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A. Synthesis of the trimer and tetramer
4-(9-(4-bromophenyl)nonyl)-2',3'-difluoro-4*"-pentyl-1,1':4"1"'-terphenyl, 3
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1,9-bis(4-bromophenyl)nonane 2 (7.60 g, 17.3 mmol) and (2,3-difluoro-4'-pentyl-[1,1'-biphenyl]-
4-yl)boronic acid 1 (1.76 g, 5.8 mmol) were dissolved in tetrahydrofuran (100 mL) and a solution
of aqueous sodium carbonate (2 mol.dm=, 40 mL) added. Dry nitrogen gas was bubbled through
the resulting solution for 20 minutes, Pd(PPhz)4 (0.19 g, 0.22 mmol, 4 mol%) added in one portion
and the reaction subsequently heated to 90°C for 16 hours under reflux conditions. After cooling
to ambient temperature, water (100 mL) was added and the mixture extracted with
dichloromethane (3 x 100 mL). The combined organic extracts were washed with water (2 x 100
mL) and dried over anhydrous MgSOs (s). After removal of the dessicant by filtration, the organics
were concentrated in vacuo and the product isolated by column chromatography (Silica gel, eluent:
Hexane / CH2Cl, 95:5). Hot recrystallisation from a mixture of ethanol/ethyl acetate gave the
product 3 as off-white crystals. Yield 2.81g, 79%

3H(400MHz; CD,Cl,) 7.53-7.48 (m, 4H), 7.39 (d, 3J(H-H) = 8.3 Hz, 2H), 7.33-7.25 (m, 6H), 7.07
(d, 3J(H-H) = 8.7 Hz, 2H), 2.72-2.63 (m, 4H), 2.59 (t, 3J(H-H) = 7.8 Hz, 2H), 1.72-1.53 (m, 6H),
1.43-1.26 (m, 14H), 0.92 (t, 3J(H-H) = 6.9 Hz, 3H)

5c(100MHz; CD2Cl,) 148.89 (dd, 1J(C-F) = 249.5 Hz, 2J(C-F) = 15.4 Hz), 143.74 (d, J(C-F) = 1.9
Hz), 142.54 (s), 132.24 (s), 131.52 (s), 130.64 (s), 130.00-129.80 (m), 129.09 (s), 129.04 (s),
125.07 (s), 119.40 (s), 36.00 (s), 35.64 (s), 31.94 (s), 31.86(s), 31.73 (s), 31.57 (s), 29.85 (s), 29.80
(s), 29.70 (s), 29.54 (s) 22.96 (s), 14.22 (5)

Or(376MHz; CD2Cl2) -144.19 (s)

MS (APCI) m/z 617.3 (M+H)*

HRMS : calculated for CsgHa4BrF» : 617.2594, found 617.2591

anal. calculated for CagHa43BrF2: C 73.89, H 7.02; found: C 74.12, H 7.17



4-(9-(2',3"-difluoro-[1,1'-biphenyl]-4-yl)nonyl)-2*,3'-difluoro-4'"-pentyl-1,1":4",1"*-terphenyl,
4
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2,3-difluorophenyl boronic acid (1.53 g, 9.7 mmol) and 3 (2.0 g, 3.2 mmol) were dissolved in THF
(50 mL) and a solution of aqueous sodium carbonate (2 mol.dm, 10 mL) added. Dry nitrogen gas
was bubbled through the resulting solution for 15 mins., Pd(PPh3)s (130 mg, 0.1 mmol, 3 mol%)
added in one portion and the reaction subsequently heated to 90°C for 16 hours under reflux
conditions. After cooling to ambient temperature, water (100 mL) was added and the mixture
extracted with diethyl ether (3 x 75 mL). The combined organic extracts were washed with water
(2 x 100 mL) and dried over anhydrous MgSOs (s). After removal of the dessicant by filtration,
the organics were concentrated in vacuo and the product isolated by column chromatography
(Silica gel, eluent: Hexane / CH2Cl,, 9:1). Hot recrystallisation from a mixture of ethanol/ethyl
acetate gave 4 as white crystals. Yield 1.85 g, 88 %

