]
	r_e^{DFT}	1.9994	0.0474	[0.0000]
	$r_{\rm m}^{(1L)}$	1.9978 (15)	0.0613 (27)	[0.0000]
	r _s	1.99552(75)	[0.0000] ^c	[0.0000]
C 4	r _e ^{MP2}	2.2375	1.4364	[0.0000]
	re ^{CCSD}	2.2443	1.4244	[0.0000]
	r_e^{DFT}	2.2440	1.4190	[0.0000]
	$r_{\rm m}^{(1L)}$	2.2323 (13)	1.4291 (21)	[0.0000]
	r _s	2.23051(67)	1.4281 (11)	[0.0000]

^a c coordinates are fixed to zero assuming the planarity of the T1 conformation.

^b Standard error is given in parentheses in units of the last digits.

^c r_s parameters in square brackets are fixed to zero owing to the Kraitchman equations give imaginary values or cannot determinate the coordinates.

Table S32 (Continued).

atom	method	a	b	<i>c</i> ^a
C5	r _e ^{MP2}	1.1674	2.3344	[0.0000]
	reccsD	1.1821	2.3302	[0.0000]
	reDFT	1.1874	2.3248	[0.0000]
	r _m ^(1L)	1.1676 (22) ^b	2.3292 (13)	[0.0000]
	r _s	1.1655 (13)	2.32921(64)	[0.0000]
C 6	r _e ^{MP2}	-0.1396	1.8455	[0.0000]
	reCCSD	-0.1273	1.8453	[0.0000]
	r_e^{DFT}	-0.1174	1.8474	[0.0000]
	$r_{m}^{(1L)}$	-0.1447 (24)	1.8414 (16)	[0.0000]
	r _s	-0.110 (14)	1.84059(82)	[0.0000]
H_7	r _e ^{MP2}	2.8428	-0.6245	[0.0000]
	reccsD	2.8410	-0.6405	[0.0000]
	r_e^{DFT}	2.8328	-0.6409	[0.0000]
	$r_{m}^{(1L)}$	2.8404 (22)	-0.6199 (34)	[0.0000]
	r _s	-	-	-
H_8	r _e ^{MP2}	3.2621	1.7981	[0.0000]
	r _e ^{CCSD}	3.2713	1.7805	[0.0000]
	r_e^{DFT}	3.2689	1.7724	[0.0000]
	$r_{m}^{(1L)}$	3.2579(17)	1.7892 (27)	[0.0000]
	r _s	-	-	-
H9	r _e ^{MP2}	1.3484	3.4049	[0.0000]
	reccsd	1.3687	3.3998	[0.0000]
	reDFT	1.3773	3.3911	[0.0000]
	$r_{\rm m}^{\rm (1L)}$	1.3494 (39)	3.3996 (12)	[0.0000]
	r _s	-	-	-
H_{10}	r _e ^{MP2}	-0.9920	2.5177	[0.0000]
	reccsd	-0.9738	2.5242	[0.0000]
	r_e^{DFT}	-0.9606	2.5267	[0.0000]
	$r_{\rm m}^{(1L)}$	-0.9921 (22)	2.5192 (30)	[0.0000]
	r _s	-	-	-
C11	r _e ^{MP2}	-1.8690	0.0757	[0.0000]
	r _e ^{CCSD}	-1.8701	0.0853	[0.0000]
	r_e^{DFT}	-1.8621	0.0945	[0.0000]
	$r_{\rm m}^{(1L)}$	-1.86315(77)	0.0779 (14)	[0.0000]
	r _s	-1.85656(81)	[0.0000]°	[0.0000]
O12	r _e ^{MP2}	0.3932	-1.7713	[0.0000]
	re ^{CCSD}	0.3872	-1.7709	[0.0000]
	r_e^{DFT}	0.3856	-1.7653	[0.0000]
	$r_{\rm m}^{(1L)}$	0.3935 (23)	-1.76376(93)	[0.0000]
	r _s	0.3968 (38)	-1.76429(85)	[0.0000]

^a c coordinates are fixed to zero assuming the planarity of the T1 conformation.
 ^b Standard error is given in parentheses in units of the last digit.
 ^c r_s parameters in square brackets are fixed to zero owing to the Kraitchman equations give imaginary values or cannot determinate the coordinates.

