Electronic Supplementary Materials

Shape Adaptation of Quinine in Cyclodextrin Cavities: NMR studies

Jacek Wójcik¹, Andrzej Ejchart¹, Michał Nowakowski^{2,*}

- ¹ Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warszawa, Poland; jacekw@ibb.waw.pl (J.W.); aejchart@ibb.waw.pl (A.E.)
- ² Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Zwirki i Wigury 101, 02-089 Warsaw, Poland
- * Correspondence: lyam@chem.uw.edu.pl

Contents:

Materials and sample preparation

Detailed parameters NMR measurements

Figure S1. Dihedral angles which undergo conformational changes in quinine solution.

Figure S2. ¹H NMR spectrum (500 MHz) of quinine.

Table S1. ¹H chemical shifts of quinine in D_2O .

Table S2. $J_{H,H}$ scalar couplings of quinine in D₂O at pH 10.5.

Figure S3. Set of ¹H NMR titration spectra for Q/ α CD complex at pH 10.5.

Figure S4. Set of ¹H NMR titration spectra for Q/ β CD complex at pH 10.5.

Figure S5. Set of ¹H NMR titration spectra for $Q/\gamma CD$ complex at pH 10.5.

Table S3. Values of association constants, K_a , determined for Q/CD complexes.

Table S4. CIS values for ¹H and ¹³C resonances Q/CD complexes at pH 10.5 and 25°C.

Table S5. *CIS* values for ¹H and ¹³C resonances Q/CD complexes at pH 7.3 and 25°C.

Figure S6. Stripe of 2D ROESY spectrum for $Q/\beta CD$ complex.

Table S6. Some parameters for the 23 DFT derived lowest-energy conformations.

Figure S7. Histogram of dipole moments for the 23 lowest-energy conformations.

Figure S8. Correlations between DFT derived ¹³C shielding constants and experimental chemical shifts for the proton bearing ¹³C nuclei of quinine at pH 10.5.

DFT based parametrization of Karplus equation for vicinal ${}^{3}J_{2,9}$ coupling constant in neutral quinine molecule in aqueous solution including Figure S9.

Influence of Q/CD complex formation on values of vicinal ${}^{3}J_{5,10}$ coupling constant including Figure S10 and Table S7.

Materials and sample preparation

Quinine was obtained from POCh (Gliwice, Poland). α -, β - and γ -cyclodextrins from Sigma-Aldrich (St. Louis, MO) were used without further purification. The D₂O from Armar Chemicals (Dottingen, Switzerland) contained 99.8% D. Quinine was dissolved in D₂O to a concentration of ~0.5 mmol/L. Part of quinine solution was separated from the rest and cyclodextrin was added to it in large excess over quinine. These basic solutions, containing either quinine or quinine and cyclodextrin, were mixed afterwards together in order to prepare seven to twelve NMR samples (0.65 mL total volume) of various cyclodextrin/quinine molar ratios, *R*, so that the concentrations of quinine remained constant during the titrations. Cyclodextrin/quinine molar ratios were finally determined by ¹H signal integration of CD anomeric protons versus four protons of quinine (H3', H5', H7', H8'), rather than to weigh a cyclodextrin which can contain an imprecisely known amount of water, since CDs crystallize from water as hydrates of variable composition.³⁻⁶ The maximum *R* values used in the titrations reached 39.6, 16.5, and 19.2 for Q/ α CD, Q/ β CD, and Q/ γ CD, respectively.

On the basis of the literature values of quinine pK_a values⁷ and titration curve the pH values for the complexation experiments have been chosen as 10.5, 7.3, and 2.5. These values correspond to the neutral, singly protonated, and double protonated molecule, respectively. In order to maintain constant pH value the following buffer solutions have been applied: the carbonate buffer - for pH 10.5, phosphatic buffer - for pH 7.3 and KCl/HCl buffer - for pH 2.5. The carbonate buffer was composed of Na₂CO₃ and NaDCO₃ in 2 to 1 molar ratio. The phosphatic buffer was composed of Na₂DPO₄ and NaD₂PO₄ in 2 to 1 molar ratio. The KCl/HCl buffer was composed of KCl and DCl in 10 to 1 molar ratio. The pH was maintained in each case with 30 mM buffer concentration. All pH measurements were carried out in D₂O solutions and all pH values are reported as isotope uncorrected pH meter readings.