8H(400MHz; CD,Cl) 7.53-7.48 (m, 4H), 7.48-7.43 (m, 2H), 7.33-7.25 (m, 8H), 7.24-7.15 (m,3H),
2.70-2.63 (m, 6H), 1.71-1.60 (m, 6H), 1.43-1.29 (m, 14H), 0.94-0.89 (m, 3H)

5c(100MHz; CD,Cl) 151.50 (dd, *J(C-F) = 246.6 Hz, 2J(C-F) = 13.5 Hz), 148.80 (dd, J(C-F) =
249.5 Hz, 2)(C-F) = 15.4 Hz), 148.27 (dd, YJ(C-F) = 248.5 Hz, 2J(C-F) = 13.5 Hz), 143.74 (s),
132.23 (s), 131.64 (d, 3J(C-F) = 9.6 Hz), 129.95-129.70 (m), 129.08 (s), 129.03 (s), 125.82-125.68
(m), 125.16-124.96 (m), 124.65-124.45 (m), 116.06 (d, 2J(C-F) = 17.3 Hz), 36.00 (s), 31.94 (s),
31.87 (s), 31.57 (s), 29.85 (s), 29.71 (s), 22.95 (5), 14.22 (S)

8r(376MHz; CD,Clp) -139.02 — -139.15 (m, 1F), -144.20 (s, 2F), -144.69 — -144.81 (m, 1F)

MS (APCI) m/z 651.4 (M+H)*

HRMS : calculated for C44H47F4 : 651.3614, found 651.3616

anal. calculated for CasHaseF4: C 81.20, H 7.12; found: C 80.99, H 7.12

(4-(9-(2",3'-difluoro-4"*-pentyl-[1,1":4",1""-terphenyl]-4-yl)nonyl)-2,3-difluoro-[1,1"-
biphenyl]-4-yl)boronic acid, 5
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Compound 4 (1.80 g, 2.77 mmol) was dissolved in anhydrous THF (40 mL) under a dry N2
atmosphere and the resulting solution cooled to -78°C. "BuLi (2.5M in hexanes, 3.0 mmol, 1.2
mL) was added dropwise and the reaction was left to stir at -78°C for one hour before trimethyl
borate (0.94 mL, 8.3 mmol) was added in one portion and the reaction was allowed to rise slowly
to ambient temperature over 16 hours. A solution of aqueous HCI (1M, 30mL) was added
cautiously and the reaction stirred for two hours. The solvent was concentrated in vacuo until it
became cloudy and the precipitate that subsequently formed was filtered off and washed with
hexane (4 x 50 mL). Yield of white solid: 1.57 g, 82 %

dH(400MHz; CD.Cly) 7.62-7.55 (m, 1H), 7.54-7.45 (m, 6H), 7.35-7.23 (m, 9H), 5.12 (s, 1H), 5.11
(s, 1H), 2.67 (t, 3J(H-H) = 7.8 Hz, 6H), 1.72-1.59 (m, 6H), 1.45-1.25 (m, 14H), 0.95-0.88 (m, 3H)
8c(100MHz; CD,Cl,) 156.25 (dd, 1J(C-F) = 243.7 Hz, 2J(C-F) = 12.5 Hz), 148.88 (dd, 1J(C-F) =
249.5 Hz, 2)(C-F) = 15.4 Hz), 147.83 (dd, }J(C-F) = 252.4 Hz, 2J(C-F) = 13.5 Hz), 144.20 (s),
143.74 (s), 134.45 (d, 3J(C-F) = 9.6 Hz), 132.24 (s), 132.00-131.85 (m), 130.85-130.65 (m),
129.95-129.75 (m), 129.08 (s), 129.03 (s), 125.80 (br s), 125.15-124.95 (m), 36.01 (s), 31.94 (s),
31.86 (s), 31.83 (s), 31.56 (s), 29.84 (s), 29.69 (S), 22.95 (s), 14.21 (s)

