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(I) Possible exposed surfaces for the cubic and tetragonal SnP systems by 

Bravais–Friedel–Donnay–Harker (BFDH) crystal morphology algorithm

The Bravais-Friedel-Donnay-Harker (BFDH) method is a geometrical calculation 

that uses the crystal lattice and symmetry to generate a list of possible growth faces 

and their relative growth rates. From this, crystal morphology can be deduced. Based 

on the BFDH theory, the relative growth rates of faces {hkl} on crystals have a 

positive relationship with the center-to-face distance, which can be inversely 

proportional to the interplanar spacing.

Rhkl ∝ D ∝ 1/d

where Rhkl is the growth rate in the {hkl} plane, D is center-to-face distance and d is 

interplanar distance. Clearly, the lowest growing rates can occur at the faces with the 

largest interplanar spacing, all of which can be the most morphologically important. 

  Up to now, BFDH method has been extensively employed in predicting the 

morphology for various crystals1-5. Although the BFDH method does not take into 

account the energetics of studied systems, it can obtain a rough estimate of the faces 

that are likely to be important for the crystal habit. Particularly, this information can 

be used to pre-screen the face list used as an input to more sophisticated morphology 

calculations. 

  In this work, there are many surface terminations for the bulk SnP structures, and it 

is almost unpractical to calculate the surface energy of each surface6. According to the 

convention7-9, therefore, we initially employ the BFDH crystal morphology algorithm 

to roughly estimate the possible exposed surfaces for two studied SnP systems, and 

then further measure stability of each termination for these surfaces by computing the 

surface energy (the correlative details on calculating the surface energy have been 

presented in the section (II) of ESI). As shown in Table S1, the (111) and (200) facets 

for cubic SnP structure as well as the (101), (10 ), (110), (002) and (00 ) surfaces for 1 2

tetragonal SnP structure can possess the relative large interplanar distance in the range 

of 2.71~3.22 Å, much larger than those of other remaining surfaces for the respective 

bulk structure. Consequently, all these facets are the possible exposed surfaces for 



both the studied SnP systems, in view of their relatively low growing rates. Figure 2 

in the main text illustrates the indexed morphological drawing for the cubic and 

tetragonal SnP systems. 

Table S1. The possible exposed surfaces for the cubic and tetragonal SnP systems as 

well as the corresponding interplanar distance and the calculated relative growth rate 

by using BFDH method. 

Surfaces
(hkl)

dhkl(Å) Calculated relative 
growth rates 

cub-(111) 3.159 1.000
cub-(200) 2.736 1.155
tet-(101) 3.223 1.000
tet-(10 )1 3.223 1.000
tet-(110) 2.982 1.081
tet-(002) 2.982 1.081
tet-(00 )2 2.708 1.190

(II) Computational details on the surface energy for cubic and tetragonal SnP 

systems

In this study, we have performed the computations on the surface energy for the 

possible exposed facets (from BFDH method) of cubic and tetragonal SnP systems, 

by following the scheme employed in the previous study by Tian et al10. The 

following correlative methods for computing surface energy have been presented for 

the symmetric/asymmetric and stoichiometric termination. 

For the symmetric and stoichiometric termination, the surface energy (γ) can be 

computed by the following equation: 

γ = (Etotal - nEbulk)/2A          (1)

where γ is the surface energy of SnP facet, Etotal is the total energy of the relaxed SnP 

surface slab (both the same terminations are relaxed at the same time), Ebulk is the 

energy of a bulk SnP formula unit, n is the number of SnP units in the slab, and A is 

the surface area of one side of the slab.



For the asymmetric and stoichiometric termination, the surface energy is initially 

understood as the sum of cleavage energy (Ecle) and relaxation energy (Erel):

γ = (Ecle + Erel)/A          (2)

Considering that the cleavage energies of two generated terminations from one 

cleavage can be supposed to be equal due to the similar electronegativity of P and Sn, 

we can obtain the cleavage energy of a stoichiometric slab by the following equation:

Ecle = (Eunrelax – nEbulk)/2     (3)

Eunrelax is the total energy of the unrelaxed SnP slab.

For the asymmetric slab, it can be divided into two parts from the middle. Then the 

relaxation energy for two different terminations T1/T2 can be gotten by the following 

equations:

Erel（T1） = ET1-relax – Eunrelax     (4)

Erel（T2） = ET2-relax – Eunrelax     (5)

ET1-relax is the energy of the slab only with the up-half part relaxed, while ET2-relax is 

the energy of the slab only with the down half part relaxed.

  Among all ten terminations studied in our work, the cub-SnP-(200), tet-SnP-(110), 

tet-SnP-(002) and tet-SnP-(00 ) can belong to the symmetric and stoichiometric 2

termination, and we employ the equation (1) to calculate the surface energy. All these 

four surfaces can be modeled by the corresponding stoichiometric SnP-slabs with 

twelve SnP-layers. During the computational process, the upper/bottom two layers in 

the models are fully relaxed without any symmetry or direction restrictions, while the 

remaining layers are kept frozen. The six remaining terminations can belong to the 

asymmetric and stoichiometric terminations, including cub-P-(111), cub-Sn-(111), tet-

P-(101), tet-Sn-(101), tet-P-(10 ) and tet-Sn-(10 ). The equations (2)~(5) are adopted 1 1

to calculate their surface energies. The surfaces can be modeled by the corresponding 

stoichiometric SnP-slabs with twelve Sn/P-layers. During the computational process, 

the half part (six layers) in the models is fully relaxed without any symmetry or 

direction restrictions, while the remaining half part is kept frozen.

