## Supporting Information: Theoretical insight into the formation and stability of reactive oxygen species in cryptochrome

Padmabati Mondal\* and Miquel Huix-Rotllant\*

Aix Marseille Univ, CNRS, ICR, Marseille, France

E-mail: padmabati.mondal@gmail.com; miquel.huix-rotllant@univ-amu.fr Phone: +33 (0)484529201. Fax: +33 (0)4912888758

#### S1: Statistical significance of the results regarding position of oxygen species in cryptochrome

In order to show the statistical significance of the results we obtained in terms whether the oxygen stays or leave the C4a cavity from one trajectory, 5 trajectories with different initial conditions are run for each systems and the C4a-OO1 distances for each of them are recorded. These distances for each cases are shown in Figure 1. It is evident from the figure that for <sup>2</sup>[FADH<sup>+</sup>–O<sub>2</sub><sup>•-</sup>], <sup>3</sup>[FADH<sup>•-</sup>–O<sub>2</sub><sup>•-</sup>], <sup>2</sup>[FAD<sub>ox</sub>–HO<sub>2</sub><sup>•</sup>], <sup>3</sup>[FAD<sup>•-</sup>–HO<sub>2</sub><sup>•</sup>] (H, I, J and K), the oxygen species i.e. the ROS is staying close to the lumiflavin ring due to strong electrostatic interactions for all the 5 trajectories which also verifies the statistical significance of the results obtained from the single trajectory simulations. In system <sup>2</sup>[FAD<sub>ox</sub>–O<sub>2</sub>] (A), i.e. the cryptochrome with fully oxidized FAD, molecular oxygen is partially staying near the C4a cavity (for 3 out of 5 trajectories). On the other hand, for cryptochrome with <sup>4</sup>[FADH<sup>•</sup>– O<sub>2</sub>] (C), the triplet oxygen species goes farther away from the C4a cavity. Therefore, it is statistically verified that only the doublet oxygen species i.e. the superoxide and the hydroperoxyl radical are stabilized in the binding pocket close to the N5(H) of FAD species as well as to the Cys416 and Trp420 of cryptochrome.



Figure 1: C4a-OO1 distance for 5 trajectories with different initial conditions for each of the nine systems (A to K). The horizontal black dashed line defines the radius of the C4a cavity.

# S2: Geometrical parameters for lumiflavin in five different redox states

For comparison of the bond, angle and dihedrals, the gas phase QM-optimized geomtries for five different redox states of lumiflavin are shown in Figure 2.



Figure 2: Optimized structures at the B3LYP/def2-TZVPP level in the gas phase.  $FAD_{ox}$  (blue CPK), FAD• (red), FADH• (orange), FADH- (green), FADH<sub>2</sub> (cyan).

Moreover, individual bonds, angles and dihedrals for all five redox states of lumiflavin are given below in Z-matrix representation. A closer inspection to the individual bond length, angle and dihedrals, we observe the main variations between the 5 redox forms in the atoms forming the diimine bond (N5=C4a-C10a=N1), which accept two electrons and two protons. Indeed, we found variations of 0.1 on average for the N5=C4a bond length, C4a-C10a and C10a=N1 bonds when the chromophore is reduced, while the other bond lengths are essentially invariant (0.02 differences on average with respect to FADox). These 6 angles corresponding to the diimine bond varies about 10 degree with respect to the fully oxidized form, while the variation for the rest of the angles remain within +/-2 degrees. For the dihedrals-the maximum variation of dihedrals is 25 degree (only 2 dihedrals corresponding to diimine bond) and for the rest dihedrals, the variation is within 5 degree.