8r(376MHz; CD,Cl,) -135.69 —-135.83 (m, 1F), -144.22 (s, 2F), -145.91 (dd, 3J(F-F) = 21.7 Hz,
4J(F-H) = 5.8 Hz, 1F)

MS (APCI) m/z 720.4 (M+H)* (Ethylene glycol adduct)

HRMS : calculated for C4sHs002F4'°B : 720.3876, found 720.3871

4" 4"-((2',3'-difluoro-[1,1":4',1""-terphenyl]-4,4"-diyl)bis(nonane-9,1-diyl))bis(2",3'-
difluoro-4-pentyl-1,1':4',1""-terphenyl), 6
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Compound 5 (240 mg, 0.35 mmol) and 3 (427 mg, 0.69 mmol) were dissolved in THF (40 mL)
and a solution of agueous sodium carbonate (2 mol.dm, 10 mL) added. Dry nitrogen gas was
bubbled through the resulting solution for 30 minutes, Pd(PPhz)4 (37 mg, 9 mol%) added in one
portion and the reaction subsequently heated to 90°C for 24 hours under reflux conditions. Upon
cooling to ambient temperature, an off-white precipitate formed. Water (50 mL) and CH2Cl (50
mL) were added and the organic layer separated. This was slowly concentrated in vacuo until it

exhibited a cloudy appearance. The solution was reformed by addition of a small amount of CH2Cl>



(3 mL approx.) and acetone (20mL) subsequently added. White crystals formed over a period of
two hours and were collected by filtration before being washed thoroughly with acetone. Yield of
white crystals: 313 mg, 76 %

31 (400 MHz, CDCl3) § 7.53-7.48 (m, 12H), 7.32-7.27 (m, 12H), 7.25-7.22 (m, 6H), 2.66 (t, 3J(C-
H) = 7.8 Hz, 12H), 1.73-1.61 (m, 12H), 1.43-1.28 (m, 28H), 0.92 (t, 3J(C-H) = 7.3 Hz, 6H)
5c(100MHz; CDCls) 148.62 (dd, 1J(C-F) = 250.5 Hz, 2J(C-F) = 16.4 Hz), 143.21 (s), 132.12 (s),
129.72-129.52 (m), 128.83 (s), 124.80-124.60 (m), 35.87 (s), 31.71 (s), 31.56 (), 31.26 (S), 29.63
(S), 29.48 (s), 22.72 (s), 14.21 (S)

dr(376MHz; CDCls3) -143.22 (s)

MS (APCI) m/z 1189.7 (M+H)*

HRMS : calculated for Cg2HsoFs : 1187.6868, found 1187.6866

anal. calculated for Cg2HgsFs: C 82.93, H 7.47; found: C 82.92, H 7.52

1,9-bis(4""-(9-(2',3'-difluoro-4""-pentyl-[1,1":4",1"'-terphenyl]-4-yl)nonyl)-2',3"-difluoro-
[1,1":4",1"-terphenyl]-4-yl)nonane, 7
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Compound 5 (525 mg, 0.76 mmol) and 2 (150 mg, 0.34 mmol) were dissolved in THF (40mL) at
50°C and Na2COs(aqg) (2 mol.dm™, 10 mL) added. Nitrogen was bubbled through the resulting
solution for 30 mins and then Pd(PPhs)s added (40 mg, 0.03 mmol, 10 mol%). The reaction was
heated under reflux conditions to 90° under nitrogen for 15hrs. Upon cooling to ambient
temperature, an off-white precipitate was formed. This was filtered off and washed sequentially
with water (10 x 50 mL) and acetone (10 x 50 mL). Yield of 7: 305 mg, 56 %

dH(400 MHz, CD2CL>) 6 7.55-7.47 (m, 16H), 7.35-7.24 (m, 24H), 2.72-2.63 (m, 16H), 1.73-1.62
(m, 16H), 1.44-1.29 (m, 38H), 0.95 - 0.88 (m, 6H)

