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1 DFT calculations
For each polymerization reaction

HXn−1H++HXH++B+B′⇀↽ HXnH+BH++B′H+

(where B and B’ are the proton scavengers), we estimate the
Gibbs free energy of reaction ∆G(n) (where n is the number of
monomers composing the oligomer) using a different combina-
tion of molecules as proton scavengers. All the calculations are
performed both in solution and in vacuo using the Gaussian16
suite of programs1. In order to calculate gas phase Gibbs free en-
ergies ∆G0 all the geometries were first optimized at the B3LYP/6-
311G(d,p) level and a vibrational frequencies calculation was
then performed at the same theory level. The same procedure
was employed to estimate the Gibbs free energies in solution G
by using the SMD implicit solvent model2.
Specifically, the Gibbs free energy of reaction is calculated as:

∆G = ∆G0 +∆G0→∗+∆Gsol (1)

where

• ∆G0 is the gas-phase Gibbs free energy of reaction;

• ∆G0→∗ is the Gibbs free energy of transfer from the gas phase
to the solution3

∆G0→∗ = ∆nRT ln
(

RT
pV ∗

)
(2)

where ∆n is the difference between the sum of moles of prod-
ucts and the sum of moles of reactants, p is the gas phase
pressure (1 atm, in the present case), 1/V ∗ is the solute con-
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centration (assumed to be 1 mol/L), T the absolute temper-
ature and R is the gas constant.

• ∆Gsol is the solvatation Gibbs free energy accounting for
solute-solvent interactions for each reactant and product.

The first and the last terms in Eq. (1) are estimated as the dif-
ference between the sum of Gibbs free energies of the products
and that of the reactants. The gas-phase Gibbs free energies are
calculated by performing an analysis of the vibrational frequen-
cies whereas the SMD implicit solvent model has been employed
to compute the solvatation energies. In detail, the Integral equa-
tion formalism is implemented in polarizable continuum model
(IEFPCM) by taking the electrostatic and non-electrostatic terms
(cavitation, dispersion and repulsion energies) from Truhlar and
coworkers’ SMD solvation model2.

To assess the accuracy of the present methodology, we calcu-
lated the enthalpy and the entropy variations ∆H theo

298 and ∆Stheo
298

at T=298 K calculated using the B3LYP functional and the aug-
cc-pVDZ basis set4 for the dissociation reaction of several strong
acids. The results are shown in Table 1 together with the corre-
sponding experimental values ∆Hexp

298 and ∆Sexp
298

4. In both cases
we observe a very good agreement between our calculations and
the previous experimental and theoretical data. Finally, a second
set of calculations has been carried out to establish the accuracy
of the implicit solvent model described via the IEFPCM. We con-
sidered the following reaction involving pyridine in solvent water
as a reference case:

Pyr+H+ ⇀↽ PyrH+ (3)

The calculated value of the Gibbs free energy of reaction is
∆G =−8.8074 kcal mol−1, given by the sum of the three contribu-
tions of Eq. (1): in particular, ∆G0 =−910.66 kcal mol−1, whereas
∆G0 for an isolated H+ was analytically estimated by Sackur-
Tetodre formula. Importantly, the computed value of ∆Gtheo is
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Table 1 Comparison between the computed dissociation enthalpy ∆H theo
298

and entropy ∆Stheo
298 with the corresponding experimental values. En-

thalpies are expressed in kcal/mol while entropies are in cal/mol/K.

Species ∆H theo
298 ∆Hexp

298 ∆Stheo
298 ∆Sexp

298
HBr 324.91 323.5 47 47.425
HCl 329.53 333.4 45 44.605
HI 316.68 314.3 49 49.444

H-HSO4 313.86 312.5 74 72.725
TfOH 303.75 305.4 89 88.23
TosH 320.08 — 104 99.474

in good agreement with the experimental one, ∆Gexp = −7.0449
kcal/mol5.

1.1 Classical molecular dynamics
In order to investigate the effect of the proton scavenger over
the morphology of PEDOT samples, we developed a novel com-
putational tool to model the PEDOT polymerization, which al-
lows to reproduce in silico the chemical processes leading from
monomeric units to a polymerized sample. In the present ap-
proach molecular dynamics (MD) simulations are blended with
first-principle free energy calculations (see previous section), so
as to generate a fully atomistic modelling of polymerization.
MD takes charge of the dynamical evolution of the system for
very long time periods whereas first-principle calculations are ex-
ploited to describe (in a probabilistic approach) the oxidative
elongation processes. Specifically, the polymerization algorithm
consists of two mains steps, which are iteratively repeated until
the polymerized sample has been achieved: the dynamical step
and the coupling step.