Table S32 (Continued).

atom	method	a	b	C ^a
O ₁₃	r _e ^{MP2}	-2.1635	-1.2379	[0.0000]
	r _e ^{CCSD}	-2.1800	-1.2215	[0.0000]
	r_e^{DFT}	-2.1729	-1.2158	[0.0000]
	$r_{m}^{(1L)}$	-2.1633 (21) ^b	-1.2312 (17)	[0.0000]
	r _s	-	-	-
O 14	r _e ^{MP2}	-2.7466	0.9082	[0.0000]
	r _e ^{CCSD}	-2.7352	0.9217	[0.0000]
	r_e^{DFT}	-2.7352	0.9259	[0.0000]
	$r_{m}^{(1L)}$	-2.7345 (17)	0.9077 (23)	[0.0000]
	r _e ^{MP2}	-	-	-
H15	r _e ^{MP2}	-1.3305	-1.7392	[0.0000]
	r_e^{CCSD}	-1.3640	-1.7395	[0.0000]
	r_e^{DFT}	-1.3594	-1.7505	[0.0000]
	$r_{m}^{(1L)}$	-1.3425(25)	-1.7438 (20)	[0.0000]
	r _s	-1.3360 (11)	-1.74576(86)	[0.0000]
C16	r _e ^{MP2}	1.4759	-2.6983	[0.0000]
	reccsD	1.4563	-2.7110	[0.0000]
	reDFT	1.4335	-2.7364	[0.0000]
	r _m ^(1L)	1.4663 (19)	-2.7017 (11)	[0.0000]
	r _s	1.4635 (10)	-2.70130(56)	[0.0000]
H_{17}	r _e ^{MP2}	2.0897	-2.5773	0.8975
	reccsD	2.0734	-2.5989	0.8984
	reDFT	2.0528	-2.6425	0.8966
	r _m ^(1L)	2.0831 (18)	-2.5879 (17)	0.89845(0)
	r _s	-	-	-
H_{18}	r _e ^{MP2}	2.0897	-2.5773	-0.8975
	reccsD	2.0734	-2.5989	-0.8984
	reDFT	2.0528	-2.6425	-0.8966
	r _m ^(1L)	2.0831 (18)	-2.5879 (17)	-0.89845(0)
	r _s	-	-	-
H19	r ^{MP2}	1.0151	-3.6852	[0.0000]
	reccsD	0.9839	-3.6944	[0.0000]
	reDFT	0.9362	-3.7044	[0.0000]
	r ^(1L)	0.9968 (33)	-3.6865 (12)	[0.0000]
	r _s	-	-	-

^a c coordinates are fixed to zero assuming the planarity of the T1 conformation.
^b Standard error is given in parentheses in units of the last digits.
^c r_s parameters in square brackets are fixed to zero owing to the Kraitchman equations give imaginary values or cannot determinate the coordinates.

	<i>a</i>	b	c
$r_s \operatorname{C2} H_{15}$	3.08344(49) ^a	1.3875(11)	[0.0000] ^b
r _e C1 H ₁₅	3.61045	0.16353	0.17882
r _e C2 H ₁₅	3.06108	1.31473	0.28316

Table S33. r_s coordinates (Å) of H_{15} atom of C2 conformer compared to the B3LYP-D3/6-311++G(d,p) r_e coordinates for C1 and C2 conformers.

^a Standard error is given in parentheses in units of the last digits.

^b The Kraitchman equations for this coordinate give imaginary values since the hydrogen atom is close to the ab inertial plane.

Table S34. Principal inertial axis coordinates for the atoms of the T1-w-1 conformer of *o*-anisic acid-water complex. The table compares the theoretical coordinates calculated at the MP2 and B3LYP-D3 methods with the 6-311++G(d,p) basis set with the experimental r_s and r_m coordinates. The r_s method^{34,35} uses the inertial moments of the monosubstituted isotopologues to obtain directly, trough Kraitchman equations, the absolute values of the Cartesian coordinates of the substituted atoms in the principal axis system of the parent molecule. The signs of the r_s coordinates can be taken from any reasonable structure, i.e., one calculated from *ab initio* methods. This method has drawbacks for the determination of atoms near the inertial axes or for light atoms. The mass dependence r_m structure³⁶ gives equilibrium-quality coordinates and has been used by a least-square fit of the all obtained parameters and implemented in program STRFIT (Ref. [i] Table S32). The $r_m^{(1L)}$ definition was employed. The parameter δ_H for all r_m -r(C-H) bonds was fixed to 0.01 Å (Ref. [ii] Table S32). The different c_α constants of the $r_m^{(1L)}$ method were estimated to have similar values in both cases so in the final fits these were assumed to be equal. In the final fit for T1 conformer the parameters for all the C-H bonds were fixed to the values calculated with the CCSD/6-311++G(d,p) method. The non-fitted data for T1-w-1 were fixed to the $r_m^{(1L)}$ data of the monomer. See Figure 3 for atom labeling.