5c(100MHz; CDCls) 148.65 (dd, 1J(C-F) = 250.5 Hz, 2J(C-F) = 15.4 Hz), 143.22 (s), 132.14 (s),
129.71 - 129.53 (m), 128.83 (br s), 124.70 - 124.56 (m), 35.87 (s), 31.72 (s), 31.55 (s), 31.26 (s),
29.63 (s), 29.49 (s), 22.72 (s), 14.20 (s)

dr(376MHz; CD.Cly) -143.23 (s)

MS (APCI) m/z 1577.9 (M+H)"

HRMS : calculated for Cio9H117Fs : 1577.9028, found 1577.9026



anal. calculated for C1ooH116Fs: C 82.96, H 7.41; found: C 82.82, H 7.47
Detailed NMR and high resolution mass spectra of the intermediate and final compounds

are provided in the Appendix at the end of the ESI.

B. DSC results on the dimer, trimer and tetramer

The transition temperatures below were determined on heating, and differ somewhat from
those measured optically on cooling, which are reported in the main text. The differences are
attributable to different thermometer calibrations, differences in the thermal characteristics of the
heat stages, and differences in placement of the thermometers relative to the sample volume probed
(i.e., thermal gradients), as well as possible heating/cooling hysteresis. We note that the transitions
temperatures and thermal values for DTC5C9 are systematically shifted when compared to recent
MDSC data® obtained with heating rates of 0.01 to 0.04 K.

DTC5C9 (797.08 gmol*?) Cr 95 Nrs 126 N 164 lIso

AH Cr—NTB AH NTB-N AH N-lIso

AH/).g? 59.1 0.03 0.76

AH / kl.mol? 47.1 0.02 0.61

AS / J.molt.K? 127.6 0.06 1.38
C9C9 trimer (1187.60 gmol™?) Cr 127 Nts 149 N 188 Iso

AH Cr-Ntg AH Npg-N AH N-Iso

AH/).gt 42.4 0.49 3.12
AH / kl.mol? 50.4 0.58 3.71
AS / J.molt.K? 126.5 1.39 7.93
C9C9C9 tetramer (1578.11 gmol?) Cr 142 Nts 167 N 204 Iso

AH CF-NTB AH NTB-N AH N-Iso

AH/).g*! 49.8 1.30 2.22
AH / kJ.mol™ 78.5 2.05 3.50
AS / J.mol™.K? 189.3 4.71 7.37

Table S1: Enthalpy and entropy changes at the I — N, N — Ntg, and Ntg — Cr transitions in the
studied n-mers.
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Figure S1: Top: DSC traces for the studied trimer (“CW550”), including first heating
and first and second cooling scans. Bottom: Traces for first and second cooling scans,
magnified (140 — 200 °C).
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Figure S2: Top: DSC traces for the studied tetramer (“CW551”), including first
heating and first and second cooling scans. Bottom: Traces for first and second
cooling scans, magnified (120 — 210 °C).
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Figure S3: Top: DSC traces for the studied dimer (“DTC5C9”), including first and
second heating and cooling scans. Bottom: Traces for first and second cooling scans,
magnified (115 - 165 °C).



C. Sample SAXS lineshapes
The following figures present typical small angle x-ray scattering data collected in the N
and Nt phases of the studied n-mers at the CMS beamline at NSLS2, Brookhaven National

Laboratory, USA. Azimuthal averages of the raw scattering data (recorded on an area detector) are
plotted against the magnitude of the scattering vector.
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Figure S4: Typical SAXS lineshapes for the studied dimer in the N phase at T — Tnts =1°C
(left axis) and Ntg phase at T — Tnts = —1°C (right axis).
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Figure S5: Typical SAXS lineshapes for the studied trimer in the N phase at T — Tnte =2°C
(left axis) and Ntg phase at T — Tntes = —2 °C (right axis).
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Figure S6: Typical SAXS lineshapes for the studied tetramer in the N phase at T — Tnts =1°C
(left axis) and Ntg phase at T — Tnts = —2°C (right axis).