Detailed parameters NMR measurements

All titration measurements were performed at a magnetic field of 11.7 T, using a Varian (Palo Alto, CA) 500 MHz INOVA, spectrometer. NMR spectra were measured at a temperature carefully adjusted to 25°C with an accuracy of 0.1°C and was checked by an ethylene glycol reference sample.¹ All chemical shifts in ¹H NMR spectra are reported with respect to external DSS-d₄. Chemical shifts of ¹³C signals were referenced indirectly using the 0.251449530 frequency ratio ¹³C/¹H.²

¹H chemical shifts were determined from 1D ¹H NMR spectra measured with 10.5 s relaxation delay followed by 1.5 s preirradiation of residual HDO resonance. A long repetition time allowed avoiding partial saturation of aromatic quinine protons displaying longitudinal relaxation times up to 3.0 s. Acquisition parameters were as follows: sweep width 4293 Hz, number of acquired points 21 k, and 512 scans. FIDs were processed with 0.1 Hz line broadening and zero-filled to 128 k, resulting in a 0.065 Hz spectrum digital resolution. The spectrum of quinine at pH 10.5 has been fully analyzed by means of the STSIT program (S. Szymanski, unpublished program) allowing the precise determination of all chemical shifts and ¹H-¹H coupling constants. The STSIT program involves a nonlinear, least squares fit of the relevant spectral parameters to the experimental line shape. It is equivalent to the program DAVINS by Stephenson and Binsch distributed once by the Quantum Chemistry Programs Exchange.^{8,9}

¹³C chemical shifts were obtained from 2D ${}^{1}\text{H}/{}^{13}\text{C}$ HSQC spectra.¹⁰ In the ${}^{13}\text{C}$ dimension a sweep width of 19 kHz and 512 complex data points, were used. Each of 128 scans was preceded by a 1 s relaxation delay. FIDs were multiplied by squared cosine weighting functions and zero-filled to 4 k in ${}^{13}\text{C}$ dimension. Digital resolution in the ${}^{13}\text{C}$ dimension was equal to 9.2 Hz.

Acquisition parameters of ROESY spectra¹¹ were set to the following parameters: sweep width 4293 Hz, acquired data points in directly and indirectly

detected dimensions were 676 and 256, respectively. Each of 96 scans was preceded by a 1.0 s relaxation delay and mixing time was set to 500 ms. FIDs were multiplied by squared cosine weighting functions. In both dimensions zero-filling to 2 k was applied.

References

- D. S. Raiford, C. L. Fisk, E. D. Becker, Anal. Chem., 1979, 51, 2050-2051.
- D. S. Wishart, C. G. Bigam, C. G. Yao, F. Abildgaard, H.J. Dyson, E. Oldfield, J. L. Markley and B. D. Sykes, J. Biomol. NMR, 1995, 6, 135-140. 2
- and B. D. Sykes, J. Biomol. NMR, 1995, 6, 135-140.
 W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith and T Takaha, Chem. Rev., 1998, 98, 1787-1802.
 F.W. Lichtenthaler, S. Immel, Liebig's Ann., 1996, 27-37.
 K. A. Connors, Chem. Rev., 1997, 97, 1325-1357.
 Z. Dang, L. X. Song, X. Q. Guo F. Y. Du, J. Yang, J. Yang, Curr. Org. Chem., 15, 848-861.
 J. L. Irvin and E. M. Irvin, J. Biol. Chem., 1948, 174, 577-587.
 D. S. Stephenson and G. Binsch, J. Magn. Reson., 1980, 37, 395-407.
 D. S. Stephenson and G. Binsch, J. Magn. Reson., 1980, 37, 409-430.
 G. Bodenhausen and D. J. Ruben. Chem. Phys. Lett. 1980, 69, 185-189.

- 10 G. Bodenhausen and D. J. Ruben, Chem. Phys. Lett., 1980, 69, 185-189.
- 11 A. Bax and D. G. Davis, J. Magn. Reson., 1985, 63, 207-213.

Figure S1

Definitions of the dihedral angles which undergo conformational changes in quinine solution. $H_2-C_2-C_9-H_9$: in figure $\phi_1 = +60 \text{ deg}$; $H_9-C_9-C_4-C_3$: in figure $\phi_2 = +90 \text{ deg}$; $H_5-C_5-C_{10}-H_{10}$: in figure $\phi_3 = +90 \text{ deg}$; C_{5'}-C_{6'}-O-C_{Me}: in figure $\phi_4 = +90 \text{ deg}$, H-O-C₉-H₉: in figure $\phi_5 = +60$ deg.

¹H NMR spectrum (500 MHz) of quinine in D_2O (c=0.53 mmol/L) at pH 10.5 and t=25°C. Singlet resonance of methoxy group at 3.992 ppm is not show.

