Supporting Information

Tracking the origin of photostability in purine nucleobases: the photophysics of 2-oxopurine

Lara Martínez-Fernández,^a Serra Arslancan,^a Dmytro Ivashchenko^{a,b}, Carlos E. Crespo-Hernández,^c and Inés Corral*^{a,d}

^a Departamento de Química, Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente 7, 28049 Cantoblanco, Madrid, Spain.

^b Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, , 4169-007 Porto Portugal

^c Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.

^d IADCHEM. Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain **Figure S1.** Molecular orbitals involved in the (14,11) active space used for the CASSCF calculations.

Figure S2. 2-oxopurine gas phase simulated absorption spectra computed at the (a) MS(14)-CASPT2 (black), ADC(2) (red) and CC2 (blue) levels of theory and (b) TD-M062X level of theory in gas phase (solid green) and water (dashed green) in the range comprised between 180-400 nm. A total number of ^{CASPT2}13, ^{ADC2}10, ^{CC2}10 and ^{TD-M062X}10 excited states have been considered in the simulations.

Figure S3. Density difference $(S_n - S_0)$ computed with the perturbatively modified CASSCF wave functions.

Figure S4. 2-oxopurine S₁ potential energy profile evaluated at the M062X/PCM-M062X level of theory considering different solvents, i.e acetonitrile (ACN), toluene (TOL). Gas phase (GP) energies and water state specific equilibrium (EQ) and non-equilibrium (NEQ) energies relative to the S₀ are also included for comparison.

Figure S5. CASSCF Minimum Energy Paths connecting the Franck Condon and S_{1min} regions (left panel) and the S_1/S_0 crossing with the S_{1min} (right panel) along the S_1 potential energy surface.

Table S1. Main configurations and their weights, energies (in nm and eV), oscillator strengths and dipole moments of the lowest lying singlet excited states of 2-oxopurine according to the MS-CASPT2, ADC(2), CC2 and M062X methods. * mixed character states

	Main Configurations	Weights	Energies (nm)	Energies (eV)	f	μ
MS-CASPT2 IPEA=0.00 (0.25)/SA(5)						
S ₁	$\pi_1\pi_1^*$	0.75 (0.75)	321 (300)	3.86 (4.13)	0.0903 (0.0954)	
S ₂	n _o π ₁ *	0.78 (0.78)	249 (239)	4.97 (5.18)	0.0004 (0.0004)	
S ₃	$\pi_2 \ \pi_1^* \ \pi_1 \pi_2^*$	0.44 (0.44) 0.12 (0.12)	239 (219)	5.20 (5.66)	0.0109 (0.0124)	
S ₄	n ₀ π ₂ *	0.81 (0.80)	202 (196)	6.13 (6.32)	0.0001 (0.0001)	
	М	S-CASPT2 IPE	EA=0.00/SA(14	·)		
S ₀						4.1635
S ₁	$\pi_1\pi_1^*$	0.76	331	3.75	0.1010	1.2735
S ₂	n ₀ π ₁ *	0.77	241	5.14	0.0004	2.2725
S ₃	$\pi_2 \pi_1^*$	0.52	241	5.15	0.0078	3.6992
S ₄	$\pi_{1}\pi_{2}^{*}$	0.45	215	5.78	0.0548	0.885
S ₅	n ₀ π ₂ *	0.70	196	6.31	0.0000	2.36
S ₆	$\pi_2\pi_2^*$	0.45	194	6.40	0.1120	3.4693
S ₇	$\pi_1\pi_4^*$	0.40	191	6.50	0.7523	2.6099
S ₈	*	*	172	7.22	0.6600	4.3261
S ₉	*	*	166	7.46	0.1158	2.6862
S ₁₀	*	*	154	8.04	0.0001	4.6958