D. Light scattering measurements

For our light scattering measurements, we employed three scattering geometries, shown
schematically in Fig. S7. In each case, the incident light propagated along the cell normal and was
polarized perpendicular to the scattering plane, while the scattered light collected at specific angles
off the cell normal was polarized parallel to the plane.

In geometry 1, the average director is oriented perpendicular to the scattering plane. Pure

splay and pure twist contribute to the light scattering for arbitrary scattering angle 6. Choosing 6
to be 6, :sin‘l(noall—ng / nez) we can isolate pure splay?. To calculate this angle for different

temperatures in the N phase of the dimer and trimer, we measured the refractive indices ne and no
separately as functions of T by the wedge cell technique®. For the tetramer, we used the measured
An and took no = 1.5, which is extrapolated from the average values of n, in the nematic phase of
the dimer and trimer (1.44 and 1.47, respectively).

In geometry 3, the equilibrium director lies in the scattering plane. In this case, selecting &
= 6h (the same “magic” angle as in geometry 1) sets the scattering vector (and fluctuation
wavevector) parallel to fi, which corresponds to pure bend fluctuations.

Finally, in geometry 2 the director is oriented parallel to the scattering plane, which, for
arbitrary 6, selects the twist-bend normal mode of the director fluctuations. The intensity scattered
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Figure S7: Scattering geometries utilized in our DLS measurements. Subscripts 1 (3) denote
conditions for collection of pure splay (bend) scattering, where the equilibrium director 7 is
oriented perpendicular (parallel) to the scattering plane, and the scattering angle is set to the
“magic” angle (see text) for normal incidence. Almost pure twist scattering (subscript 2) is
selected when 7 lies in the scattering plane and the laboratory scattering angle is set to a small
value (2° in our case). In all three cases, the incident and scattered light polarizations (displayed
by double-ended arrows) are normal and parallel to the scattering plane, respectively.

KgT . .
——>———, Where g, (q,) is the component of the scattering vector
KZZqJ_ + K33q\|

perpendicular (parallel) to the average fi. The laboratory scattering angle is set to a low value of

from this mode is | o«

2
= 2°, for which q—;zls—zo >1.Since n-mers that form the Nts phase have K,, >K,, (and

K,, > K,, approaching the transition), the condition Kzzqi > K33q”2 applies, and thus the intensity
at the small angle is contains only a few percent contribution from the bend elastic constant.

E. Analysis of the “coarse-grained” model for the N to Ns transition
In direct analogy to the N to SmA* transition, Dozov and Meyer*® expand the Landau-

deGennes free energy density describing the transition from the uniaxial N to pseudo-layerd Nts

phase as
I\?GNTB:%|U|2+E| |4+7/H ‘V” ‘ +7/l (vl |q0Nl)a‘2+—lN1(§ N)Z
o e (S1)
+%(N VxN-t,) +f(Nxvx )
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Here o =sin ,BGW is the analog of the smectic order parameter, £ is the tilt angle of the local
director fi away from the average heliconical axis , and &¢ is the deviation of the phase of the
nematic director i from its equilibrium value in the heliconical Ntg structure. The quantity
N = (NL,«fl— N?) is the coarse-grained director, which is equivalent to the heliconical axis (or

pseudo-layer normal) in the Ntg phase and to the uniaxial director fi in the N phase. The subscripts
|| (L) refer to directions parallel (perpendicular) to the equilibrium pseudo-layer normal Z, while
the superscript N in Eqg. (S1) indicates orientational elastic constants that apply to the coarse-
grained director. Since the molecules are achiral, there is no intrinsic twist, and to = 0, in the N
phase.

