Supplementary information for

Physical Origin Underlying the Prenucleation Cluster Mediated Nonclassical Nucleation Pathways for Calcium Phosphate

Xiao Yang¹, Mingzhu Wang¹, Yang Yang², Beiliang Cui³, Zhijun Xu^{1*}, Xiaoning Yang¹.

¹College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, and ³Network Information Center, Nanjing Tech University, Nanjing 210009, China.

²Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, PA 18015

*Corresponding author: <u>xuzhijun@njtech.edu.cn</u>

Table S1. Summary of the simulations designed in the present study for investigating the PNC-mediated nonclassical nucleation mechanisms for calcium phosphate. The total cumulative simulation time is about $5.2 \ \mu s$.

Simulation methods	Simulation systems	Simulation setup	Total time
	Ca-P ₁	6 ns (NPT)+2 ns (NVT)+34 330 ns ³	
US1	CaP ₁ -P ₂	6 ns (NPT)+2 ns (NVT)+34 \arrow30 ns ³	2.994 µs
	$CaP_1P_2-P_3$	6 ns (NPT)+2 ns (NVT)+31 \arrow330 ns ³	
MD^1	$CaP_1P_2P_3$	6 ¤ 10 ns (NVT) ⁴	0.060 µs
MTD ¹	Ca-P ₁	100 ns (NVT)	
	$Ca-P_1P_2$	300 ns (NVT)	0.700 µs
	$Ca-P_1P_2P_3$	300 ns (NVT)	
MD ²	Ca/P=1:3	40 ns (NPT)	
	Ca/P=1:1	2 ° 40 ns (NPT) ⁵	0.200 µs
	Ca/P=2:1	2 \\$ 40 ns (NPT) ⁵	
US ²	PNC-PNC	6 ns (NPT)+2 ns (NVT)+35 ℃ 6 ns	
	PNC-Ca	6 ns (NPT)+2 ns (NVT)+44 R 6 ns	1.290 µs
	PNC_Ca-PNC 6 ns (NPT)+2 ns (NVT)+33 224 ns		

¹The simulation methodologies are designed to investigate the PNC formation pathways and the thermodynamic stability of the obtained intermediate states. ²These simulations are used to unravel the mechanisms along which the highly charged PNCs aggregate to form the new phase, such as the polymetric aggregates and the ACP. ³A total number of about 34 window simulations for each PMF profile (Table S1) are carried out. ⁴Six PNC configurations corresponding to the free energy minimum are exacted from the US trajectories to prepare the initial simulation systems. ⁵Two simulation systems are prepared at different ion concentrations in solution to explore the dependence of the obtained aggregation trends on the experimental conditions.

Fig. S1. The pathway-specified strategies for free energy calculations to investigate the thermodynamics for the PNC formations. (a) the phosphate ions are proposed to progressively bind to one calcium ion in a multi-step fashion (Path 1). US together with WHAM is used to obtain PMF profiles; (b) two or three phosphate ions are simultaneously sequestered to one calcium ion (Path 2 and Path 3). The Well-tempered MTD simulations are employed to calculate the multi-dimensional free energy surface.

Fig. S2. A comparison of the PMF profiles for the Ca^{2+} -HPO₄²⁻ pairing interaction computed by the US and MTD simulations.

Fig. S3. The mean forces exerting on the ions collected as an average over a series of configurations from the US simulations as a function of simulation time for the interaction between $Ca(HPO_4)_2^{2-}$ and HPO_4^{2-} at two selected separation distances (3.2 and 10.0 Å). A well converged result for the force averaging is obtained after 20 ns.

Fig. S4. The pathway-specified strategies for the free energy calculations to investigate the molecular mechanism underlying the aggregations of the highly charged PNCs. (a) the PNC-PNC interaction (b) the coordination of the $Ca(HPO_4)_3^{4-}$ to a free Ca^{2+} in solution, leading to the formation of $Ca_2(HPO_4)_3^{2-}$. (c) The self-assembly of $Ca(HPO_4)_3^{4-}$ and $Ca_2(HPO_4)_3^{2-}$ to form $Ca_3(HPO_4)_6^{6-}$, representing the aggregation process of the PNCs.

Fig. S5. The representative snapshots from the initial and the final stages of the PNC aggregation (Ca/P = 1.0) at the low ion concentration. The free PNCs successfully aggregate into small clusters.