С

n 1 nc2

c 2 cn3 1 cnc3

| n | 3  | nc4  | 2  | ncn4  | 1  | dih4  |
|---|----|------|----|-------|----|-------|
| с | 4  | cn5  | 3  | cnc5  | 2  | dih5  |
| с | 5  | cc6  | 4  | ccn6  | 3  | dih6  |
| n | 1  | nc7  | 6  | ncc7  | 5  | dih7  |
| с | 7  | cn8  | 1  | cnc8  | 6  | dih8  |
| с | 8  | cc9  | 7  | ccn9  | 1  | dih9  |
| n | 9  | nc10 | 8  | ncc10 | 7  | dih10 |
| с | 8  | cc11 | 9  | ccc11 | 10 | dih11 |
| с | 11 | cc12 | 8  | ccc12 | 9  | dih12 |
| с | 12 | cc13 | 11 | ccc13 | 8  | dih13 |
| с | 13 | cc14 | 12 | ccc14 | 11 | dih14 |
| 0 | 3  | oc15 | 2  | ocn15 | 1  | dih15 |
| 0 | 5  | oc16 | 4  | ocn16 | 3  | dih16 |
| с | 13 | cc17 | 14 | ccc17 | 9  | dih17 |
| с | 12 | cc18 | 13 | ccc18 | 14 | dih18 |
| с | 7  | cn19 | 8  | cnc19 | 9  | dih19 |
| h | 4  | hn20 | 3  | hnc20 | 2  | dih20 |
| h | 17 | hc21 | 13 | hcc21 | 14 | dih21 |
| h | 17 | hc22 | 13 | hcc22 | 14 | dih22 |
| h | 17 | hc23 | 13 | hcc23 | 14 | dih23 |
| h | 18 | hc24 | 12 | hcc24 | 13 | dih24 |
| h | 18 | hc25 | 12 | hcc25 | 13 | dih25 |
| h | 18 | hc26 | 12 | hcc26 | 13 | dih26 |
| h | 11 | hc27 | 12 | hcc27 | 13 | dih27 |
| h | 14 | hc28 | 9  | hcc28 | 10 | dih28 |
| h | 19 | hc29 | 7  | hcn29 | 8  | dih29 |
| h | 19 | hc30 | 7  | hcn30 | 8  | dih30 |

| h    | 19 | hc31       | 7 hc | n31  | 8              | dih31 |                |            |          |
|------|----|------------|------|------|----------------|-------|----------------|------------|----------|
| h    | 10 | hn32       | 5 hr | ic32 | 4              | dih32 |                |            |          |
| h    | 1  | hn33       | 2 hr | ıc33 | 15             | dih33 |                |            |          |
|      |    |            |      |      |                |       |                |            |          |
|      |    | $FAD_{ox}$ |      | FA   | $D^{\bullet-}$ | FAI   | $OH^{\bullet}$ | $FADH^{-}$ | $FADH_2$ |
|      |    |            |      |      |                |       |                |            |          |
| nc2  |    | 1.300624   | 1    |      | 1.319699       | 1     | .356284        | 1.418305   | 1.389537 |
| cn3  |    | 1.377110   | C    |      | 1.389754       | 1     | .414709        | 1.381378   | 1.373446 |
| cnc3 |    | 120.032    |      |      | 121.403        | 1     | 21.646         | 121.051    | 113.435  |
| nc4  |    | 1.410638   | 3    |      | 1.414832       | 1     | .389381        | 1.414390   | 1.406847 |
| ncn4 |    | 117.729    |      |      | 116.630        | 1     | 17.088         | 117.369    | 127.286  |
| dih4 |    | 0.013      |      |      | 4.061          |       | 0.063          | 2.885      | -1.600   |
| cn5  |    | 1.375245   | 5    |      | 1.386609       | 1     | .399607        | 1.406292   | 1.431177 |
| cnc5 |    | 127.698    |      |      | 127.618        | 1     | 21.147         | 119.552    | 114.273  |
| dih5 |    | -0.006     |      |      | -9.852         |       | -0.035         | 16.440     | 2.922    |
| cc6  |    | 1.498659   | Э    |      | 1.503538       | 1     | .410829        | 1.418674   | 1.359478 |
| ccn6 |    | 112.626    |      |      | 112.584        | 1     | 20.107         | 119.404    | 120.956  |
| dih6 |    | 0.004      |      |      | 7.951          |       | 0.022          | -17.392    | -2.770   |
| nc7  |    | 1.378807   | 7    |      | 1.395981       | 1     | .308622        | 1.331612   | 1.378746 |
| ncc7 |    | 115.753    |      |      | 116.484        | 1     | 23.468         | 125.326    | 120.440  |
| dih7 |    | -179.975   |      |      | 175.567        | -1    | 79.971         | -176.734   | -178.268 |
| cn8  |    | 1.383194   | 1    |      | 1.403602       | 1     | .374237        | 1.359908   | 1.429977 |
| cnc8 |    | 120.964    |      |      | 119.910        | 1     | 19.863         | 118.620    | 116.477  |
| dih8 |    | -0.060     |      |      | 6.309          |       | -0.005         | -0.157     | 23.506   |
| cc9  |    | 1.412974   | 1    |      | 1.422496       | 1     | .416127        | 1.404298   | 1.404365 |
| ccn9 |    | 118.580    |      |      | 118.808        | 1     | 17.600         | 116.946    | 118.364  |
| dih9 |    | 0.056      |      |      | -3.946         |       | -0.029         | -1.473     | -24.478  |