Quinoline moietyH2' 8.695 8.745 8.951 H3' 7.600 7.723 8.276 H5' 7.573 7.446 7.599 H7' 7.513 7.560 7.857 H8' 8.016 8.053 8.225 Me 3.992 4.006 4.076 LinkerH9 5.480 5.934 6.185 Quinuclidine moiety $H2$ 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H2' 8.695 8.745 8.951 H3' 7.600 7.723 8.276 H5' 7.573 7.446 7.599 H7' 7.513 7.560 7.857 H8' 8.016 8.053 8.225 Me 3.992 4.006 4.076 Linker H9 5.480 5.934 6.185 Quinuclidine moiety H2 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H3' 7.600 7.723 8.276 H5' 7.573 7.446 7.599 H7' 7.513 7.560 7.857 H8' 8.016 8.053 8.225 Me 3.992 4.006 4.076 Linker H9 5.480 5.934 6.185 Quinuclidine moiety 1.637 2.074 2.163 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H5' 7.573 7.446 7.599 H7' 7.513 7.560 7.857 H8' 8.016 8.053 8.225 Me 3.992 4.006 4.076 Linker 6.185 Quinuclidine moiety H2 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H7' 7.513 7.560 7.857 H8' 8.016 8.053 8.225 Me 3.992 4.006 4.076 Linker H9 5.480 5.934 6.185 Quinuclidine moiety 1.637 2.074 2.163 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H8' 8.016 8.053 8.225 Me 3.992 4.006 4.076 Linker H9 5.480 5.934 6.185 Quinuclidine moiety H2 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308							
Me 3.992 4.006 4.076 Linker Linker H9 5.480 5.934 6.185 Quinuclidine moiety Quinuclidine moiety 3.703 H2 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
Linker H9 5.480 5.934 6.185 Quinuclidine moiety Quinuclidine moiety 3.703 H2 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H9 5.480 5.934 6.185 Quinuclidine moiety							
Quinuclidine moiety H2 3.369 3.724 3.703 H3R 1.637 2.074 2.163 H3S 2.000 1.820 1.660 H4 1.905 2.198 2.215 H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H23.3693.7243.703H3R1.6372.0742.163H3S2.0001.8201.660H41.9052.1982.215H52.3782.8342.870H6R2.5503.2483.308H6S2.8613.5243.633							
H3R1.6372.0742.163H3S2.0001.8201.660H41.9052.1982.215H52.3782.8342.870H6R2.5503.2483.308H6S2.8613.5243.633							
H3S2.0001.8201.660H41.9052.1982.215H52.3782.8342.870H6R2.5503.2483.308H6S2.8613.5243.633							
H41.9052.1982.215H52.3782.8342.870H6R2.5503.2483.308H6S2.8613.5243.633							
H5 2.378 2.834 2.870 H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H6R 2.550 3.248 3.308 H6S 2.861 3.524 3.633							
H6S 2 861 3 524 3 633							
1100 2.001 3.347 3.033							
H7R 2.491 3.226 3.320							
H7S 3.137 3.970 4.172							
H8R 1.588 1.953 1.980							
H8S 1.771 2.115 2.170							
H10 5.969 5.789 5.732							
H11c 5.048 5.081 5.057							
H11t 5.084 5.126 5.113							
Part B pH 10.5 pH 7.3 pH 2.5							
Quinoline moiety							
C2' 150.39 150.33 143.08							
C3' 122.58 122.33 122.44							
C5' 105.07 104.64 104.75							
C7' 124.64 124.83 129.81							
C8' 132.88 133.23 125.83							
Me 58.73 58.79 59.05							
Linker							
<u>C9</u> 74 69 71 03 70 26							
Ouinuclidine moiety							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$(4 \ 29.89 \ 28.72 \ 28.54 \ $							
C4 29.89 28.72 28.54 C5 41.22 39.19 38.86							
C4 29.89 28.72 28.54 C5 41.22 39.19 38.86 C6 57.70 56.95 53.99							
C4 29.89 28.72 28.54 C5 41.22 39.19 38.86 C6 57.70 56.95 53.99 C7 44.31 46.557 46.96							
C4 29.89 28.72 28.54 C5 41.22 39.19 38.86 C6 57.70 56.95 53.99 C7 44.31 46.557 46.96 C8 29.37 26.36 26.03							
C4 29.89 28.72 28.54 C5 41.22 39.19 38.86 C6 57.70 56.95 53.99 C7 44.31 46.557 46.96 C8 29.37 26.36 26.03 C10 145.24 140.90 ND							

Table S1 ¹H (part A) and ¹³C (part B) chemical shifts of quinine resonances in D₂O (c \approx 0.5 mmol/L) at 25°C. Chemical shifts of quaternary ¹³C nuclei have been not determined.

 $J_{\rm H,H}$ scalar couplings of quinine in D₂O at pH 10.5. The STSIT, unpublished FORTRAN program by S. Szymanski, was used to fit spectral parameters to the experimental line shape with the estimated accuracy better 0.1 Hz for scalar coupling constants. Longitudinal relaxation times T_1 were estimated with inversion-recovery sequence with the accuracy of ca. 0.1 s.

