Supporting Information

Triarylamine-based hydrido-carboxylate rhenium(I) complexes as photosensitizers for dye-sensitized solar cells.

Lorenzo Veronese,^{a,b} Elsa Quartapelle Procopio,^a Thomas Moehl,^c Monica Panigati, *,^{a,b} Kazuteru Nonomura, *,^d Anders Hagfeldt^d

^a Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133 Milano (Italy)
^b Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche (ISMAC-CNR), Via E. Bassini, 15, 20133 Milano, Italy
^c Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)
^d Laboratory for Photomolecular Science, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

List of Contents

1.	Figure S1: Hydrogens on D35 derivatives labeled for NMR spectra interpretation	pg. 2
2.	Figure S2: ¹ H-NMR spectrum of [Re ₂ (μ -H)(μ -D35)(CO) ₆ (μ -ppd)]	pg. 3
3.	Figure S3: ¹ H-NMR spectrum of 2	pg. 4
4.	Figure S4: ¹ H-NMR spectrum of 3	pg. 5
5.	Figure S5: UV-Vis absorption spectra of dyes 1-3 absorbed on TiO_2	pg. 6
5.	Table S1: Photovoltaic parameters for optimized cells sensitized by 1	pg. 7

Figure S1. Hydrogens on D35 derivatives labeled for NMR spectra interpretation

Figure S3. ¹H NMR spectrum of 2 in CD₂Cl₂ (400 MHz)

Figure S5: UV-Vis absorption spectra of dyes 1-3 absorbed on TiO_2

Table S1: Photovoltaic parameters for optimized cells sensitized by **1** using homemade Iodine based (IE) and cobalt (CE) electrolytes. SnO₂ has been used as semiconductor only with dye **1**, in two different conditions: as transparent layer alone and coupled with a TiO₂ scattering layer (please note that thickness, counters and electrolytes are comparable to the all- TiO₂cells reported in the draft). In addition to that, I have also tried a bromide/tribromide electrolyte on these cells with tin oxide, but the electrolyte almost instantly swept away/degraded the dye and those cells did not perform at all.

DYE 1	I-/I ³⁻			Co ²⁺ /Co ³⁺				
	J _{sc} (mA/cm ²)	V _{oc}	FF η (%)	η	J _{sc} (mA/cm ²)	Voc	FF	η
		(V) 11		(%)		(V)		(%)
SnO ₂ transparent layer	-0.57	0.36	0.62	0.13	-0.66	0.34	0.56	0.13
SnO_2 transparent layer + TiO ₂	-1 41	0.39	0.6	0.33	-2 17	0.39	0.65	0.55
scattering layer	1.11	0.59	0.0	0.55	2.1,	0.09	0.00	0.00