S ₁₁	*	*	152	8.17	0.0111	1.5872
S ₁₂	*	*	145	8.57	0.3226	4.5148
S ₁₃	*	*	133	9.35	0.0000	2.5609
	ADC(2)					
S ₁	$\pi_1 \pi_1^*$	0.89	320	3.87	0.0945	
S ₂	(n _O +n _N)π ₁ *	0.88	281	4.42	0.0002	
S ₃	(n _O -n _N)π ₁ *	0.86	257	4.82	0.0003	
S	$\pi_2 \pi_1^*$	0.65	227	5 4 5	0.0006	
34	$\pi_1 \pi_2^*$	0.25	221	5.45	0.0000	
	(n _O -n _N)π ₃ *	0.26				
Sc	(n _O +n _N)π ₂ *	0.26	207	5 99	0 00002	
05	(n _O -n _N)π ₂ *	0.20	201	0.00	0.00002	
	(n _O +n _N)π ₃ *	0.19				
Se	$\pi_1 \pi_2^*$	0.59	199	6 23	0 6931	
00	$\pi_2 \pi_1^*$	0.22	100	0.20	0.0001	
S ₇	(n _{N1} +n _{N2})π ₁ *	0.71	199	6.23	0.0064	
S ₈	π ₁ Ryd ₁	0.81	196	6.33	0.0001	
S ₉	$\pi_1 Ryd_2$	0.74	183	6.78	0.0000	
S ₁₀	$\pi_1 \pi_3^*$	0.52	180	6 87	0 0242	
010	$\pi_5\pi_1^*$	0.26	100	0.07	0.0212	
			CC2			
S ₁	$\pi_1 \pi_1^*$	0.89	307	4.04	0.0910	
S ₂	(n _O +n _N)π ₁ *	0.93	272	4.56	0.0003	
S ₃	(n _O -n _N)π ₁ *	0.92	250	4.95	0.0003	
S₄	$\pi_2 \pi_1^*$	0.66	224	5.54	0.0016	
- 4	$\pi_1 \pi_2^*$	0.25				
	(n _O +n _N)π ₂ *	0.40				
S_5	(n _O -n _N)π ₃ *	0.17	198	6.27	0.0014	
	$(n_{N1}+n_{N2})\pi_{1}^{*}$	0.17				
0	(n _O +n _N)π ₃ ^	0.13	100	0.04	0.0000	
S_6	π ₁ Κу0 ₁	0.79	190	0.31	0.0002	
S ₇	$\pi_1 \pi_2^{*}$	0.62	195	6.36	0.6084	
	$\pi_2\pi_1^{\circ}$	0.21				
S ₈	$(\Pi_{N1} + \Pi_{N2})\pi_1$	0.54	195	6.37	0.0051	
6	$(\Pi_0 - \Pi_N)\pi_2$	0.21	102	6 79	0.0001	
59 C	π ₁ κyu ₂	0.70	179	6.06	0.0001	
3 ₁₀	$\pi_1\pi_3$			0.90	0.0362	
				4 21		
S ₁	$\pi_1 \pi_1^* (\pi_1 \pi_1^*)$	0.49 (0.49)	294 (286)	(4.33)	0.1046 (0.1328)	
S ₂	$(n_0+n_N)\pi_1^* ((n_0+n_N)\pi_1^*)$	0.41 (0.45)	261 (247)	4.75 (5.02)	0.0002 (0.0002)	
S ₃	$\pi_2 \pi_1^* (\pi_2 \pi_1^*) \\ \pi_1 \pi_2^* (\pi_1 \pi_2^*)$	0.29 (0.32) 0.19 (0.16)	212 (212)	5.86 (5.84)	0.0026 (0.0004)	
S ₄	$(n_O - n_N)\pi_1^*$ $((n_O - n_N)\pi_1^*)$	0.33 (0.31)	211 (199)	5.86 (6.22)	0.0003 (0.0013)	
S ₅	$\begin{array}{c} \hline & ((n_{O}\text{-}n_{N}) \pi_{2}^{*}) \\ & (n_{O}\text{+}n_{N})\pi_{2}^{*} \\ & ((n_{O}\text{+}n_{N})\pi_{2}^{*}) \\ & (n_{O}\text{-}n_{N})\pi_{2}^{*} (\text{-}) \end{array}$	(0.18) 0.16 (0.12) 0.09 () 0.08 ()	202 (194)	6.14 (6.39)	0.0000 (0.0002)	

	-					
	(n _O +n _N)π ₃ * ()					
S_6	(n _{N1} +n _{N2})π ₁ * (π ₁ π ₂ *)	0.26 (0.32)	197 (192)	6.29 (6.47)	0.0047 (0.8635)	
S ₇	$\pi_1 Ryd_1 ((n_{N1} + n_{N2})\pi_1^*))$	0.47 (0.24)	190 (190)	6.53 (6.53)	0.0000 (0.0045)	
S ₈	$\pi_1\pi_2^* (\pi_1\pi_3^*) \ \pi_2\pi_1^*$	0.29 (0.45) 0.18	190 (175)	6.54 (7.10)	0.6012 (0.0160)	
S ₉	$\pi_1 Ryd_2 (\pi_1 Ryd_1)$	0.46 (0.44)	178 (173)	6.95 (7.16)	0.0000 (0.0002)	
S ₁₀	π ₁ π ₃ * ((n _O +n _N)π ₂ *) ((n _O -n _N)π ₂ *)	0.43 (0.19) (0.11)	177 (172)	7.02 (7.23)	0.0575 (0.0020)	

Table S2. Relative energies (in nm and eV) for the lowest lying triplet excited states of 2-oxopurine evaluated at the ground state equilibrium geometry according to the MS-CASPT2, ADC(2), CC2 and M062X methods.