	$^{2}J(\mathrm{Hz})$	$^{3}J(\text{Hz})$	${}^{4}J(\mathrm{Hz})$	$^{5}J(\text{Hz})$	T_1 (s)
H2'		$J_{2',3'}=4.7$			2.4
H3'		, 			1.3
H5'			$J_{5'7'}=2.7$		2.0
H7'		J _{7',8'} =9.3			0.8
H8'					2.7
Me					1.0
H9		$J_{2,9}=8.1$			а
H2		$J_{2,3R}=7.3$			a
		$J_{2,3S}=9.6$			
H3R	$J_{3R,3S} = 13.7$	$J_{3R,4}=7.4$			а
H3S		$J_{3S,4}=4.2$	$J_{3S,5}=2.7$		а
H4		$J_{4,5}=1.0$	$J_{4,7R}=1.3$	$J_{4,11c}=0.4$	а
		$J_{4,8R}=5.8$	$J_{4,7S}=2.5$	$J_{4,11t}=0.2$	
		$J_{4,8S}=3.7$			
H5		$J_{5,10}=7.4$			а
		$J_{5,11c}=1.7$			
		$J_{5,11t}=1.7$			
H6R	$J_{6R,6S} = 13.7$	$J_{5,6R}=4.5$	$J_{4,6R}=0.9$		а
			$J_{6R,10}=2.5$		
H6S		$J_{5,6S}=10.1$	$J_{4,6S}=0.7$		а
			$J_{6S,10}=0.4$		
H7R	$J_{7R,7S} = 13.8$	$J_{7R,8R} = 11.0$			а
		$J_{7R,8S}=4.6$			
H7S		$J_{7S,8R}=5.9$			а
		$J_{7S,8S}=10.5$			
H8R	$J_{8R,8S} = 12.6$				а
H8S					а
H10		$J_{10,11c}=10.4$	$J_{4,10}=0.4$		1.6
		$J_{10,11t} = 17.3$			
H11c	$J_{11c,11t}=1.3$				1.3
H11t					1.4

^a rough estimation of T_1 for aliphatic ¹H resonances: 0.4 s< T_1 <0.9 s

Set of ¹H NMR titration spectra for Q/ α CD complex at pH 10.5. Right part – quinuclidine protons, left part – quinoline protons.

Set of ¹H NMR titration spectra for Q/ β CD complex at pH 10.5. Upper part – quinuclidine protons, lower part – quinoline protons.

 $\delta^1 H$ /ppm

Set of ¹H NMR titration spectra for $Q/\gamma CD$ complex at pH 10.5. Right part – quinuclidine protons, left part – quinoline protons.

Values of association constants, K_a , determined for quinine complexes with cyclodextrins at pH 10.5 (part A), pH 7.3 (part B) and 25°C. ND – K_a not determined since chemical shift changes were very small and scattered; X – hidden under H1 signal of γ CD.

