Supporting Information

"Thermodynamics, kinetics and electronic properties of point defects in β-FeSi₂"

Jun Chai,[#] Chen Ming,[#] Xiaolong Du, Pengfei Qiu, Yi-Yang Sun* and Lidong Chen

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China.

Contact information:

yysun@mail.sic.ac.cn (Y.-Y.S.)

Figure S1. Band structure of β -FeSi₂ calculated by SCAN (a) and HSE (b) functional, using structures optimized by the SCAN functional.

Figure S2. Calculated formation energy of neutral and charged defects in β -FeSi₂ as a function of Fermi energy of the system. (a) Results obtained by using PBE functional. (b) Results obtained by using SCAN functional. The results were obtained using a 96-atom supercell.

Figure S3. Calculated formation energy of neutral and charged defects in β -FeSi₂ as a function of Fermi energy of the system without (a) and with (b) the correction from the sxdefectalign program. The results were obtained using a 768-atom supercell.

Figure S4. Defect transition levels of Fe-site impurities calculated by using the SCAN functional and a 96-atom supercell. Donor levels are marked by brown color. Acceptor levels are marked by blue color.