	Main	Energies	Energies		
	Configurations	(nm)	(eV)		
	MS-CASPT2 IPEA=0.00 (0.25)				
T ₁	$\pi_1 \pi_2^* (\pi_1 \pi_2^*)$	466 (426)	2.66 (2.91)		
T ₂	$\pi_1 \pi_1^* (\pi_1 \pi_1^*)$	263 (243)	4.71 (5.11)		
T ₃	π ₂ π ₂ * (n _O π ₂ *)	259 (238)	4.79 (5.22)		
		ADC(2)			
T ₁	$\pi_1\pi_1^*$	425	2.92		
T ₂	$\pi_1\pi_2^*$	248	4.99		
T ₃	$\pi_2 \pi_1^*$	242	5.12		
	CC2				
T ₁	$\pi_1\pi_1^*$	410	3.02		
T ₂	$\pi_1 \pi_2^*$	243	5.10		
T ₃	$\pi_2 \pi_1^*$	238	5.21		
	TD-M062X (PCM)				
T ₁	$\pi_1 \pi_1^* (\pi_1 \pi_1^*)$	450 (423)	2.75(2.93)		
T ₂	(n _O +n _N)π ₁ * (π ₁ π ₂ *)	278 (262)	4.46 (4.73)		
T ₃	π ₁ π ₂ * (n _O +n _N)π ₁ *)	264 (262)	4.70 (4.74)		

Table S3. X Y and X cartesian coordinates (in Å) for the CASSCF optimized geometries along the Potential Energy Surface of 2-oxopurine.

FC

N C H N C C N H C N C H O H	2.412337 1.146177 0.313519 1.078107 2.384292 2.966276 4.304856 4.788407 5.120781 4.512543 3.246842 2.677634 6.289575 2.463019	4.755862 4.522421 4.352133 4.531399 4.788336 4.920714 5.176798 5.284113 5.313356 5.175739 4.933718 4.790189 5.539646 4.840716	0.423560 -0.084672 0.566818 -1.370358 -1.779115 -2.995033 -2.999668 -3.862423 -1.865556 -0.626223 -0.638531 1.379161 -2.010374 -3.937841	
S _{1min}				
N С H N С С N H С N С H O H	2.392411 1.139973 0.303159 1.094482 2.383711 2.964433 4.326434 4.849495 5.030751 4.559125 3.199499 2.672417 6.311714 2.476758	4.752057 4.520986 4.350952 4.532297 4.784619 4.913925 5.180189 5.297433 5.295453 5.183377 4.923655 4.792246 5.546463 4.851488	0.436222 -0.048142 0.595981 -1.353871 -1.744819 -3.049975 -3.001330 -3.838662 -1.835354 -0.640658 -0.649798 1.387700 -2.061564 -3.995985	
T _{1min}				
N C H N C C N H C N C H O H	2.400120 1.146550 0.303861 1.116925 2.366324 2.958945 4.323450 4.832913 5.098013 4.514719 3.221147 2.682463 6.277932 2.461003	4.753248 4.521603 4.349565 4.538990 4.784464 4.920563 5.180789 5.292835 5.309274 5.175936 4.928743 4.790905 5.536842 4.841383	0.441178 -0.032691 0.599429 -1.370971 -1.750119 -3.069188 -3.022540 -3.868326 -1.880584 -0.614724 -0.632887 1.393105 -1.983987 -4.007950	

$(S_1/T_2/T_1)$

	2 206402		
N	2.396182	4.755560	0.438446
С	1.146305	4.514385	-0.058141
Н	0.305407	4.355684	0.584977
Ν	1.097945	4.499390	-1.351207
С	2.401810	4.745524	-1.756070
С	2.966322	4.810891	-3.056509
Ν	4.336224	5.197306	-3.020127
Н	4.874088	5.113985	-3.849009
С	5.007424	5.316304	-1.838759
Ν	4.558177	5.205557	-0.662766
С	3.206667	4.904323	-0.659924
Н	2.668303	4.811645	1.387754
0	6.318729	5.626528	-2.017195
н	2.420773	5.068048	-3.941723

(S₁/S₀)

Ν	2.40051	4.73055	0.43927
С	1.11509	4.57436	-0.01742
Н	0.25922	4.40445	0.64582
Ν	1.05673	4.62068	-1.34231
С	2.35060	4.81636	-1.75318
С	2.94312	5.06050	-3.10464
Ν	4.33820	5.29606	-2.97272
Н	4.85412	5.60289	-3.78084
С	4.95625	5.25782	-1.80681
Ν	4.56050	5.08410	-0.63492
С	3.13503	4.84224	-0.65169
Н	2.70420	4.75581	1.40535
0	6.34998	5.39764	-2.22907
Н	2.68079	4.48170	-3.99705