Part A	K/αCD	dK/aCD	K/βCD	dK/βCD	K/γCD	dK/γCD			
			Quinoline mo	iety		·			
H2'	489	44	1641	152	368	25			
H3'	374	9	1619	121	354	17			
H5'	330	88	1378	92	334	12			
H7'	ND		ND		370	53			
H8'	180	82	1541	318	357	28			
Me	489	44	2516	456	346	48			
			Linker						
H9	946	107	1608	122	352	14			
		Q	uinuclidine m	oiety					
H2	417	18	1524	118	349	13			
H3R	265	17	1364	142	160	69			
H3S	357	11	1296	141	363	51			
H4	358	24	1263	119	360	38			
H5	357	10	1222	53	ND				
H6R	410	17	417	150	795	361			
H6S	1644	551	1596	109	381	23			
H7R	366	8	1691	243	333	49			
H7S	427	17	1715	174	505	90			
H8R	514	32	1870	251	ND				
H8S	435	16	1548	124	55	45			
H10	401	25	1442	89	341	11			
H11c	391	15	1406	70	345	20			
H11t	541	67	248	43	335	17			
Part B	K/αCD	dK/βCD	K/γD	dK/βCD	K/γCD	dK/yCD			
Part B	K/αCD	dK/βCD	K/γD Quinoline mo	dK/βCD iety	K/γCD	dK/γCD			
Part B H2'	K/αCD ND	dK/βCD	K/γD Quinoline mo 62	dK/βCD iety 46	K/γCD ND	dK/γCD			
Part B H2' H3'	K/αCD ND 34	dK/βCD	K/γD Quinoline mo 62 62	dK/βCD iety 46 17	K/γCD ND 9	dK/γCD 24			
Part B H2' H3' H5'	K/αCD ND 34 ND	dK/βCD	K/γD Quinoline mo 62 62 152	dK/βCD iety 46 17 80	K/γCD ND 9 ND	dK/γCD 24			
Part B H2' H3' H5' H7'	K/αCD ND 34 ND ND	dK/βCD 4	K/γD Quinoline mo 62 62 152 ND	dK/βCD iety 46 17 80	K/γCD ND 9 ND ND	dK/γCD 24			
Part B H2' H3' H5' H7' H8'	K/αCD ND 34 ND ND ND	dK/βCD 4	K/γD Quinoline mo 62 62 152 ND 80	dK/βCD iety 46 17 80 360	K/γCD ND 9 ND ND ND	dK/γCD 24			
Part B H2' H3' H5' H7' H8' Me	K/αCD ND 34 ND ND ND ND	dK/βCD 4	K/γD Quinoline mo 62 62 152 ND 80 145	dK/βCD iety 46 17 80 	K/γCD ND 9 ND ND ND ND	dK/γCD 24			
Part B H2' H3' H5' H7' H8' Me	K/αCD ND 34 ND ND ND ND	dK/βCD 4	K/γD Quinoline mo 62 62 152 ND 80 145 Linker	dK/βCD iety 46 17 80 	K/γCD ND 9 ND ND ND ND	dK/γCD 24			
Part B H2' H3' H5' H7' H8' Me H9	K/αCD ND 34 ND ND ND ND	dK/βCD 4	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257	dK/βCD iety 46 17 80 360 71 308	K/γCD ND 9 ND ND ND ND 38	dK/γCD 24 			
Part B H2' H3' H5' H7' H8' Me H9	K/αCD ND 34 ND ND ND ND	dK/βCD 4	K/γD Quinoline mo 62 152 ND 80 145 Linker 257 Quinuclidine m	dK/βCD iety 46 17 80 360 71 308 oiety	K/γCD ND 9 ND ND ND ND 38	dK/γCD 24 27			
Part B H2' H3' H5' H7' H8' Me H9 H2	K/αCD ND 34 ND ND ND ND ND	dK/βCD 4	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 Puinuclidine m ND	dK/βCD iety 46 17 80 360 71 308 oiety	K/γCD ND 9 ND ND ND 38 ND	dK/γCD 24 			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R	K/αCD ND 34 ND ND ND ND ND ND	dK/βCD 4 Q	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 vuinuclidine m ND 320	dK/βCD iety 46 17 80 360 71 308 oiety 457	K/γCD ND 9 ND ND ND 38 38 ND 14	dK/γCD 24 27 11			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3S	K/αCD ND 34 ND ND ND ND ND 17 25	dK/βCD 4 Q 6 7	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 winuclidine m ND 320 41	dK/βCD iety 46 17 80 360 71 308 oiety 457 126	K/γCD ND 9 ND ND ND ND 38 ND 14 16	dK/γCD 24 27 11 12			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3S H4	K/αCD ND 34 ND ND ND ND ND 17 25 ND	dK/βCD 4 2 2 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 winuclidine m ND 320 41 179	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21	K/γCD ND 9 ND ND ND 38 38 ND 14 16 27	dK/γCD 24 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3S H4 H5	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35	dK/βCD 4 	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 vuinuclidine m ND 320 41 179 136	dK/βCD iety 46 17 80 360 71 308 0iety 457 126 21 18	K/γCD ND 9 ND ND ND ND 38 38 ND 14 16 27 ND	dK/γCD 24 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3S H4 H5 H6R	K/αCD ND 34 ND ND ND ND ND ND 17 25 ND 35 14	dK/βCD 4 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 winuclidine m ND 320 41 179 136 116	dK/βCD iety 46 17 80 360 71 308 0iety 457 126 21 18 20	K/γCD ND 9 ND ND ND 38 38 ND 14 16 27 ND ND ND	dK/γCD 24 27 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3S H4 H5 H6R H6S	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55	dK/βCD 4 2 2 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 puinuclidine m ND 320 41 179 136 116 128	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21 18 20 37	K/γCD ND 9 ND ND ND ND 38 38 ND 14 16 27 ND ND ND ND	dK/γCD 24 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3R H3S H4 H5 H6R H6S H7R	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55 33	dK/βCD 4 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 winuclidine m ND 320 41 179 136 116 228	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21 18 20 37 61	K/γCD ND 9 ND ND ND ND 38 38 ND 14 14 16 27 ND ND ND ND ND	dK/γCD 24 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H9 H2 H3R H3R H3S H4 H5 H6R H6S H7R H7S	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55 33 ND	dK/βCD 4 4 2 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 vuinuclidine m ND 320 41 179 136 116 128 208 ND	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21 18 20 37 61	K/γCD ND 9 ND ND ND ND 38 38 38 ND 14 16 27 ND ND ND ND ND ND	dK/γCD 24 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H2 H3R H3S H4 H5 H6R H6S H7R H7S H8R	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55 33 ND ND ND	dK/βCD 4 4 2 2 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 winuclidine m ND 320 41 179 136 116 128 208 ND 226	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21 18 20 37 61 50	K/γCD ND 9 ND ND ND ND 38 38 ND 14 14 16 27 ND ND ND ND ND ND ND	dK/γCD 24 27 11 12 28			
Part B H2' H3' H5' H7' H8' Me H9 H2 H3R H3S H4 H5 H6R H6S H7R H7S H8R H8S	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55 33 ND ND ND ND	dK/βCD 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 vinuclidine m ND 320 41 179 136 116 228 208 ND 226 344	dK/βCD iety 46 17 80 360 71 308 0iety 457 126 21 18 20 37 61 50 35	K/γCD ND 9 ND ND ND ND 38 ND 14 14 16 27 ND ND ND ND ND ND ND ND ND ND ND ND ND	dK/γCD 24 27 27 11 12 28 60			
Part B H2' H3' H5' H7' H8' Me H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55 33 ND ND ND ND ND 10	dK/βCD 4 4 2 2 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 vuinuclidine m ND 320 41 179 136 116 228 208 ND 226 344 273	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21 126 21 18 20 37 61 50 35 283	K/γCD ND 9 ND ND ND ND 38 38 ND 14 16 27 ND ND ND ND ND ND ND ND ND ND ND ND ND	dK/γCD 24 27 27 11 12 28 28 60 24			
Part B H2' H3' H5' H7' H8' Me H9 H2 H3R H3S H4 H5 H6R H6R H6S H7R H7S H8R H8S H10 H11c	K/αCD ND 34 ND ND ND ND ND 17 25 ND 35 14 55 33 3 ND ND ND ND 10 29	dK/βCD 4 2 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3	K/γD Quinoline mo 62 62 152 ND 80 145 Linker 257 puinuclidine m ND 320 41 179 136 116 128 208 ND 226 344 273 ND	dK/βCD iety 46 17 80 360 71 308 oiety 457 126 21 18 20 37 61 50 35 283	K/γCD ND 9 ND ND ND ND 38 38 38 38 38 38 38 38 38 0 ND ND ND ND ND ND ND ND ND ND ND ND ND	dK/γCD 24 27 27 11 12 28 28 60 24			

