Supporting Information

Carbon dioxide and water adsorption on the low-index surfaces of TiC, VC, ZrC and NbC: A DFT study

Matthew G. Quesne[†], Alberto Roldan[†], Nora H. de Leeuw[†] and C. Richard A. Catlow[†]

[†]School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.

NbC{001}					NbC{0	11}	
CSlab	E _{TOT}	ΔE^{a}	ΔE^b	CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}
3.13	-1018.49	-0.20	0.00	2.31	-985.89	-0.29	0.00
2.90	-1018.49	-0.21	-0.01	2.13	-985.89	-0.28	0.01
2.66	-1018.43	-0.14	0.06	1.96	-985.82	-0.22	0.07
2.43	-1018.32	-0.04	0.17	1.78	-985.73	-0.13	0.16
2.19	-1018.25	0.03	0.23	1.61	-985.76	-0.16	0.13
1.96	-1018.49	-0.21	0.00	1.44	-985.83	-0.23	0.06
	NbC{111}C				NbC{11	1}M	
CSlab	E _{TOT}	ΔE^a	ΔE^{b}	CSlab	E _{TOT}	ΔE^a	ΔE^{b}
2.95	-956.01	-0.21	0.00	1.55	-954.47	-1.98	0.00
2.81	-955.99	-0.20	0.02	1.72	-954.21	-1.73	0.25
2.64	-955.95	-0.16	0.05	2.08	-952.97	-0.49	1.49
2.46	-955.87	-0.08	0.14				
2.28	-955.73	0.07	0.28				
2.10	-955.53	0.26	0.48				
1.93	-955.23	0.56	0.78				
1.75	-955.56	0.23	0.45				
1.57	-956.09	-0.30	-0.09				

Table S1. Geometry scans for CO_2 on four low-index surfaces of NbC. The distance between the surfaces and adsorbate (Cslab) are given in Å; whilst the energies of the total (E_{TOT}) and relative values are given in eV.

ZrC{001}					ZrC{0	11}			
CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}	CSlab	E _{TOT}	ΔE^{a}	ΔE^b		
2.92	-959.73	-0.27	0.00	2.56	-922.35	-0.23	0.00		
2.68	-959.70	-0.24	0.03	2.36	-922.34	-0.22	0.00		
2.44	-959.66	-0.20	0.07	2.16	-922.34	-0.22	0.01		
2.20	-959.62	-0.16	0.11	1.96	-922.35	-0.23	0.00		
1.95	-959.71	-0.25	0.02	1.76	-922.39	-0.27	-0.04		
1.71	-960.15	-0.69	-0.43	1.56	-922.46	-0.34	-0.12		
				1.36	-922.77	-0.65	-0.42		
	ZrC{111}C				ZrC{111}M				
CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}	CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}		
3.07	-879.22	-0.25	0.00	1.40	-883.32	-3.32	0.00		
2.67	-879.13	-0.16	0.09	1.58	-883.17	-3.16	0.16		
2.49	-879.04	-0.08	0.17	1.94	-882.07	-2.06	1.25		
2.31	-879.06	-0.09	0.16	2.12	-882.12	-2.12	1.20		
2.12	-878.95	0.01	0.27						
1.94	-894.31	-15.34	-15.09						
1.76	-894.33	-15.37	-15.12						
1.58	-894.32	-15.36	-15.11						
1.39	-894.33	-15.36	-15.11						

Table S2. Geometry scans for CO_2 on four low-index surfaces of ZrC. The distance between the surfaces and adsorbate (Cslab) are given in Å; whilst the energies of the total (E_{TOT}) and relative values are given in eV.