atom	method	а	b	С
Cı	r _e ^{MP2}	-0.1192	-0.0034	-0.0037
	r_e^{DFT}	-0.1277	-0.0077	-0.0032
	$r_{m}^{(1L)}$	-0.10364(04) ^a	-0.01334(45)	-0.00341(14)
	r _s	-	-	-
C ₂	r _e ^{MP2}	1.2876	0.1468	0.0014
	r_e^{DFT}	1.2791	0.1514	0.0012
	$r_{m}^{(1L)}$	1.28709(14)	0.15475(55)	0.00132(05)
	r _s	-	-	-
Сз	r _e ^{MP2}	1.8650	1.4220	0.0032
	r_e^{DFT}	1.8631	1.4176	0.0029
	$r_{m}^{(1L)}$	1.8458 (11)	1.43889(96)	0.00307(09)
	r _s	-	-	-
C ₄	r _e ^{MP2}	1.0488	2.5580	-0.0001
	r_e^{DFT}	1.0558	2.5533	-0.0001
	$r_{m}^{(1L)}$	1.0204 (19)	2.55456(36)	-0.00011(05)
	r _s	-	-	-
C5	r _e ^{MP2}	-0.3415	2.4249	-0.0051
	r_e^{DFT}	-0.3299	2.4339	-0.0043
	$r_{m}^{(1L)}$	-0.3662 (18)	2.40849(64)	-0.00461(24)
	r _s	-	-	-
C ₆	r _e ^{MP2}	-0.9153	1.1527	-0.0069
	r_e^{DFT}	-0.9088	1.1704	-0.0059
	$r_{m}^{(1L)}$	-0.92183(83)	1.1235 (10)	-0.00635(28)
	r _s	-	-	-

^a Standard error is given in parentheses in units of the last digits.

^b r_s parameters in square brackets are fixed to zero owing to the Kraitchman equations give imaginary values or cannot determinate the coordinates.

Table S34 (Continued).

atom	method	a	b	с
\mathbf{H}_{7}	r _e ^{MP2}	2.9419	1.5419	0.0071
	reDFT	2.9381	1.5288	0.0063
	r _m ^(1L)	2.9205 (12) ^a	1.5760 (17)	0.00673(24)
	r _s	-	-	-
\mathbf{H}_{8}	r ^{MP2}	1.5099	3.5419	-0.0014
	r_DFT	1.5220	3.5322	-0.0015
	re	1.4700 (26)	3.54420(69)	-0.00153(03)
	- m ra	-	-	-
H	r ^{MP2}	-0.9798	3.3030	-0.0077
	r ^{DFT}	-0.9599	3.3146	-0.0064
	r ^(1L)	-1 0132 (24)	3 2804 (11)	-0.00693(35)
	'm r	-	-	-
H ₁₀	rMP2	-1 9943	1 0425	-0.0109
1110	re rDFT	-1.9863	1.0753	-0.0094
	re (1L)	1 00751(73)	0.0805 (18)	-0.0074
	r _m	-1.99751(75)	0.9805 (18)	-0.01001(43)
C	^I s mMP2	0.8461	1 2272	-
CII	re DFT	-0.0401	-1.3273	-0.0001
	(1L)	-0.8300	-1.5102	-0.0034
	r _m	-0.83/41(94)	-1.55/41(98)	-0.00370(21)
0	Г _S MP2	-	-	-
O_{12}	r _e ^{m z}	2.0407	-1.0056	0.0044
	r_e^{DFI}	2.0281	-1.0012	0.0038
	$r_{\rm m}^{\rm (1D)}$	2.05355(69)	-0.9822 (11)	0.00408(18)
_	r _s	-	-	-
O ₁₃	r _e ^{MP2}	-0.1123	-2.4494	-0.0031
	r _e ^{DFI}	-0.1330	-2.4387	-0.0029
	$r_{\rm m}^{(1L)}$	-0.0998 (17)	-2.45983(44)	-0.00309(08)
	r _s	-	-	-
O 14	r _e ^{MP2}	-2.0581	-1.3954	-0.0105
	reDFT	-2.0662	-1.3852	-0.0092
	$r_{\rm m}^{\rm (1L)}$	-2.03942(98)	-1.3924 (18)	-0.00986(37)
	r _s	-	-	-
H15	r _e ^{MP2}	0.8293	-2.2011	0.0003
	r_e^{DFT}	0.8181	-2.2245	0.0001
	$r_{\rm m}^{(1L)}$	0.8382 (16)	-2.22180(23)	0.00008(05)
	r _s	0.8045 (19)	-2.21005(68)	[0.0000] ^b