According to the “elastic instability” model, the local free energy density describing the
N-Nrg transition is given by®

) i - d2(nn) T
e =%<V-ﬁ)z+%[ﬁ'(w)]z+%[ﬁx(w)f+%{ 7 J)}
(S2)
c,[d?(nn)] ¢, [d?m) T
+— 2 Tt 2
2| dz 4 dz

where 1 is the nematic director, and summation on the indices i, j inside square brackets is implied.
The bend elastic constant Kss has temperature dependence K., = k3, (T —T*)and becomes negative

if T<T*, which favors a spontaneous bend. Eq. (S2) includes higher-order gradients in A
(characterized by positive elastic constants C;) that stabilize the energy when this occurs.

Let us consider the relation between the coefficients in Egs. (S1) and (S2). Above the N—
Ntg transition, we express the order parameter o in a fluctuating pseudo-layer domain as
o =opexp(iq,z), where qo is the wavenumber characterizing the heliconical structure in the

domain, and of is a fluctuation away from the equilibrium value g = 0 in the N phase. Then,

substituting this expression for cand N =1 into Eq. (S1), we obtain {8, in terms of 58and i

. Next, using the results obtained by Dozov and Meyer*® from averaging the “local” free-energy

loc

density fy“\rz over the pitch in a pretransitional Ntg domain, we find that the coefficients in
fCC s are related to those in 15 as

a:%\qg =(K33+Cq§)q§

C:(Kzz_Kss)qg

4 =(K11+K22)/2

KlN1 =K, K2N2 =K,,, K3N3 =K, = k??3 -T%)

(S3)
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where C =C, +C,. Just a single higher order elastic constant remains if only the lowest order is

kept in each term of Eq. (S2) when it is expanded in the cone angle 6f for a fluctuating
(pretransitional) Ntg domain.

The wavenumber qo of the twist-bend modulation appears as an independent parameter in
Egs. (S3). In the N phase, it is not possible to derive an expression for go by minimizing the
extended local free energy. The minimum occurs when g = 0 for any qo. Physically, this means
that the pitch po in fluctuating Nts domains in the N phase is not selected by the model; it must be
considered a material parameter (with a possible temperature-dependence), which presumably
matches at the transition temperature with the value on the low temperature side (i.e., in the Ntg
phase)®.

Because f,ff;NTB (with t, =0) is analogous term by term to the free energy density of the

N-SmA transition, we may carry over standard results from analysis of the latter to discuss the

“coarse-grained” N-Nvg transition. In particular, we may define anisotropic correlation lengths

& =y laand &= ,/;/” / a to characterize the size of pretransitional pseudo-layered domains in

the mean-field limit"®. Then using Eq. (S3), we obtain
Kll + KZZ 1
\f 2(Ky,+Ca?) do

a qo

(S4)

If qo is temperature-dependent, then near the N-Ntg transition (at T =T,,;), we may write

0o (T) ~ & (Tyre) + 65 (Tars (T —Tyrs) » Where 0 (Tyrg) and g '(Tyrs) are the values of g and its

derivative at the transition. The transition occurs when coefficient a in Eq. (S3) passes through

zero and becomes negative - e, K, +Cgi=0 at T=T,,, which gives

Tyre =T *—Cq’ (Tys) / kS, . Therefore, close to Tnrs, We can express &, as:

S~ K,“ Ky 1 (S5)
2 K, + 007 (Tyga) (T ~Tyre) %
Egs. (S4) and (S5) are the results given in Eq. (2) of the main manuscript. Additionally,
a&, = (Kao + 002 ) 6y =| K&y + CaZ (Tyra) | (T ~Tira ) (6)
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close to T,z , Which is used in the discussion of orientational viscosities in the main text.