| nc10  | 1.363941 | 1.367826 | 1.371842 | 1.391527 | 1.398088 |
|-------|----------|----------|----------|----------|----------|
| ncc10 | 121.654  | 121.349  | 126.242  | 126.625  | 118.513  |
| dih10 | -0.016   | 0.612    | 0.048    | 1.628    | -0.536   |
| cc11  | 1.399815 | 1.415621 | 1.395618 | 1.390783 | 1.386250 |
| ccc11 | 118.674  | 117.761  | 117.566  | 118.107  | 119.248  |
| dih11 | 179.982  | 178.735  | 179.976  | 177.439  | 179.125  |
| cc12  | 1.387446 | 1.393778 | 1.392976 | 1.405425 | 1.400028 |
| ccc12 | 121.285  | 121.562  | 122.296  | 122.855  | 121.987  |
| dih12 | 0.011    | 1.282    | 0.003    | -0.860   | -1.903   |
| cc13  | 1.418771 | 1.427894 | 1.408468 | 1.393166 | 1.397972 |
| ccc13 | 120.239  | 120.610  | 119.578  | 118.775  | 118.766  |
| dih13 | -0.002   | -0.614   | 0.002    | 1.090    | 1.287    |
| cc14  | 1.378443 | 1.382041 | 1.386770 | 1.399593 | 1.397043 |
| ccc14 | 118.387  | 118.057  | 118.571  | 118.827  | 119.030  |
| dih14 | -0.005   | -0.318   | -0.007   | -0.126   | 0.312    |
| oc15  | 1.211144 | 1.230692 | 1.213839 | 1.233657 | 1.214087 |
| ocn15 | 123.405  | 123.553  | 123.862  | 124.541  | 124.530  |
| dih15 | -179.997 | -176.493 | 179.986  | 178.935  | 178.018  |
| oc16  | 1.209619 | 1.230260 | 1.227909 | 1.245987 | 1.223411 |
| ocn16 | 123.050  | 123.156  | 124.454  | 121.583  | 120.830  |
| dih16 | -179.992 | -173.595 | 179.976  | 179.783  | -178.161 |
| cc17  | 1.504522 | 1.507827 | 1.504388 | 1.507651 | 1.505707 |
| ccc17 | 120.619  | 120.916  | 120.203  | 119.788  | 119.804  |
| dih17 | -179.999 | -179.704 | -179.995 | 179.115  | 178.957  |
| cc18  | 1.503075 | 1.506476 | 1.504549 | 1.507639 | 1.506132 |
| ccc18 | 120.305  | 120.152  | 120.783  | 121.532  | 121.386  |
| dih18 | 179.996  | 178.468  | 179.997  | -179.885 | -179.554 |