CIS(¹H) values, their standard deviations, $\delta CIS(^{1}H)$, and $CIS(^{13}C)$ values determined for quinine complexes with cyclodextrins at pH 10.5 and 25°C. $\delta CIS(^{13}C)$ are uniform and equal to 0.01 ppm. $CIS(^{1}H)$ values were taken from a global analysis for those signals which were analyzed collectively. $CIS(^{1}H)$ values for the remaining ¹H nuclei (*italic*) and $CIS(^{13}C)$ were calculated assuming fixed values of association constants K_a determined in the global analyses. All values are reported in ppm units. X - C2 quinine resonance was obscured by C6 of α CD precluding determination of $CIS(^{13}C)$.

$^{1}\mathrm{H}$	Q/a	CD	Q/β	CD	Q/γ0	CD	$Q/\alpha CD = Q/\beta CD$		Q/yCD	¹³ C
	$CIS(^{1}H)$	$\delta(CIS)$	$CIS(^{1}H)$	$\delta(CIS)$	$CIS(^{1}H)$	$\delta(CIS)$		$CIS(^{13}C)$		
				Quir	noline moie	ety				
H2'	0.043	0.001	0.104	0.003	0.096	0.002	0.34	0.26	-0.44	C2'
H3'	0.193	0.001	0.179	0.003	0.156	0.002	-0.59	-1.39	-1.80	C3'
H5'	-0.033	0.001	-0.158	0.003	-0.252	0.003	-0.45	-0.95	-1.36	C5'
H7'	0.008	0.001	0.006	0.001	0.046	0.002	0.10	-0.11	0.63	C7'
H8'	0.016	0.001	0.019	0.003	0.090	0.002	0.13	0.22	0.26	C8'
Me	0.019	0.001	0.020	0.001	0.055	0.003	-0.04	0.16	-0.01	Me
					Linker					
H9	0.192	0.001	0.247	0.003	0.280	0.003	-2.18	-2.45	-1.13	C9
Quinuclidine moiety										
H2	-0.096	0.001	-0.186	0.003	-0.306	0.003	Х	0.67	-1.64	C2
H3R	0.273	0.002	0.359	0.003	0.124	0.009	-0.37	-2.37	-5.00	C3
H3S	0.106	0.001	-0.289	0.003	-0.995	0.005				
H4	0.183	0.001	-0.145	0.003	-0.111	0.002	0.77	1.60	-0.06	C4
H5	0.134	0.001	-0.134	0.003	-0.001	0.002	2.19	2.42	-0.14	C5
H6R	0.031	0.003	-0.016	0.001	0.037	0.003	1.88	2.13	0.99	C6
H6S	0.272	0.002	0.365	0.003	0.161	0.002				
H7R	0.122	0.001	0.163	0.003	0.192	0.002	0.27	1.16	1.50	C7
H7S	0.102	0.001	0.402	0.003	0.568	0.009				
H8R	0.117	0.001	0.070	0.003	-0.000	0.004	0.16	1.36	0.00	C8
H8S	0.157	0.001	0.318	0.003	-0.039	0.004				
H10	0.109	0.001	-0.225	0.003	-0.471	0.003	-0.37	-0.87	-1.15	C10
H11c	0.044	0.001	-0.122	0.003	-0.238	0.003	1.40	1.70	0.20	C11
H11t	0.015	0.001	-0.035	0.006	-0.150	0.002				

 $CIS(^{1}H)$ values and their standard deviations, $\delta CIS(^{1}H)$ – part A. $CIS(^{13}C)$ values and $\delta CIS(^{13}C)$ – part B. The reported data for quinine complexes with cyclodextrins were determined at pH 7.3 and 25°C. $CIS(^{1}H)$ values were taken from a global analysis for those signals which were analyzed collectively. The $CIS(^{1}H)$ values for the remaining ¹H nuclei (*italic*) and $CIS(^{13}C)$ were calculated assuming fixed values of association constants K_a determined in the global analyses. All values are reported in ppm units. ND - not determined due to the lack of complexation shift; X1 – H7S signal obscured by H3 of α CD or β CD; X2 – quinine signals obscured by H1 of γ CD; X3 - C2 quinine signal obscured by C6 of the corresponding cyclodextrin.