^a Standard error is given in parentheses in units of the last digits.
 ^b r_s parameters in square brackets are fixed to zero owing to the Kraitchman equations give imaginary values or cannot determinate the coordinates.

Table S34 (Continued).

atom	method	a	b	с
C ₁₆	r _e ^{MP2}	3.4614	-0.8846	0.0096
	r_e^{DFT}	3.4558	-0.9328	0.0084
	$r_{\rm m}^{(1L)}$	3.47304(60) ^a	-0.8565 (21)	0.00892(37)
	r _s	-	-	-
H_{17}	r _e ^{MP2}	3.8015	-0.3621	0.9085
	r_e^{DFT}	3.8183	-0.4246	0.9062
	$r_{m}^{(1L)}$	3.81454(30)	-0.3323 (24)	0.90848(41)
	r _s	-	-	-
H_{18}	r _e ^{MP2}	3.8080	-0.3625	-0.8870
	r_e^{DFT}	3.8240	-0.4248	-0.8872
	$r_{m}^{(1L)}$	3.82069(19)	-0.3325 (24)	-0.88841(41)
	r _s	-	-	-
H19	r _e ^{MP2}	3.8415	-1.9052	0.0113
	r_e^{DFT}	3.7987	-1.9655	0.0096
	$r_{m}^{(1L)}$	3.8593 (13)	-1.8768 (24)	0.01037(41)
	r _s	-	-	-
H20	r _e ^{MP2}	-3.6848	-0.3171	-0.0167
	r_e^{DFT}	-3.6081	-0.3092	-0.0144
	$r_{m}^{(1L)}$	-3.6225 (89)	-0.2561 (94)	-0.01541(64)
	r _s	-3.57002(42)	-0.3110 (48)	-0.099 (15)
O ₂₁	r _e ^{MP2}	-4.2712	0.4511	-0.0191
	r_e^{DFT}	-4.2286	0.4384	-0.0165
	$r_{m}^{(1L)}$	-4.28292(73)	0.44757(75)	-0.01776(73)
	r _s	-4.27783(35)	0.4543 (33)	-0.053 (29)
H22	r _e ^{MP2}	-5.0074	-0.1804	0.5331
	r_e^{DFT}	-5.0029	-0.1305	0.4617
	$r_m^{(1L)}$	-5.0201 (71)	-0.095 (18)	0.496 (21)
	r _s	-	-	-

^a Standard error is given in parentheses in units of the last digits.
 ^b r_s parameters in square brackets are fixed to zero owing to the Kraitchman equations give imaginary values or cannot determinate the coordinates.