	TiC {001}				TiC{0	11}	
CSlab	E _{TOT}	ΔE^{a}	ΔE^b	CSlab	E _{TOT}	ΔE^{a}	ΔE^b
3.13	-931.20	-0.26	0.00	0.93	-897.91	-3.45	0.00
2.90	-931.16	-0.23	0.03	1.13	-897.79	-3.33	0.12
2.67	-931.14	-0.21	0.05	1.32	-897.52	-3.06	0.39
2.44	-931.08	-0.14	0.11	1.51	-897.19	-2.73	0.72
2.21	-930.98	-0.04	0.22	1.70	-896.80	-2.34	1.11
1.98	-930.91	0.03	0.29	1.90	-896.19	-1.73	1.72
1.74	-931.06	-0.13	0.13	2.09	-895.57	-1.11	2.34
				2.28	-894.95	-0.49	2.96
				2.48	-894.64	-0.18	3.27
				2.67	-894.54	-0.08	3.37
				2.86	-894.63	-0.17	3.28
				3.05	-894.78	-0.32	3.14
				3.25	-894.83	-0.37	3.08
				3.44	-894.78	-0.32	3.13
				3.63	-894.70	-0.24	3.22
				3.82	-894.58	-0.12	3.34
				4.02	-894.61	-0.16	3.30

Table S3. Geometry scans for CO_2 on four low-index surfaces of TiC. The distance between the surfaces and adsorbate (Cslab) are given in Å; whilst the energies of the total (E_{TOT}) and relative values are given in eV.

VC{001}				VC{0)11}	
E _{TOT}	ΔE^{a}	ΔE^{b}	CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}
-949.52	-0.32	0.00	3.10	-919.06	-0.22	0.00
-949.50	-0.29	0.02	2.92	-919.05	-0.21	0.01
-949.44	-0.24	0.08	2.73	-918.99	-0.15	0.07
-949.40	-0.20	0.12	2.54	-918.85	-0.01	0.21
-949.26	-0.05	0.26	2.35	-918.87	-0.03	0.19
-949.27	-0.06	0.25	2.16	-918.85	-0.01	0.21
-949.47	-0.26	0.06	1.97	-918.87	-0.02	0.19
			1.79	-918.99	-0.15	0.07
			1.60	-919.02	-0.18	0.04
	VC { E _{TOT} -949.52 -949.50 -949.44 -949.40 -949.26 -949.27 -949.47	$\begin{array}{c c} VC \{001\} \\ \hline E_{TOT} & \Delta E^a \\ \hline -949.52 & -0.32 \\ \hline -949.50 & -0.29 \\ \hline -949.44 & -0.24 \\ \hline -949.40 & -0.20 \\ \hline -949.26 & -0.05 \\ \hline -949.27 & -0.06 \\ \hline -949.47 & -0.26 \\ \end{array}$	VC {001 } E_{TOT} ΔE^a ΔE^b -949.52-0.320.00-949.50-0.290.02-949.44-0.240.08-949.40-0.200.12-949.26-0.050.26-949.27-0.060.25-949.47-0.260.06	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S4. Geometry scans for CO_2 on four low-index surfaces of VC. The distance between the surfaces and adsorbate (Cslab) are given in Å; whilst the energies of the total (E_{TOT}) and relative values are given in eV.

Figure S1. Negative correlation between chemical adsorption energy and the imaginary frequency for the CO₂ reduction transition state.

	$\mathbf{\Phi}_{phys}$	$\mathbf{\Phi}_{chem}$	ΔE _{phys}	ΔE _{chem}	β _{phys}	β_{chem}
TiC{001}	2.81	~	-0.08	-0.53	0.02	~
TiC{011}	~	2.80	~	-3.43	~	0.00
TiC{111}C	5.73	5.12	~	~	0.00	-0.19
TiC{111}M	~	5.14	~	-0.98	~	0.08
VC{001}	3.31	3.36	-0.17	-0.57	0.02	0.03
VC{011}	~	3.42	-0.45	~	~	0.67
VC{111}C	4.55	~	~	~	0.00	~
VC{111}M	~	4.85	~	-0.96	~	0.16
ZrC{001}	2.87	2.96	~	-0.59	0.02	0.00
ZrC{011}	~	4.08	~	-0.70	~	0.06
ZrC{111}C	~	~	-0.43	~	~	~
ZrC{111}M	~	4.91	~	-1.05	~	0.08
NbC{001}	~	3.13	-0.18	~	~	0.07
NbC{011}	~	2.59	~	-0.80	~	0.02
NbC{111}C	5.00	~	-0.31	-1.01	0.00	~
NbC{111}M	~	5.08	~	-0.87	~	0.11

