1

Electronic Supplementary Information (ESI)

HC_nN ANIONS IN THE ISM: EXPLORING THEIR EXISTENCE AND

NEW PATHS TO ANIONS CARBONITRILES FOR n=3,5

Stanka V. Jerosimić¹, Roland Wester², Franco A. Gianturco²

¹ Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, PAC 105305,

11158 Belgrade, Serbia

² Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

- **Table S1.** Equilibrium geometries and rotational constants of **3.***n***.1**, **3.***a***.1**, **5.***n***.1**, and **5.***a***.1**,and linear anions **3.***a***.1**in and **5.***a***.1**in, calculated at the RHF-CCSD(T)-F12/cc-pVTZ-F12 level of theory. Rotational constants are calculated from equilibrium geometries with average atomic masses.
- **Table S2.** Configurational isomers of HC_3N^- calculated by USOGGA11X/d-aug-cc-pVTZ method. The energies and dipole moments of the neutral HC_3N at the geometry of the corresponding anion are shown in parenthesis below the values for the anion. IR intensities are presented in parenthesis.
- **Table S3.** Configurational isomers of HC_5N^- calculated by USOGGA11X/d-aug-cc-pVTZ method. The energies and dipole moments of the neutral HC_5N at the geometry of the corresponding anion are shown in parenthesis below the values for the anion. IR intensities are presented in parenthesis.
- **Table S4**. Electronic energies, harmonic frequencies, zero-point vibrational energies (ZPVE), and dipole moments of different states of HC_3N/HC_3N^- system, calculated by using the theoretical models discussed in this work and listed at the end of the Table, with experimental values given in italics. In the case of the **3**.*a*.**1** system we also present (in brackets) the energy and dipole moment of the neutral at **3**.*a*.**1** geometry.
- **Table S5**. Electronic energies, harmonic frequencies, zero-point vibrational energies (ZPVE), and dipole moments of different states of HC_5N/HC_5N^- system, calculated by using various theoretical models presented in this work. Their references are at the end of Table. In the case of the **5**.*a*.**1** system we present in brackets the energy and dipole moment of the neutral at the **5**.*a*.**1** geometry.

Table S1. Equilibrium geometries and rotational constants of **3.***n***.1**, **3.***a***.1**, **5.***n***.1**, and **5.***a***.1**, and linear anions **3.***a***.1**in and **5.***a***.1**in, calculated at the RHF-CCSD(T)-F12/cc-pVTZ-F12 level of theory. Rotational constants are calculated from equilibrium geometries with average atomic masses.

Species	Geometry	Rotational
1		constants / GHz
3. <i>n</i> .1	rC ₁ H=1.0640 Å, rC ₁ C ₂ =1.2080 Å, rC ₂ C ₃ =1.3804 Å,	4.5270852
	$rC_3N=1.1624$ Å; all angles = 180°.	4.5270852
	Previous experimental results: $rC_1H=1.058[1]$, 1.062[2];	0.0000000
	rC ₁ C ₂ =1.205[1], 1.206[2]; rC ₂ C ₃ =1.378[1],	
	<i>1.376</i> [2]; and rC ₃ N= <i>1.159</i> [1], <i>1.161</i> [2].	
3. <i>a</i> .lin	$rC_1H = 1.0693$ Å, $rC_1C_2 = 1.2106$ Å, $rC_2C_3 = 1.3766$ Å,	4.5296524
	$rC_3N = 1.1629$ Å; all angles = 180°.	4.5296524
		0.0000000
3. <i>a</i> .1	rC ₁ H =1.0950 Å, rC ₁ C ₂ =1.3039 Å, rC ₂ C ₃ =1.3887 Å,	4.6514770
	rC ₃ N =1.1780 Å, <(HCC) = 123.6°; <(CCC) =	4.7682720
	137.4°; <(CCN)= 173.0°; dihedral angles = 180°	189.9010614
5. <i>n</i> .1	$rC_1H = 1.0639$ Å, $rC_1C_2 = 1.2114$ Å, $rC_2C_3 = 1.3694$ Å,	1.3231222
	rC ₃ C ₄ = 1.2151 Å, rC ₄ C ₅ = 1.3748 Å, rC ₅ N = 1.1639	1.3231222
	Å; all angles = 180° .	0.0000000
5. <i>a</i> .lin	$rC_1H = 1.0679$ Å, $rC_1C_2 = 1.2139$ Å, $rC_2C_3 = 1.3648$ Å,	1.3243379
	rC ₃ C ₄ = 1.2180 Å, rC ₄ C ₅ = 1.3715 Å, rC ₅ N = 1.1644	1.3243379
	Å; all angles = 180° .	0.0000000
5. <i>a</i> .1	rC ₁ H =1.0806 Å, rC ₁ C ₂ =1.2706 Å, rC ₂ C ₃ =1.3272 Å,	1.3669609
	rC ₃ C ₄ =1.2736 Å, rC ₄ C ₅ =1.3754 Å, rC ₅ N =1.1768	1.3865222
	Å, $<$ (HCC) = 134.3°; $<$ (C ₁ C ₂ C ₃) = 168.2°;	96.8912467
	$<(C_2C_3C_4) = 168.2^\circ, <(C_3C_4C_5) = 144.1^\circ; <(CCN) =$	
	174.0° ; dihedral angles = 180°	