Parameter	rs	r _m ^(1L)	re ^{MP2}	re ^{CCSD}	re ^{DFT}
$r(C_1-C_2)$	1.3616(47) ^a	1.4008(79)	1.414	1.413	1.412
$r(C_2-C_3)$	1.3803(25)	1.4004(36)	1.401	1.400	1.396
$r(C_3-C_4)$	1.4473(10)	1.3878(39)	1.399	1.399	1.393
$r(C_4-C_5)$	1.3951(14)	1.3942(27)	1.397	1.396	1.392
$r(C_5-C_6)$	1.366 (13)	1.4000(31) ^b	1.395	1.396	1.389
$r(C_1-C_6)$	1.4061(42)	1.4006(57) ^b	1.402	1.402	1.399
$r(C_1-C_{11})$	1.5516(40)	1.5138(57)	1.515	1.518	1.512
$r(C_2-O_{12})$	1.3864(38)	1.3712(30)	1.376	1.373	1.374
$r(C_{11}-O_{13})$	-	1.3431(22) ^b	1.346	1.343	1.347
$r(C_{11}-O_{14})$	-	1.2033(23) ^b	1.209	1.203	1.206
$r(O_{12}-H_{15})$	1.7329(39)	1.7360(34) ^b	1.724	1.752	1.745
$r(O_{12}-C_{16})$	1.4198(30)	1.4250(29)	1.425	1.423	1.429
$r(O_{13}-H_{15})$	-	0.9677(33)	0.972	0.966	0.973
\angle (C ₁ -C ₂ -C ₃)	123.4(3)	120.4(3) ^b	120.4	120.4	120.5
\angle (C ₂ -C ₃ -C ₄)	116.5(2)	120.0(2) ^b	120.0	119.9	119.9
∠(C ₃ -C ₄ -C ₅)	120.89(7)	120.5(2)	120.3	120.5	120.5
∠(C ₄ -C ₅ -C ₆)	118.8(2)	119.4(2)	119.5	119.2	119.3
\angle (C ₁ -C ₆ -C ₅)	121.8(8)	120.9(3) ^b	121.5	121.6	121.7
$\angle (C_2 - C_1 - C_6)$	118.6(6)	118.8(4) ^b	118.4	118.3	118.1
$\angle (C_2 - C_1 - C_{11})$	123.3(3)	125.9(4) ^b	125.6	125.7	125.6
$\angle (C_6 - C_1 - C_{11})$	118.1(6)	115.3(5)	116.0	116.0	116.3
$\angle (C_1 - C_2 - O_{12})$	117.8(3)	117.1(3) ^b	117.0	117.0	117.1
$\angle (C_3 - C_2 - O_{12})$	118.8(3)	122.5(2) ^b	122.6	122.5	122.4
$\angle (C_1 - C_{11} - O_{13})$	-	117.7(3)	117.7	118.0	118.0
$\angle (C_2 - O_{12} - C_{16})$	119.7(3)	118.9(1)	118.2	118.7	120.2
\angle (C ₂ -O ₁₂ -H ₁₅)	101.0(2)	$101.6(1)^{b}$	101.3	101.6	102.1
$\angle (C_{11}-C_1-C_2-C_3)$	180.00000(0)	180.00000(0) ^b	180.0	180.0	180.0
$\angle (C_{11}-C_{1}-C_{6}-C_{5})$	180.00000(0)	$180.00000(1)^{b}$	180.0	180.0	180.0
$\angle (O_{12}-C_{2}-C_{1}-C_{6})$	180.00000(0)	180.00000(1) ^b	180.0	180.0	180.0
$(O_{12} - C_2 - C_3 - C_4)$	180.00000(0)	180.00000(0) ^b	180.0	180.0	180.0
$/(H_{15}-O_{12}-C_{2}-C_{1})$	0.00000(1)	$0.00000(1)^{b}$	0.0	0.0	0.0
$\angle (H_{15} \circ I_2 \circ C_2 \circ C_1)$	180.00000(1)	180.00000(0) ^b	180.0	180.0	180.0
$\angle (C_{1/2} - O_{1/2} - C_{2/2} - C_{3/2})$	180,00000(0)	180 00000(1) ^b	180.0	180.0	180.0
$\angle (C_{10} \circ C_{12} \circ C_{2} \circ C_{1})$	0.00000(0)	0 00000(0) ^b	0.0	0.0	0.0
$\angle (U_{10} - U_{12} - U_{2} - U_{3})$	-	118 7(1) ^b	118 7	118.6	118.6
$C_{a}^{c} / u^{1/2} \cdot Å$		0.03656(21)	110.7	110.0	110.0
$\delta_{\rm H}/{\rm u}^{1/2}\cdot{\rm \AA}$		[0.010] ^d			
$\sigma_{fit}^{e} / u \cdot Å^{2}$		0.006662			

Table S35. r_s and r_m geometry parameters (distances in Å and angles in degree) and their comparison with the r_e structures predicted by *ab initio* MP2 and CCSD and DFT B3LYP-D3 methods with the 6-311++G(d,p) basis set for the *ab* plane for the conformer T1 of *o*-anisic acid. A planar skeleton was assumed.