An alternative “local” model of the N—N1g transition is the “polarization wave” model
discussed by Shamid and Selinger®. The free energy density in this model is:
K,, /= 2 K = 2 K _ 2 - .
e _™M1(v.4) +—22[R. A 28[4 AN =4l A A) |-
fynte = 5 (V n) + > [n (Vxn)] + > [nx(Vxn)] i[nx(Vxn)] P
(S7)
12 14 — >\ 2
+E‘P‘ +K‘P‘ +£(VP)
2 4 2
Here P is a polarization field assumed to be perpendicular to the average nematic director, and

U= y'(T -T *) is the only explicitly temperature-dependent coefficient.

In the N phase, fluctuations in the magnitude of P are related to fluctuations of the

A -
heliconical tilt B by 6P = +q°q2 op . Using this relation between &P and &8 to eliminate ‘P‘
U+ K

0

we can obtain fN'°_°NTB (Eq. (S5)) in terms of of and . The resulting expression can then be

“coarse-grained” (averaged over a pitch) using the same procedure described by Dozov and Meyer

for the “elastic instability” model. Connecting the coefficients in the result to those in Eq. (S1),

we find
£ = Voo K+ Ky, 1 Ky + Ky, 1
a  \[2[Ky=27 1 (u+xqg)] o \[(2/K3 A7) (T =Tyrs) % (s8)
o1
g = T==
a

The second expression for &, is valid for T close to the transition temperature, which is given by

Tyre =T *+2% 1 (/'K ) - 5[0, (Tyre))> / 44 . In Eq. (S8), Kas is the “bare” nematic bend constant,

which has no significant temperature-dependence in the “polarization wave” theory.

From Egs. (S4), (S5), and (S8), we see that the “elastic instability”” and “polarization wave”
models give similar results for the temperature dependence of the correlation lengths.
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Appendix 1: 'H, 13C , *%F and HRMS spectra for intermediates and final trimer and
tetramer products
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Figure S8: 'H NMR spectrum of compound 3; 4-(9-(4-bromophenyl)nonyl)-2',3'-difluoro-
4"-pentyl-1,1':4',1"-terphenyl.
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Figure S9: 3C NMR spectrum of compound 3; 4-(9-(4-bromophenyl)nonyl)-2',3'-difluoro-
4"-pentyl-1,1":4',1"-terphenyl.
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Figure S10: *F NMR spectrum of compound 3; 4-(9-(4-bromophenyl)nonyl)-2',3'-
difluoro-4"-pentyl-1,1':4',1"-terphenyl.

cw546 MW=6167 National Mass Spectrometry Facility, Swansea Mehl
ASAP (SOLID) Xevo G2-S 07-Nov-2018
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Figure S11: Top: Experimental data: high resolution mass spectrum of compound 3; 4-(9-
(4-bromophenyl)nonyl)-2',3'-difluoro-4"-pentyl-1,1':4',1"-terphenyl. Bottom: Calculated
high resolution mass spectrum of compound 3.
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Figure S12: *H NMR spectrum of compound 4; 4-(9-(2',3'-difluoro-[1,1'-biphenyl]-4-yl)nonyl)-
2',3'-difluoro-4"-pentyl-1,1":4',1"-terphenyl.
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Figure S13: 3C NMR spectrum of compound 4; 4-(9-(2',3'-difluoro-[1,1'-biphenyl]-4-yl)nonyl)-
2',3'-difluoro-4"-pentyl-1,1":4",1"-terphenyl.
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Figure S14: F NMR spectrum of compound 4; 4-(9-(2',3'-difluoro-[1,1'-biphenyl]-4-yl)nonyl)-
2"3'_diﬂu(\rn_/|"_nnnf\/|_1 1'"-A' 1" _tarnhanvl
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Figure S15: Top: Experimental data: high resolution mass spectrum of compound 4; 4-(9-(2',3'-
difluoro-[1,1'-biphenyl]-4-yl)nonyl)-2',3'-difluoro-4"-pentyl-1,1':4',1"-terphenyl. Bottom:
Calculated high resolution mass spectrum of compound 4.
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Figure S16: *H NMR spectrum of compound 5; (4'-(9-(2',3'-difluoro-4"-pentyl-[1,1':4',1"-
terphenyl]-4-yl)nonyl)-2,3-difluoro-[1,1'-biphenyl]-4-yl)boronic acid.
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Figure S17: *3C NMR spectrum of compound 5; (4'-(9-(2',3'-difluoro-4"-pentyl-[1,1':4',1"-
terphenyl]-4-yl)nonyl)-2,3-difluoro-[1,1'-biphenyl]-4-yl)boronic acid.
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Figure S18: °F NMR spectrum of compound 5; (4'-(9-(2',3'-difluoro-4"-pentyl-[1,1':4",1"-
terphenyl]-4-yl)nonyl)-2,3-difluoro-[1,1'-biphenyl]-4-yl)boronic acid.