| cn19  | 1.464407 | 1.470000 | 1.458513 | 1.444828 | 1.447932 |
|-------|----------|----------|----------|----------|----------|
| cnc19 | 119.937  | 119.827  | 119.696  | 119.248  | 120.196  |
| dih19 | -179.958 | -161.371 | -179.969 | 178.277  | 168.352  |
| hn20  | 1.010583 | 1.014017 | 1.009579 | 1.007339 | 1.009210 |
| hnc20 | 115.494  | 115.213  | 115.975  | 116.413  | 116.203  |
| dih20 | 179.999  | -179.551 | -179.982 | -179.181 | 0.205    |
| hc21  | 1.088262 | 1.093222 | 1.088691 | 1.090212 | 1.088899 |
| hcc21 | 110.853  | 110.798  | 111.154  | 110.963  | 111.181  |
| dih21 | -0.016   | 0.065    | -0.001   | 0.040    | -0.110   |
| hc22  | 1.092369 | 1.097952 | 1.092383 | 1.094386 | 1.092700 |
| hcc22 | 111.622  | 111.745  | 111.538  | 111.970  | 111.602  |
| dih22 | 120.249  | 120.372  | 120.357  | 120.253  | 120.255  |
| hc23  | 1.092361 | 1.097721 | 1.092377 | 1.094460 | 1.092757 |
| hcc23 | 111.625  | 111.729  | 111.539  | 111.958  | 111.576  |
| dih23 | -120.281 | -120.213 | -120.360 | -120.168 | -120.458 |
| hc24  | 1.092295 | 1.097817 | 1.092549 | 1.094957 | 1.092849 |
| hcc24 | 111.247  | 111.567  | 111.523  | 112.212  | 111.771  |
| dih24 | 59.339   | 60.290   | 59.535   | 59.507   | 59.038   |
| hc25  | 1.092294 | 1.097171 | 1.092558 | 1.095112 | 1.093069 |
| hcc25 | 111.247  | 111.185  | 111.519  | 112.237  | 111.786  |
| dih25 | -59.366  | -58.783  | -59.639  | -60.347  | -60.464  |
| hc26  | 1.088255 | 1.092402 | 1.088587 | 1.090458 | 1.089409 |
| hcc26 | 111.429  | 111.250  | 111.236  | 110.854  | 111.143  |
| dih26 | 179.986  | -178.952 | 179.950  | 179.578  | 179.296  |
| hc27  | 1.079043 | 1.078100 | 1.078887 | 1.080324 | 1.080934 |
| hcc27 | 118.584  | 118.948  | 118.310  | 118.047  | 118.285  |
| dih27 | 179.988  | 176.032  | -179.996 | -179.297 | -178.990 |

| hc28  | 1.081784 | 1.085901 | 1.083350 | 1.084723 | 1.083603 |
|-------|----------|----------|----------|----------|----------|
| hcc28 | 116.785  | 116.602  | 118.429  | 118.065  | 118.462  |
| dih28 | 0.008    | 0.159    | 179.999  | -179.699 | 179.753  |
| hc29  | 1.089405 | 1.070000 | 1.090859 | 1.098003 | 1.096523 |
| hcn29 | 109.909  | 109.471  | 110.338  | 112.096  | 113.297  |
| dih29 | 60.037   | 84.386   | 60.294   | 61.428   | 78.417   |
| hc30  | 1.082765 | 1.070000 | 1.083374 | 1.084519 | 1.088588 |
| hcn30 | 107.856  | 109.471  | 107.757  | 107.723  | 109.973  |
| dih30 | 179.821  | -155.614 | 179.980  | -179.438 | -159.192 |
| hc31  | 1.089462 | 1.070001 | 1.090899 | 1.093762 | 1.088331 |
| hcn31 | 109.927  | 109.471  | 110.344  | 110.269  | 109.023  |
| dih31 | -60.414  | -35.614  | -60.351  | -59.049  | -42.061  |
| hn32  |          |          | 1.012707 | 1.008760 | 1.009687 |
| hnc32 |          |          | 116.030  | 113.177  | 112.768  |
| dih32 |          |          | 0.113    | 13.848   | 13.424   |
| hn33  |          |          |          |          | 1.005298 |
| hnc33 |          |          |          |          | 114.379  |
| dih33 |          |          |          |          | -4.943   |

### S3:Effect of electrostatic force field models on the dynamics of FAD-

#### $O_2$ system

To validate our results using mulliken charges, we have performed MD dynamics for the  ${}^{3}$ [FADH<sup>•</sup>- O<sub>2</sub><sup>•-</sup>] system using Merz-Kollmann (MK) type ESP fitted charges and compared them with the reported results (see Figure 3). The C4a-OO1 distances, which indicate the strength of hydrogen bonding between FAD and oxygen, are quite similar (below-left panel). Furthermore, the binding location of the superoxide with MK-ESP-fitted charges

(below-right panel) is the same as with the Mulliken charge (main text Figure 4 lower left panel).



Figure 3: Effect of electrostatic force fields on the dynamics of  $FAD-O_2$  complex. Left : Evolution of C4a-OO1 distance, right : binding position of oxygen species in the pocket.