[1] Dorofeeva, 1991

[2] Kuchitsu, 1998.

Table S2. Configurational isomers of HC₃N⁻ calculated by USOGGA11X/d-aug-cc-pVTZ method. The energies and dipole moments of the neutral HC₃N at the geometry of the corresponding anion are shown in parenthesis below the values for the anion. IR intensities are presented in parenthesis.

Isomer	Electronic	Frequencies / cm ⁻¹	ZPVE/a.u.	Dipole
	energy/ <i>a.u.</i>	(IR intensities, kmmol ⁻¹)		moment/D
3.a.1	-169.5744563	169(7), 348(6), 524(27), 680(42),	0.024040	1.111
$^{2}A'$	(-169.5249239)	871(59), 928(85),		(3.405)
		1814(14), 2195(551),		
		3024(151)		
3.a.2	-169.562199	256(34), 439(0), 598(10),	0.024886	3.509
	(-169.486253)	705(27), 948(3), 1213(7),		(2.995)
		1502(50), 2294(265),		
		2968(124)		
3.a.3	-169.5340407	207(12), 241(24), 420(4),	0.023938	4.350
	(-169.4566053)	698(54), 908(2),		(3.246)
		1122(108), 1752(178),		
		1939(547), 3221(276).		
3. <i>a</i> .4	-169.5336730	214(10), 260(0), 529(22), 898(0),	0.024495	5.142
	(-169.3519058)	963(61), 1237(5),		(4.833)
		1644(183), 2085(318),		
		2922(90)		
3.a.5	-169.529191	241(9), 327(1), 516(63), 700(52),	0.023934	0.878
	(-169.472739)	855(40), 932(99),		(2.670)
		1713(12), 2117(22),		
		3104(64)		
3.a.6	-169.5218720	237(22), 352(0), 553(19),	0.024535	3.753
	(-169.4437857)	709(24), 880(20),		(2.506)
		1262(12), 1523(3),		
		2218(11), 3035(105)		
3.a.7	-169.5210818	419(45), 445(66), 565(14),	0.024783	2.205
	(-169.4287570)	648(104), 906(22),		(1.111)
		1108(188), 1528(107),		
		1777(733), 3484(23).		
3. <i>a</i> .8	-169.5005510	211(29), 271(2), 420(30),	0.022938	5.267
	(-169.4124170)	586(12), 931(113),		(5.340)
		1052(239), 1782(107),		
		1968(455), 2848(268)		
3. <i>a</i> .9	-169.4707660	353(24), 619(25), 704(25),	0.023697	2.894
	(-169.3911138)	861(11), 1030(35),		(2.236)
		1107(13), 1330(22),		
		1366(13), 3032(143).		
3. <i>a</i> .10	-169.460785	213(14), 293(3), 553(25),	0.025263	5.395
	(-169.337711)	724(18), 939(22), 1375(2),		(6.630)
		1518(4), 2099(111),		
		3375(2)		

Table S3. Configurational isomers of HC_5N^- calculated by USOGGA11X/d-aug-cc-pVTZ method. The energies and dipole moments of the neutral HC_5N at the geometry of the corresponding anion are shown in parenthesis below the values for the anion. IR intensities are presented in parenthesis.