^a Standard error is given in parentheses in units of the last digits.

^b Derived parameters.

^c Fitted using the assumption $C_{\alpha} = C_{a} = C_{b} = C_{c}$.

^d Fixed values.

^e Standard deviation of the fit of all the planar moments of inertia.

Table S36. r_s and r_m geometry parameters (distances in Å and angles in degree) and their comparison with the r_e structures predicted by *ab initio* MP2 and DFT B3LYP-D3 methods with the 6-311++G(d,p) basis set for the conformer T1-w-1 of *o*-anisic acid water complex. For the r_m fit the structure of *o*-anisic acid were fixed to T1 conformer r_m values (see Table S35) and the water parameters to the previously determined r_0 values [Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. Molecular Structures of Gas-Phase Polyatomic Molecules Determined by Spectroscopic Methods. *J. Phys. Chem. Ref. Data* 1979, 8, 619-721.]

Parameter	rs	rm ^(1L)	re ^{MP2}	re DFT
$r(O_{14}-H_{20})$		1.9487(19)	1.952	1.880
$r(H_{10}-O_{21})$		2.3467(11) ^b	2.352	2.331
$r(H_{20}-O_{21})$	1.0435(45) ^a	[0.965]°	0.966	0.972
$r(O_{14}-O_{21})$		2.9015(16) ^b	2.882	2.829
$\angle(C_{11}-O_{14}-H_{20})$		141.7(4)	143.2	141.5
$\angle (O_{14}-H_{20}-O_{21})$		168.8(1.1)	160.9	164.6
$\angle (C_{11}-O_{14}-H_{20}-O_{21})$		$[0.0]^{c}$	$[0.0]^{c}$	[0.0] ^c
$\angle (O_{14}-H_{20}-O_{21}-H_{22})$		146.4(1.6)	143.4	148.7
$C_{\alpha}{}^{\mathrm{d}}/\mathrm{u}^{1/2}\cdot\mathrm{\AA}$		0.0451(28)		
$\delta_{\rm H} / u^{1/2} \cdot {\rm \AA}$		[0.010]		
$\sigma_{fit}{}^e$ / $u \cdot Å^2$		0.07471		

^a Standard error is given in parentheses in units of the last digits.

^b Derived parameters.

^c Parameters in square were fixed.

^d Fitted using the assumption $C_{\alpha} = C_{a} = C_{b} = C_{c}$.

^e Standard deviation of the fit of all the planar moments of inertia.

Table S37. B3LYP-D3/6-311++G(d,p) predicted structural relaxation parameters (distances in Å and angles in degree) for some selected bond distances and angles along the coordinate τ ($\tau = \angle C_2 C_1 C_{11} O_{13} - 90^\circ$). The variation of these parameters can be described by a periodical function: $P(\tau) = P(0) + P(1)/2 \cdot (1 - \sin\tau) + P(2)/2 \cdot (1 - \cos 2\tau) + P(3)/2 \cdot (1 - \sin 3\tau) + P(4)/2 \cdot (1 - \cos 4\tau) + P(5)/2 \cdot (1 - \sin 5\tau)$. Values used in the flexible Meyer method to evaluate the potential energy function.

Parameter	P(0)	P(1)	P(2)	P(3)	P(4)	P(5)
$r(C_{11}-C_1)$	1.5004	-0.0034	-0.0100	0.0010	-0.0033	-0.0002
r(O ₁₂ -C ₂)	1.3627	-0.0040	-0.0110	-	-	-
$r(O_{13}-C_{11})$	1.3464	0.0169	0.0066	-0.0014	-	-
r(O ₁₄ -C ₁₁)	1.2070	-0.0060	0.0061	-	-	-
$\angle(C_{11}-C_1-C_6)$	119.06	3.78	-2.80	-0.86	-0.68	-0.21
$\angle (O_{12}-C_2-C_1)$	115.70	-0.27	2.49	0.11	-0.04	-
$\angle (O_{13}-C_{11}-C_{1})$	113.14	-3.22	1.90	0.56	-0.26	-
$\angle (O_{14}-C_{11}-C_{1})$	123.64	3.63	0.15	-0.59	-0.10	-
$\angle(C_{16}-O_{12}-C_{2})$	118.83	0.11	0.71	0.04	-0.07	-