  As shown in Table S2, the orders of computed surface energies are cub-P-(111) (γ 

= 0.787) ≈ cub-SnP-(200) (0.785) < cub-Sn-(111) (1.068) for the cubic SnP system 



and tet-P-(10 ) (γ=0.646) < tet-P-(101) (0.798) ≈ tet-SnP-(110) (0.777) < tet-Sn-(10 ) 1 1

(0.950) ≈ tet-SnP-(002) (0.966) ≈ tet-SnP-(00 ) (0.970) < tet-Sn-(101) (1.149) for the 2

tetragonal SnP system, respectively. Clearly, for both the cubic and tetragonal SnP 

systems, the P-terminated surface can be more stable than the corresponding Sn-

terminated surface, in view of the more favorable surface energy. Additionally, the 

cub-P-(111) and cub-SnP-(200) can be the most stable surfaces for cubic SnP 

structure, while tet-P-(10 ) is the most stable surface for tetragonal SnP structure, due 1

to the lowest surface energy.

Table S2. The computed surface energies (γ) for the cub-P-(111), cub-Sn-(111) and 

cub-SnP-(200) surfaces for the cubic SnP system as well as the tet-P-(101), tet-Sn-

(101), tet-P-(10 ), tet-Sn-(10 ), tet-SnP-(110), tet-SnP-(002) and tet-SnP-(00 ) 1 1 2

surfaces for the tetragonal SnP system. 

Terminations γ (J/m2)
cub-P-(111) 0.787

cub-SnP-(200) 0.785
cub-Sn-(111) 1.068

tet-P-(10 )1 0.646

tet-SnP-(110) 0.777
tet-P-(101) 0.798

tet-Sn-(10 )1 0.950

tet-SnP-(002) 0.966
tet-SnP-(00 )2 0.970
tet-Sn-(101) 1.149

(III) The illustration on the computational detail on ΔGH* for the second H 

adsorbed on the sampled cub-P-(111) surface

In this study, we have computed the ΔGH* values at the different surface coverages, 

where the adsorption order of H* can be decided in terms of energy. For example, on 



the sampled cub-P-(111) surface with TP serving as the HER active site, we consider 

both the possible adsorption sites (i.e. TP-2 and TP-2’) for the second H to occupy, after 

the first H* is adsorbed at the TP-1, as illustrated in the Figure S1. Our computed 

results reveal that the TP-2 site (-0.265 eV) can exhibit more negative ΔGH* value than 

the TP-2’ site (-0.194 eV), indicating the stronger adsorption of the former than the 

latter. Thus, when computing the surface coverage, the second H* will be adsorbed at 

TP-2 site on cub-P-(111), in view of the more favorable adsorption energy. The similar 

mode has been also adopted for all the computations on the surface coverage in this 

work. 

Figure S1. Two possible adsorption sites (TP-2 and TP-2’) for the second H* on cub-P-
(111).

(IV) The examination of solvation effect on the HER catalytic activity.

  Based on the correlative structural models, we have explored the HER catalytic 

activity for all the sampled systems (including cub-P-(111), cub-Sn-(111), cub-SnP-

(200), tet-P-(101), tet-Sn-(101), tet-P-(10 ), tet-Sn-(10 ) and tet-SnP-(110)) in 1 1

solvation (Figure S2) and in vacuum to examine the solvation effect, by computing 

ΔGH* values of TP and TSn sites. The computed results are presented in Table S3. It 

can be found that all the computed ΔGH* values are almost no change (< 0.069 eV) 

between the two situations, indicating the negligible solvation effect. Therefore, to 



make the computational cost less demanding, in this study we compute ΔGH* value in 

the vacuum condition for estimating the HER activity for all the studied systems. 

Figure S2 The side view of correlative geometrical structures with the adsorbed H* 

on the surface with a water layer above. 

Table S3 The computed ΔGH* values in solvation and in vacuum for TP and TSn sites 
on the sampled surfaces including cub-P-(111), cub-Sn-(111) and cub-SnP-(200) as 
well as tet-P-(101), tet-Sn-(101), tet-P-(10 ), tet-Sn-(10 ) and tet-SnP-(110). 1 1

ΔGH*（eV）
Adsorption site

vacuum water
cub-P-(111)-TP -0.246 -0.309

cub-Sn-(111)-TSn 0.735 0.766
cub-SnP-(200)-TP 0.250 0.221
cub-SnP-(200)-TSn 0.713 0.689

tet-P-(101)-TP -0.211 -0.243
tet-Sn-(101)-TSn 0.782 0.755

tet-P-(10 )-TP1 -0.003 -0.045

tet-Sn-(10 )-TSn1 0.656 0.648

tet-SnP-(110)-TP 0.222 0.291
tet-SnP-(110)-TSn 0.633 0.689
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