1. The Dynamical step
The first step is responsible for the dynamical evolution of
the individual EDOT monomers in the system. In all the MD
runs, the positions and velocities of the interacting compo-
nents are evolved according to Newton’s equations of mo-
tion, as implemented in the LAMMPS molecular dynamics
package6. The interatomic interactions are described using
the AMBER force field7, including bonding terms (bonds,
angles, and dihedrals) as well as nonbonding contributions
(Coulomb and van der Waals). The parameters occurring
in the bonding and Van der Waals terms are taken from the
GAFF database8. The atomic partial charges are estimated
with the restrained electrostatic potential (RESP) method9

as implemented in the Gaussian package. The velocity-
Verlet algorithm with a time step of 0.5 fs is used to
solve the equations of motion. A particle-particle par-
ticle mesh solver is used for describing the long-range
electrostatic forces, and the van der Waals interaction
are cut off at 1.0 nm. The Nosé-Hoover thermostat and
barostat with corresponding relaxation time equal to 50 fs
and 0.5 ps respectively are used.

2. The Coupling step
The formation of a chemical bond between two EDOT

monomers (or one EDOT monomer and one PEDOT
oligomer, see Fig. 1) is accomplished in this step adopting a
Markov-based approach. To this aim, we introduce a "bond
creation probability" p, defined as the probability that two
units can bond together forming a larger oligomer. At each
time step, the distance between any pair of units is checked
if smaller than a given threshold (3 Å in our case), the chem-
ical bond is formed according to the probability p. The corre-
sponding terms in the classical interaction potential are then
eventually updated with the introduction of new bonds, an-
gles and dihedrals. Once this step has been performed, the
procedure continues with a new iteration of the dynamical
step.
In our model, we assume that different probability values p
correspond to different chemical reactions according to the
formula

p = min(1,exp(∆G/(KBT )) (4)

where KB is the Boltzmann constant, T is the temperature
and ∆G is the Gibbs free reaction energy. The bond is then
formed with probability 1 if the corresponding reaction is
energetically favourable (∆G < 0), otherwise it is created
with a probability proportional to the Boltzmann weight.

1.2 Sample preparation

To demonstrate the capabilities of our computational tool, we em-
ulated the polymerization process of systems as large as a cube
of side 11.8 nm, containing an initial number of 10,000 EDOT
monomeric units. Overall the simulation cell contained as many
as 130,000 atoms. The solvent as well as the proton scavengers
and tosylate molecules were not present in the simulation cell
since their effect has been taken into account in the ∆G(n) cal-
culations and therefore in the bond creation probabilities. The
simulation of the polymerization process required a multi-step
procedure to be performed: i) first, the monomers are placed in
an initial arbitrary volume in a random fashion; ii) the system is
fully relaxed at constant temperature T = 300 K and fixed ambi-
ent pressure using a Nosé-Hoover thermostat in order to reach the
equilibrium values of volume and density; iii) the polymerization
algorithm is then finally implemented keeping the temperature
constant (T = 300 K).

1.3 Sample crystallinity

To quantify the crystallinity of our samples, we calculated the
fraction of volume vC occupied by the crystallites. The definition
of this quantity relies on the calculation of the local spatial cor-
relation of the orientation of EDOT monomers, C(~r). Specifically,
each EDOT unit was labeled with a vector ~si joining two carbon
atoms in the thiophene ring (see Fig. 1). For each vector ~si the
spatial correlation reads

C(~r) =
1
N ∑
|~r−~r j |<r0

|~si(~r) ·~s j(~r j)| (5)

where ~r is the position of the first carbon atom and N is the to-
tal number of EDOT monomers. The value of r0 was set to 5 Å .
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Fig. 1 Schematic representation of the orientation vectors ~si and ~s j used
to estimate the spatial local correlation C(~r)

Thus, the higher is the correlation between the EDOT monomers
orientations (higher values of C(~r)), the higher is the local sample
crystallinity. Therefore, by mapping the C(~r) values, one identifies
the regions of higher crystallinity and the fraction of the sample
volume occupied by crystallites vC. C(~r) ranges from a minimum
value of 1e-4, which characterizes samples still not polymerized,
up to a maximum value of 5e-3 obtained for a perfect crystalline
sample generated as reported in10. For our polymerized samples,
C(~r) ranges from 1e-4 to 9e-4. C(~r) is large at small distances
(where the monomer orientations are strongly correlated), but it
rapidly decreases for larger distances. In the latter situation, the
monomer orientations become almost uncorrelated.
From the knowledge of C(~r), the volume fraction occupied by
crystalline regions vC has been calculated by estimating the vol-
ume of the simulation cell for which C(~r) is larger than a given
threshold value Cmin, i. e.:

vC =

∫
C(~r)>Cmin

dV

Vcell
(6)

We set Cmin = 0.006 at about half of the span of values taken by
C(~r). Visual inspection of the simulation output further confirmed
that the threshold set is the lowest value of C for which stacking
is still observed.
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