Isomer	Electronic	Frequencies/cm ⁻¹	ZPVE/a.u.	Dipole
	Energy / a.u.	(IR intensities, kmmol ⁻¹)		moment/D
5. <i>a</i> .1	-245.7505665	44(1), 117(5), 232(3), 285(7),	0.033628	1.5007
$^{2}\text{A'}$	(-245.6904719)	383(9), 476(7), 555(0),		(3.779)
		586(9), 635(95),		
		691(456), 1246(45),		
		1914(182), 2149(293),		
		2259(1096), 3191(92).		
5.a.2	-245.7453192	92(12), 174(3), 275(2), 381(1),	0.035281	4.986
	(-245.6293754)	408(6), 553(1), 561(4),		(2.137)
		728(37), 908(4),		
		1074(5), 1310(7),		
		1679(49), 1915(895),		
		2326(281), 3104(39),		
5.a.3	-245.7169582	115(20), 127(0), 254(35),	0.035195	4.489
	(-245.6328207)	424(2), 525(28),		(3.928)
		544(10), 575(10),		
		706(21), 729(3),		
		1202(5), 1225(14),		
		1472(228), 2220(243),		
		2355(1454), 2977(111).		
5. <i>a</i> .4	-245.7125671	144(2), 234(8), 269(33),	0.035094	4.658
	(-245.6183144)	440(9), 501(25),		(3.391)
		537(69), 625(4), 638(0),		
		655(43), 746(1),		
		1141(8), 1454(58),		
		2188(200), 2315(184),		
		3519(68).		
5.a.5	-245.7084253	105(6), 111(7), 213(7), 250(8),	0.033606	7.075
	(-245.6226443)	316(1), 400(0), 546(6),		(5.655)
		588(0), 653(1),		
		1131(245), 1236(96),		
		1801(489), 1899(1471),		
		2083(560), 3419(27),		
5.a.6	-245.7047472	97(12), 174(2), 250(1), 344(1),	0.034912	5.574
	(-245.5905465)	407(5), 498(0), 512(4),		(2.089)
		721(29), 917(15),		
		1072(6), 1334(35),		
		1694(2), 1935(577),		
		2230(39), 3142(35)		
5.a.7	-245.7006173	104(2), 202(2), 272(40),	0.033654	1.442
	(-245.6320745)	329(0), 404(211),		(3.523)
		466(125), 530(7),		
		565(244), 593(45),		
		742(5), 1172(18),		

		1858(236), 2096(56),		
		2136(19), 3303(16).		
5. <i>a</i> .8	-245.6723402	284(64), 411(13), 580(162),	0.035896	1.356
	(-245.5829066)	587(3), 618(1),		(2.036)
		718(266), 809(24),		
		897(41), 961(87),		
		1066(61), 1098(1),		
		1280(16), 1440(32),		
		1765(200), 3242(34)		
5. <i>a</i> .9	-245.6694167	111(0), 132(4), 420(74),	0.034111	3.101
	(-245.5489128)	440(18), 518(79),		(0.393)
		519(17), 544(12),		
		595(7), 668(186),		
		813(41), 1191(26),		
		1505(217), 1784(1430),		
		2200(758), 3532(104),		
5. <i>a</i> .10	-245.6632304	135(12), 157(4), 249(5),	0.033617	3.496
	(-245.5707224)	397(1), 458(106),		(3.741)
		535(9), 608(58),		
		773(166), 812(74),		
		959(0), 991(25),		
		1511(223), 1817(30),		
		2251(592), 3101(87)		

Table S4. Electronic energies, harmonic frequencies, zero-point vibrational energies (ZPVE), and dipole moments of different states of HC_3N/HC_3N^- system, calculated by using the theoretical models discussed in this work and listed at the end of the Table, with experimental values given in italics. In the case of the **3**.*a*.**1** system we also present (in brackets) the energy and dipole moment of the neutral at **3**.*a*.**1** geometry.