cw549 MW=6947 Mational Mass Spectrometry Facility, Swansea Mehl
ASAP (+EtGly) Xevo G2-5 07-Nov-2018
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Figure S19: Top: Experimental data: high resolution mass spectrum of compound 5; ; (4'-(9-
(2',3'-difluoro-4"-pentyl-[1,1":4',1"-terphenyl]-4-yl)nonyl)-2,3-difluoro-[ 1,1'-biphenyl]-4-
yhboronic acid. Bottom: Calculated high resolution mass spectrum of compound 5.
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Figure S20: 'H NMR spectrum of compound 6 (“trimer”); 4",4""-((2',3'-difluoro-[1,1":4',1"-
terphenyl]-4,4"-diyl)bis(nonane-9,1-diyl))bis(2',3'-difluoro-4-pentyl-1,1':4',1"-terphenyl).
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Figure S21: *3C NMR spectrum of compound 6 (“trimer”); 4",4""-((2',3'-difluoro-[1,1":4',1"-
terphenyl]-4,4"-diyl)bis(nonane-9,1-diyl))bis(2',3'-difluoro-4-pentyl-1,1':4',1"-terphenyl).
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Figure S22: °F NMR spectrum of compound 6 (“trimer”); 4",4""-((2',3'-difluoro-[1,1":4'1"-
terphenyl]-4,4"-diyl)bis(nonane-9,1-diyl))bis(2',3'-difluoro-4-pentyl-1,1":4", 1"-terphenyl).
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Figure S23: Top: Experimental data: high resolution mass spectrum of compound 6 (“trimer”);
4",4""-((2",3"-difluoro-[1,1':4',1"-terphenyl]-4,4"-diyl)bis(nonane-9,1-diyl))bis(2',3'-difluoro-4-
pentyl-1,1':4",1"-terphenyl). Bottom: Calculated high resolution mass spectrum of compound 6.
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Figure S24: *H NMR spectrum of compound 7 (“tetramer”); 1,9-bis(4"-(9-(2',3'-difluoro-4"-
pentyl-[1,1":4',1"-terphenyl]-4-yl)nonyl)-2',3'-difluoro-[1,1':4',1"-terphenyl]-4-yl)nonane.
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Figure S25: 13C NMR spectrum of compound 7 (“tetramer”); 1,9-bis(4"-(9-(2',3'-difluoro-4"-
pentyl-[1,1":4',1"-terphenyl]-4-yl)nonyl)-2',3'-difluoro-[1,1':4',1"-terphenyl]-4-yl)nonane.
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Figure S26: 1°F NMR spectrum of compound 7 (“tetramer”); 1,9-bis(4"-(9-(2',3'-difluoro-4"-
pentyl-[1,1":4',1"-terphenyl]-4-yl)nonyl)-2',3'-difluoro-[1,1':4',1"-terphenyl]-4-yl)nonane.
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Figure S27: Top: Experimental data: high resolution mass spectrum of compound 7 (“tetramer”);
1,9-bis(4"-(9-(2",3'-difluoro-4"-pentyl-[1,1":4',1"-terphenyl]-4-yl)nonyl)-2',3'-difluoro-[1,1":4',1"-
terphenyl]-4-yl)nonane. Bottom: Calculated high resolution mass spectrum of compound 7.
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