Part A	Q/	αCD	Q/βCD		Q/yCD		
	CIS	$\delta(CIS)$	CIS	$\delta(CIS)$	CIS	$\delta(CIS)$	
			Quinoline moi	ety			
H2'	ND		0.040	0.003	ND		
H3'	0.119	0.012	0.065	0.003	0.190	0.010	
H5'	0.061	0.006	-0.022	0.005	ND		
H7'	-0.021	0.003	-0.007	0.003	ND		
H8'	0.034	0.003	0.007	0.003	ND		
Me	0.029	0.004	0.013	0.005	ND		
			Linker				
H9	-0.049	0.003	-0.059	0.010	0.267	0.048	
	Quinuclidine moiety						
H2	-0.131	0.041	-0.124	0.066	-0.248	0.025	
H3R	0.228	0.022	0.021	0.005	-0.531	0.092	
H3S	0.203	0.020	-0.095	0.016	-1.415	0.242	
H4	ND		-0.201	0.010	-0.201	0.038	
H5	-0.119	0.012	-0.272	0.012	-0.334	0.041	
H6R	-0.471	0.044	-0.304	0.013	0.121	0.031	
H6S	0.063	0.008	-0.107	0.007	-0.334	0.059	
H7R	-0.180	0.018	-0.239	0.011	-0.087	0.027	
H7S	X1		X1		0.296	0.054	
H8R	-0.033	0.009	-0.117	0.007	-0.180	0.035	
H8S	0.100	0.007	0.040	0.003	-0.173	0.033	
H10	0.203	0.020	-0.044	0.007	-0.243	0.044	
H11c	0.145	0.014	-0.064	0.011	X2		
H11t	0.081	0.009	-0.015	0.005	X2		

Part B	Q/a	CD	Q/β	CD	Q/γCD				
	CIS	$\delta(CIS)$	CIS	$\delta(CIS)$	CIS	$\delta(CIS)$			
Quinoline moiety									
C2'	0.13	0.01	0.00	0.01	-1.44	0.15			
C3'	-0.04	0.01	-0.55	0.01	-2.32	0.24			
C5'	0.08	0.01	-0.55	0.01	-3.15	0.32			
C7'	-0.96	0.05	-0.28	0.01	0.22	0.02			
C8'	-0.50	0.03	-0.26	0.01	-1.44	0.15			
Me	-0.04	0.01	0.00	0.01	-0.61	0.06			
Linker									
C9	-0.38	0.02	0.26	0.01	-0.64	0.07			
	Quinuclidine moiety								
C2	X3		X3		X3				
C3	1.67	0.09	0.81	0.02	-0.62	0.06			
C4	2.26	0.12	1.64	0.03	0.22	0.02			
C5	3.18	0.17	1.90	0.04	0.19	0.02			
C6	2.43	0.13	1.49	0.03	-1.04	0.11			
C7	-0.95	0.05	0.01	0.01	0.22	0.02			
C8	1.84	0.10	0.00	0.01	1.02	0.11			
C10	1.51	0.08	0.00	0.01	0.21	0.02			
C11	1.42	0.07	0.00	0.01	-2.59	0.27			

Stripe of 2D ROESY spectrum for Q/ β CD complex. Area disturbed by cyclodextrin resonances (3.2 – 5.8 ppm on abscissa) was left blank for the clarity of presentation. Position of quinine and β CD resonances are marked on the abscissa and ordinate, respectively.

Table S6

The 23 DFT derived lowest-energy conformations. Energies, *E*, are given in kcal/mol, molecular dipole moments, μ , in debyes, scalar coupling constants, *J*, in hertz, and $\phi_1 - \phi_5$ corresponding to dihedral angles H₂-C₂-C₉-H₉, H₉-C₉-C₄-C₃, H₅-C₅-C₁₀-H₁₀, C₅-C₆-O-C_{Me}, and H-O-C₉-H₉, in degrees. Definitions of the dihedral angles are given in Figure S2.