Isomer	Electronic	Frequencies/cm-1	ZPVE/a.u.	Dipole
	energy/ a.u.	1		moment/D
3. <i>n</i> .1	-169.5672400 ^{a)}	242(0), 242(0), 555(7), 555(7), 735(38),	0.027641 ^{a)}	-3.912 ^{a)}
$(^{1}\Sigma^{+})$	-169.5784335 ^{b)}	735(38), 909(0), 2219(1),	0.026313 ^{c)}	-3.909 ^{b)}
	-169.3502637 ^{c)}	2437(30), 3504(83). ^{a)}	0.026061 ^{f)}	-3.994 ^{g)}
	-169.3528759 ^{d)}	221, 221, 496, 496, 677, 677, 879, 2113,	0.025771 ⁿ⁾	-3.840 ^{h)}
	-169.2903628 ^{e)}	2318, 3453. ^{c)}		-4.182 ⁱ⁾
	-169.3244578 ^{f)}	224, 224, 506, 506, 673, 673, 885, 2043,		-4.183 ^{j)}
	-169.3314740 ^{g)}	2229, 3477. ^f)		-4.182 ^{k)}
	-169.2804743 ^{h)}	<i>222, 499, 663, 864, 2079, 2274, 3327</i> ⁿ⁾		-4.183^{10}
	-169.2902261 ¹⁾			$-3.929^{(m)}$
	-169.2892771 ^{j)}			-3.72 °)
	-169.2895561^{k}			
	-169.2892480			
	-169.5667065 ^m			
	-169.5686812 ^{a)}	330, 330, 760, 760, 883, 902, 902,	0.028709 ^{c)}	$+19.622^{a}$
3. <i>a</i> .lin	-169.5815316 ^{b)}	2097, 2307, 3332 °)	0.026436 ¹⁾	+12.182 b)
$^{2}\Sigma^{+}$	-169.3273999 ^{c)}	230, 230, 493, 493, 831, 831, 889, 2032,		$+15.289^{\text{g}}$
	-169.3319822 ^{d)}	2223, 3351. 1)		$+19.754^{\text{n}}$
	-169.2881478 ^{e)}			$+19.868^{10}$
	-169.3008507^{10}			
	-169.3013204^{g}			
	-169.2776269^{m}			
	-169.2879667			
	no conv. $\frac{1}{1}$			
	no conv. $\frac{k}{1}$			
	no conv. ¹⁾			
	no conv. ^{m)}			
3. <i>a</i> .1	-169.5744563 ^{a)}	169(7), 348(6), 524(27), 680(42),	0.024040^{a}	1.111^{a}
'A'	(-169.5249239)	8/1(59), 928(85), 1814(14),	$0.0238/4^{\circ}$	$(3.405)^{(3)}$
	1 (0 50271 c0 h)	2195(551), 3024(151) "	0.025092	0.919 ¹ /
	-169.5837159 °	227, 371, 546, 680, 866, 941, 1714,		0.922^{37}
	-169.3502936°	2132, 3003. 7		0.991
	$-169.3530/13^{-1}$	218, 345, 511, 687, 880, 1527, 1727, 2004, 2026		
	(-169.3129127) d)	2094, 3026		
	-169.2902153 ^{e)}			
	-169.3247399 ^{f)}			
	-169.2905820 ⁱ⁾			
	-169.2893629 ^{j)}			
	-169.5737715 ^{m)}			

a) USOGGA11X/d-aug-cc-pVTZ

b) USOGGA11X/d-aug-cc-pVQZ//RCCSD(T)-F12/cc-pVTZ-F12

c) RCCSD(T)-F12a/cc-pVTZ-F12

- d) RCCSD(T)-F12a/cc-pVQZ-F12// RCCSD(T)-F12/cc-pVTZ-F12
- e) RCCSD(T)/d-aug-cc-pVTZ// RCCSD(T)-F12/cc-pVTZ-F12
- f) RMP2-F12/cc-pVTZ-F12
- g) CAS-MRCISD(Q)-F12/cc-pVTZ-F12// RCCSD(T)-F12/cc-pVTZ-F12
- h) CAS-MRCISD(Q)/d-aug-cc-pVTZ// RCCSD(T)-F12/cc-pVTZ-F12
- i) UHF-CCSD(T)/d-aug-cc-pVTZ// RCCSD(T)-F12/cc-pVTZ-F12
- j) UHF-CCSD(T)/aug-cc-pVTZ+4(sp)// RCCSD(T)-F12/cc-pVTZ-F12
- k) UHF-CCSD(T)/aug-cc-pVTZ+4(sp)1d// RCCSD(T)-F12/cc-pVTZ-F12
- UHF-CCSD(T)/aug-cc-pVTZ+4(sp)H+1(s,p)C,N// RCCSD(T)-F12/ccpVTZ-F12
- m) USOGGA11X/ aug-cc-pVTZ+4(sp)1d// RCCSD(T)-F12/cc-pVTZ-F12
- n) [3]
- o) [4]; [5]

Table S5. Electronic energies, harmonic frequencies, zero-point vibrational energies (ZPVE), and dipole moments of different states of HC_5N/HC_5N^- system, calculated by using various theoretical models presented in this work. Their references are at the end of Table. In the case of the **5**.*a*.**1** system we present in brackets the energy and dipole moment of the neutral at the **5**.*a*.**1** geometry.