Table S5. Changes in workfunction (ϕ), absorption energy (ΔE) and the grouped adsorbate Bader chrges (β) for CO₂ adsorption. The physically and chemically adsorbed states are indicated by subscript phys and chem, respectively. All energies are given in eV.

Figure S2. Correlation between chemical adsorption energy and the H_2O bond length of H_2O reduction transition state.

	TiC{	001}		VC{001}			
CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}	CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}
4.68	-946.31	-0.01	-0.32	4.86	-964.07	-0.37	-0.33
4.45	-946.32	-0.01	-0.32	4.64	-964.07	-0.37	-0.33
4.22	-946.32	-0.02	-0.33	4.41	-964.08	-0.38	-0.34
3.98	-946.33	-0.03	-0.34	4.19	-964.08	-0.38	-0.34
3.75	-946.35	-0.04	-0.36	3.96	-964.09	-0.39	-0.35
3.52	-946.37	-0.06	-0.37	3.74	-964.10	-0.40	-0.36
3.29	-946.38	-0.08	-0.39	3.51	-964.11	-0.41	-0.37
3.06	-946.38	-0.07	-0.38	3.29	-964.12	-0.42	-0.38
2.83	-946.32	-0.02	-0.33	3.06	-964.14	-0.44	-0.40
2.60	-946.18	0.12	-0.19	2.84	-964.14	-0.44	-0.40
2.37	-945.91	0.39	0.08	2.61	-964.11	-0.41	-0.37
2.14	-946.46	-0.15	-0.46	2.39	-964.03	-0.33	-0.28
				2.16	-963.87	-0.17	-0.13
				1.94	-963.66	0.04	0.09
				1.71	-964.67	-0.97	-0.93

Table S6. Geometry scans for H_2O on the {001} surfaces of TiC and VC, which have been preloaded with CO_2 . The distance between the surfaces and adsorbate (Cslab) are given in Å; whilst the energies of the total (E_{TOT}) and relative values are given in eV.

	NbC{	001}			ZrC{	ZrC{001}		
CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}	CSlab	E _{TOT}	ΔE^{a}	ΔE^{b}	
4.52	-1033.65	0.00	-0.35	4.31	-975.63	0.00	-0.32	
4.29	-1033.66	-0.01	-0.35	4.07	-975.63	0.00	-0.32	
4.05	-1033.66	-0.01	-0.35	3.83	-975.64	-0.01	-0.33	
3.82	-1033.67	-0.02	-0.36	3.59	-975.65	-0.02	-0.35	
3.58	-1033.68	-0.03	-0.37	3.34	-975.68	-0.05	-0.38	
3.35	-1033.68	-0.03	-0.38	3.10	-975.71	-0.08	-0.41	
3.11	-1033.67	-0.02	-0.37	2.86	-975.72	-0.09	-0.42	
2.88	-1033.63	0.02	-0.32	2.62	-975.69	-0.06	-0.39	
2.65	-1033.63	0.02	-0.32	2.37	-975.59	0.04	-0.29	
2.41	-1033.51	0.14	-0.20	2.13	-975.39	0.24	-0.09	
2.18	-1033.27	0.38	0.03	1.89	-975.94	-0.31	-0.64	
1.94	-1034.14	-0.49	-0.83					

Table S7. Geometry scans for H_2O on the {001} surfaces of NbC and ZrC, which have been preloaded with CO₂. The distance between the surfaces and adsorbate (Cslab) are given in Å; whilst the energies of the total (E_{TOT}) and relative values are given in eV.