Struct.	Ε	μ	$J_{2,9}$	$J_{5,10}$	\$ 1	\$ 2	\$ 3	\$ 4	\$ 5
C1	0.00	6.57	7.49	8.73	39.5	-141.1	-177.1	-0.9	-136.0
C2	0.07	4.32	1.31	8.55	-74.9	-142.5	-177.4	-0.1	53.0
C3	0.32	5.58	8.56	8.58	178.5	10.0	-176.7	0.1	55.2
C4	0.65	6.09	1.31	8.55	-74.9	-142.5	-177.5	-0.1	53.0
C5	0.65	6.09	8.03	8.62	178.1	-173.2	-176.9	-0.7	57.3
C6	0.87	5.33	1.50	8.52	-74.8	-138.9	-177.3	-0.1	-165.9
C7	0.87	5.33	8.69	8.46	177.0	144.8	-177.8	0.3	175.0
C8	1.01	7.00	7.60	3.71	39.0	-141.1	62.9	-0.9	-135.9
C9	1.08	7.89	8.28	8.60	-178.9	11.5	-176.6	0.1	-54.6
C10	1.16	5.57	7.50	8.72	39.6	-140.5	-176.9	-179.9	-136.0
C11	1.27	8.17	7.79	8.63	-179.4	-173.3	-176.6	-0.9	-56.4
C12	1.29	2.36	1.31	8.55	-75.0	-142.0	-177.2	179.9	52.5
C13	1.33	6.91	7.39	2.76	39.9	-141.6	-76.7	-1.0	-137.3
C14	1.33	4.49	1.36	3.81	-74.5	-142.7	61.7	-0.2	53.1
C15	1.35	5.22	1.50	8.53	-74.8	-138.9	-177.4	-0.2	-165.8
C16	1.47	6.71	0.94	8.43	-77.6	-140.5	-178.3	-0.1	-42.4
C17	1.56	8.04	8.31	8.56	179.0	142.2	-177.1	0.3	-48.3
C18	1.57	5.99	8.65	3.77	178.4	10.1	62.2	0.4	55.0
C19	1.60	2.16	8.53	8.56	178.0	8.7	-176.7	179.6	54.9
C20	1.73	4.65	1.36	2.99	-74.3	-142.7	-73.5	-0.4	52.5
C21	1.78	4.58	8.03	8.63	179.3	-170.1	-176.6	-180.0	57.6
C22	1.85	6.46	8.15	3.84	178.7	-172.2	61.5	-0.8	57.6
C23	1.96	4.77	8.58	3.02	178.1	9.5	-73.1	0.0	55.1

Histogram of dipole moment values displays a gap between three conformers with the largest μ value (C9, C11, and C22 in Table S4) and the rest of them.

Figure S8

Correlations between DFT derived ¹³C shielding constants population averaged for the group of 23 lowest-energy conformers using Boltzmann factors and experimental chemical shifts for the proton bearing ¹³C nuclei of quinine in aqueous solution at pH 10.5. Standard errors of estimates were 2.38 ppm and 2.40 ppm for 3 and 23 conformers, respectively.

DFT based parametrization of Karplus equation for vicinal ${}^{3}J_{2,9}$ coupling constant in neutral quinine molecule in aqueous solution

In order to fulfill calibration requirement in a particular case of quinine molecule, theoretical values of ${}^{3}J_{2,9}$ coupling constant between protons H2 and H9 were calculated by the DFT method at fixed values of H₂-C₂-C₉-H₉ dihedral angle ϕ_1 . It was set to the multiplicities of 30 deg while all other degrees of conformational freedom were optimized. The Karplus curve based on these calculations is shown in the Figure S5.

Figure S9

Solid line corresponds to the best fit of Karplus equation: ${}^{3}J(\theta) = A\cos 2\theta + B\cos \theta + C$, to the DFT derived data represented by gray circles. Equation parameters and their standard errors (in parentheses) are as follows: A = 4.14 (0.36) Hz, B = 0.70 (0.36) Hz, C = 5.19 (0.26) Hz. Green squares represent three conformations with the largest dipole moments which prevail in aqueous solution of quinine. The remaining of the 23 lowest-energy conformers are shown as red triangles.

Influence of Q/CD complex formation on values of vicinal ${}^{3}J_{5,10}$ coupling constant

The values of ${}^{3}J_{5,10}$ coupling constant in quinine have been measured in all titration experiments. The data obtained at pH 10.5 are shown in the Figure S7. With the aid of already determined association constants the ${}^{3}J_{5,10}$ values have been extrapolated to the complexed forms and the results are given in the Table S5. The value observed in Q/ β CD complex is higher than that in the non complexed quinine. It means that the space available for the quinolidine part inside the β CD cavity is limited and conformers with large ϕ_3 value are only allowed. This effect is also observed in the case of Q/ α CD complex but is somewhat smaller

since the quinolidine moiety penetrates less deeply into the α CD cavity. In the case of γ CD there is enough space inside the CD cavity to retain the conformational equilibrium on C5–C10 bond. Therefore, ${}^{3}J_{5,10}$ coupling constant does not change its value. Again, the observed changes reflect well the bimodal mode of binding.

Figure S10

 ${}^{3}J_{5,10}^{-}$ coupling constants obtained from titration data and the best fit curves for Q/CD complexes at pH 10.5. *R* - ratio of host to guest molar concentrations.

Table S7

 ${}^{3}J_{5,10}$ coupling constant measured in D₂O at pH 10.5 (isotope uncorrected) for quinine and obtained from titration data for its inclusion complexes with cyclodextrins. All values are given in hertz, accuracy ca. 0.1 Hz, temperature 25°C.

${}^{3}J_{5,10}$	Q	Q/aCD	Q/βCD	Q/yCD
	7.3	8.3	9.0	7.3