Isomer	Electronic	Frequencies / cm-1	ZPVE/a.u.	Dipole
	energy/a.u.			moment/D
Neutral	-245.7183235 ^{a)}	106, 106, 247, 247, 447, 447, 474,	0.038031 ^{a)}	-4.648 ^{a)}
$^{1}\Sigma^{+}$	-245.7334428 ^{b)}	474, 609, 657, 657, 1164,	0.035856 ^{c)}	-4.668 ^{b)}
	-245.3906561 ^{c)}	2098, 2233, 2320, 3452. ^{c)}	0.035361 ^{e)}	-5.033 ^{f)}
	-245.3944063 ^{d)}			-4.888 ^{g)}
	-245.3561761 ^{e)}	97, 97, 248, 248, 458, 458, 483,		-4.888 ^{h)}
	-245.3324649 ^f	483, 614, 643, 643, 1178,		-4.888 ⁱ⁾
	-245.3049575 ^{g)}	2026, 2149, 2223, 3473. ^{e)}		-4.888 ^{j)}
	-245.3030309 ^{h)}			-4.674 ^{k)}
	-245.3035067 ⁱ⁾			
	-245.3029722 ^{j)}			
	-245.7174895 ^{k)}			
5. <i>a</i> .lin	-245.7273446 ^{b)}	74, 74, 174, 174, 275, 276, 533,	0.034487 ^{e)}	+16.099 ^{b)}
$2\Sigma^{+}$	-245.3710823 ^{c)}	533, 617, 741, 741, 1186,		+19.399 ^{f)}
	-245.3764349 ^{d)}	2013, 2146, 2214, 3368. ^{e)}		+23.859 ^{g)}
	-245.3358805 ^{e)}			+65.109 ^{h)}
	-245.3055020 ^{f)}			+65.111 ⁱ⁾
	-245.3035343 ^{g)}			+55.817 ^{j)}
	-245.3036148 h)			
	-245.3040947 ⁱ⁾			
	-245.3035563 ^{j)}			
	no conv. ^{k)}			
5.a.1	-245.7505667 ^{a)}	195, 317, 318, 408, 424, 477, 558,	0.033628 ^{a)}	1.501 ^{a)}
² A'	(-245.6904719) ^{a)}	662, 666, 939, 1230, 1849,	0.035337 ^{e)}	$(3.779)^{a}$
	-245.7627827 ^{b)}	2032, 2189, 3248. ^{e)}		1.652 ^b
	-245.4126438 ^{c)}			2.109 ^{g)}
	-245.4165681 ^{d)}			2.111 ^{j)}
	(-245.3617062) ^{d)}			1.904 ^{k)}
	-245.3810656 ^{é)}			
	-245.3266112 ^{g)}			
	-245.3247451 ^{h)}			
	-245 7489382 ^{k)}			

a) USOGGA11X/d-aug-cc-pVTZ

- b) SOGGA11X/aug-cc-pVQZ//RCCSD(T)-F12/cc-pVTZ-F12
- c) RCCSD(T)-F12a/cc-pVTZ-F12
- d) RCCSD(T)-F12a/cc-pVQZ-F12// RCCSD(T)-F12/cc-pVTZ-F12
- e) RMP2-F12/cc-pVTZ-F12
- f) CAS-MRCISD(Q)-F12/cc-pVTZ-F12// RCCSD(T)-F12/cc-pVTZ-F12
- g) UHF-CCSD(T)/d-aug-cc-pVTZ// RCCSD(T)-F12/cc-pVTZ-F12
- h) UHF-CCSD(T)/aug-cc-pVTZ+4(sp)// RCCSD(T)-F12/cc-pVTZ-F12
- i) UHF-CCSD(T)/aug-cc-pVTZ+4(sp)1d// RCCSD(T)-F12/cc-pVTZ-F12
- j) UHF-CCSD(T)/aug-cc-pVTZ+4(sp)H+1(s,p)C,N// RCCSD(T)-F12/ccpVTZ-F12
- k) USOGGA11X/ aug-cc-pVTZ+4(sp)1d// RCCSD(T)-F12/cc-pVTZ-F12

References:

- [1] Dorofeeva O. V., Gurvich L. V., Thermochim. Acta 178 (1991) 273–286.
- [2] Kuchitsu K, Ed., 1998, Structure of Free Polyatomic Molecules
- [3] A. Scemama, P. Chaquin, M.C. Gazeau, Y. Bénilan, J. Phys. Chem. A 106 (2002) 3828–3837.
- [4] D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, <
 http://www.hbcpnetbase.com >, CRC Press, Boca Raton, FL, 2005
- [5] A. Arnau, I. Tunon, E. Silla, J.M. Andres, J. Chem. Educ. 67 (1990) 905.