Supporting Information

DFT calculations of the synergistic effect of λ -

MnO₂/Graphene composites for electrochemical adsorption of

lithium ions

Huixin Zhang,^a Xiao Du,^{*a} Shengqi Ding,^a Qiang Wang,^a Lutong Chang,^a Xuli Ma,^a Xiaogang Hao^{**a} and Changjun Peng^b

^aDepartment of Chemical Engineering, Taiyuan University of Technology,

Taiyuan 030024, P. R. China.

^bState Key Laboratory of Chemical Engineering and Department of Chemistry,

East China University of Science and Technology, Shanghai, 200237, P. R. China

*Corresponding author: <u>duxiao@tyut.edu.cn</u> (*Xiao Du*) **Corresponding author: <u>xghao@tyut.edu.cn</u> (*Xiaogang Hao*)

Fig. S1 SEM images of (a) λ -MnO₂ and (b) λ -MnO₂/Graphene.

Fig. S2 The building process of λ -MnO₂/Graphene with Li model: (a) the diffusion path of Li in λ -MnO₂; (b) the (1 0 1) crystal plane of LiMn₂O₄; (c) the building model of λ -MnO₂/Graphene with Li.

Fig. S3 The adsorption sites of the Li atoms in λ -MnO₂/Graphene.

Fig. S4 Calculated phonon dispersion curves of λ -MnO₂/Graphene.

	0, 1	- 1
Distance of λ -	Optimized distance	Energy of λ-
MnO ₂ /Graphene (Å)	of λ -MnO ₂ /Graphene (Å)	MnO ₂ /Graphene (eV)
5	4.845	-35396.419
4.5	4.306	-35396.435
4	3 895	-35396 677
I	5.075	55570.011
3.5	3.406	-35396.948
3	3.008	-35396.627
2.5	2,600	25205 077
2.3	2.009	-33373.077
2	2.558	-35392.794

Table S1 Distance and energy before and after optimized λ -MnO₂/Graphene

Table S2 The binding energies of Li at different positions of λ -MnO₂/Graphene

Position of Li	Bonding energy (eV)
G	-2.0234728
T1	-5.6050328
Τ2	-4.9601237
Т3	-5.0477628
T1	-5.6017268 (With dipole correction)

Table S3 The values of $L_{Mn\text{-}O}$ and $d_{Li\text{-}O}$ in $LiMn_2O_4$ bulk and $LiMn_2O_4/Graphene$

interface				
	L _{Mn-O} (Å)	d _{Li-O} (Å)		
Inside of LiMn ₂ O ₄	1.967	1.911		
Interface of LiMn ₂ O ₄ /Graphene	1.943	1.934		

1418)				
М	[Mulliken population analysis		
τ:	Li (e)	1.06		
Ll	Li-O	0		
Na	Na (e)	0.84		
	Na-O	0.13		
Mg	Mg (e)	1.79		
	Mg-O	-1.38		

Table S4 Mulliken charges population and bond population for MMn_2O_4 (M = Li, Na,

Mg)

Table S5 The electrode values of graphene, $\lambda\text{-}MnO_2$ and $\lambda\text{-}MnO_2/Graphene$ in EIS

Electrode	Graphene	λ -MnO ₂	λ-MnO ₂ /Graphene
$R_{e}(\Omega)$	35.42	29.96	27.88
$C_{L}(F)$	2.999*10 ⁻⁵	8.046*10 ⁻⁵	2.119*10 ⁻⁵
$R_{ct}(\Omega)$	43.12	21.03	16.25
$\mathrm{Z}_{\mathrm{w}}\left(\Omega ight)$	2.164*10-3	7.624*10 ⁻³	5.255*10-2
$C_{d1}(F)$	1.878*10-3	2.477*10-2	1.810*10-1